ydeng9 commited on
Commit
c890150
1 Parent(s): 907ecce

Upload 6 files

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.6-mistral-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "v_proj",
25
+ "up_proj",
26
+ "gate_proj",
27
+ "o_proj",
28
+ "q_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a835791b30e5094a12dfc29ea44d3337de72194e2ee6dafd789cddae4cdc3a9
3
+ size 708923528
config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_crop_resolution": 224,
16
+ "image_grid_pinpoints": [
17
+ [
18
+ 336,
19
+ 672
20
+ ],
21
+ [
22
+ 672,
23
+ 336
24
+ ],
25
+ [
26
+ 672,
27
+ 672
28
+ ],
29
+ [
30
+ 1008,
31
+ 336
32
+ ],
33
+ [
34
+ 336,
35
+ 1008
36
+ ]
37
+ ],
38
+ "image_split_resolution": 224,
39
+ "initializer_range": 0.02,
40
+ "intermediate_size": 14336,
41
+ "max_position_embeddings": 32768,
42
+ "mm_hidden_size": 1024,
43
+ "mm_patch_merge_type": "flat",
44
+ "mm_projector_lr": 2e-05,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": null,
47
+ "mm_use_im_patch_token": false,
48
+ "mm_use_im_start_end": false,
49
+ "mm_vision_select_feature": "patch",
50
+ "mm_vision_select_layer": -2,
51
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
52
+ "mm_vision_tower_lr": 2e-06,
53
+ "model_type": "llava_llama",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 32,
56
+ "num_key_value_heads": 8,
57
+ "pretraining_tp": 1,
58
+ "rms_norm_eps": 1e-05,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "tokenizer_model_max_length": 2048,
64
+ "tokenizer_padding_side": "right",
65
+ "torch_dtype": "bfloat16",
66
+ "transformers_version": "4.37.2",
67
+ "tune_mