|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <string> |
|
|
#include <thread> |
|
|
#include <vector> |
|
|
|
|
|
#include "include/preprocess_op.h" |
|
|
|
|
|
namespace PaddleDetection { |
|
|
|
|
|
void InitInfo::Run(cv::Mat* im, ImageBlob* data) { |
|
|
data->im_shape_ = {static_cast<float>(im->rows), |
|
|
static_cast<float>(im->cols)}; |
|
|
data->scale_factor_ = {1., 1.}; |
|
|
data->in_net_shape_ = {static_cast<float>(im->rows), |
|
|
static_cast<float>(im->cols)}; |
|
|
} |
|
|
|
|
|
void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) { |
|
|
double e = 1.0; |
|
|
if (is_scale_) { |
|
|
e *= 1./255.0; |
|
|
} |
|
|
(*im).convertTo(*im, CV_32FC3, e); |
|
|
for (int h = 0; h < im->rows; h++) { |
|
|
for (int w = 0; w < im->cols; w++) { |
|
|
im->at<cv::Vec3f>(h, w)[0] = |
|
|
(im->at<cv::Vec3f>(h, w)[0] - mean_[0]) / scale_[0]; |
|
|
im->at<cv::Vec3f>(h, w)[1] = |
|
|
(im->at<cv::Vec3f>(h, w)[1] - mean_[1]) / scale_[1]; |
|
|
im->at<cv::Vec3f>(h, w)[2] = |
|
|
(im->at<cv::Vec3f>(h, w)[2] - mean_[2]) / scale_[2]; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
void Permute::Run(cv::Mat* im, ImageBlob* data) { |
|
|
(*im).convertTo(*im, CV_32FC3); |
|
|
int rh = im->rows; |
|
|
int rw = im->cols; |
|
|
int rc = im->channels(); |
|
|
(data->im_data_).resize(rc * rh * rw); |
|
|
float* base = (data->im_data_).data(); |
|
|
for (int i = 0; i < rc; ++i) { |
|
|
cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i); |
|
|
} |
|
|
} |
|
|
|
|
|
void Resize::Run(cv::Mat* im, ImageBlob* data) { |
|
|
auto resize_scale = GenerateScale(*im); |
|
|
data->im_shape_ = {static_cast<float>(im->cols * resize_scale.first), |
|
|
static_cast<float>(im->rows * resize_scale.second)}; |
|
|
data->in_net_shape_ = {static_cast<float>(im->cols * resize_scale.first), |
|
|
static_cast<float>(im->rows * resize_scale.second)}; |
|
|
cv::resize( |
|
|
*im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_); |
|
|
data->im_shape_ = { |
|
|
static_cast<float>(im->rows), static_cast<float>(im->cols), |
|
|
}; |
|
|
data->scale_factor_ = { |
|
|
resize_scale.second, resize_scale.first, |
|
|
}; |
|
|
} |
|
|
|
|
|
std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) { |
|
|
std::pair<float, float> resize_scale; |
|
|
int origin_w = im.cols; |
|
|
int origin_h = im.rows; |
|
|
|
|
|
if (keep_ratio_) { |
|
|
int im_size_max = std::max(origin_w, origin_h); |
|
|
int im_size_min = std::min(origin_w, origin_h); |
|
|
int target_size_max = |
|
|
*std::max_element(target_size_.begin(), target_size_.end()); |
|
|
int target_size_min = |
|
|
*std::min_element(target_size_.begin(), target_size_.end()); |
|
|
float scale_min = |
|
|
static_cast<float>(target_size_min) / static_cast<float>(im_size_min); |
|
|
float scale_max = |
|
|
static_cast<float>(target_size_max) / static_cast<float>(im_size_max); |
|
|
float scale_ratio = std::min(scale_min, scale_max); |
|
|
resize_scale = {scale_ratio, scale_ratio}; |
|
|
} else { |
|
|
resize_scale.first = |
|
|
static_cast<float>(target_size_[1]) / static_cast<float>(origin_w); |
|
|
resize_scale.second = |
|
|
static_cast<float>(target_size_[0]) / static_cast<float>(origin_h); |
|
|
} |
|
|
return resize_scale; |
|
|
} |
|
|
|
|
|
void PadStride::Run(cv::Mat* im, ImageBlob* data) { |
|
|
if (stride_ <= 0) { |
|
|
return; |
|
|
} |
|
|
int rc = im->channels(); |
|
|
int rh = im->rows; |
|
|
int rw = im->cols; |
|
|
int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_; |
|
|
int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_; |
|
|
cv::copyMakeBorder( |
|
|
*im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0)); |
|
|
data->in_net_shape_ = { |
|
|
static_cast<float>(im->rows), static_cast<float>(im->cols), |
|
|
}; |
|
|
} |
|
|
|
|
|
void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) { |
|
|
cv::resize(*im, *im, cv::Size(trainsize_[0], trainsize_[1]), 0, 0, interp_); |
|
|
|
|
|
data->in_net_shape_ = { |
|
|
static_cast<float>(trainsize_[1]), static_cast<float>(trainsize_[0]), |
|
|
}; |
|
|
} |
|
|
|
|
|
|
|
|
const std::vector<std::string> Preprocessor::RUN_ORDER = {"InitInfo", |
|
|
"TopDownEvalAffine", |
|
|
"Resize", |
|
|
"NormalizeImage", |
|
|
"PadStride", |
|
|
"Permute"}; |
|
|
|
|
|
void Preprocessor::Run(cv::Mat* im, ImageBlob* data) { |
|
|
for (const auto& name : RUN_ORDER) { |
|
|
if (ops_.find(name) != ops_.end()) { |
|
|
ops_[name]->Run(im, data); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
void CropImg(cv::Mat& img, |
|
|
cv::Mat& crop_img, |
|
|
std::vector<int>& area, |
|
|
std::vector<float>& center, |
|
|
std::vector<float>& scale, |
|
|
float expandratio) { |
|
|
int crop_x1 = std::max(0, area[0]); |
|
|
int crop_y1 = std::max(0, area[1]); |
|
|
int crop_x2 = std::min(img.cols - 1, area[2]); |
|
|
int crop_y2 = std::min(img.rows - 1, area[3]); |
|
|
|
|
|
int center_x = (crop_x1 + crop_x2) / 2.; |
|
|
int center_y = (crop_y1 + crop_y2) / 2.; |
|
|
int half_h = (crop_y2 - crop_y1) / 2.; |
|
|
int half_w = (crop_x2 - crop_x1) / 2.; |
|
|
|
|
|
if (half_h * 3 > half_w * 4) { |
|
|
half_w = static_cast<int>(half_h * 0.75); |
|
|
} else { |
|
|
half_h = static_cast<int>(half_w * 4 / 3); |
|
|
} |
|
|
|
|
|
crop_x1 = |
|
|
std::max(0, center_x - static_cast<int>(half_w * (1 + expandratio))); |
|
|
crop_y1 = |
|
|
std::max(0, center_y - static_cast<int>(half_h * (1 + expandratio))); |
|
|
crop_x2 = std::min(img.cols - 1, |
|
|
static_cast<int>(center_x + half_w * (1 + expandratio))); |
|
|
crop_y2 = std::min(img.rows - 1, |
|
|
static_cast<int>(center_y + half_h * (1 + expandratio))); |
|
|
crop_img = |
|
|
img(cv::Range(crop_y1, crop_y2 + 1), cv::Range(crop_x1, crop_x2 + 1)); |
|
|
|
|
|
center.clear(); |
|
|
center.emplace_back((crop_x1 + crop_x2) / 2); |
|
|
center.emplace_back((crop_y1 + crop_y2) / 2); |
|
|
scale.clear(); |
|
|
scale.emplace_back((crop_x2 - crop_x1)); |
|
|
scale.emplace_back((crop_y2 - crop_y1)); |
|
|
} |
|
|
|
|
|
} |
|
|
|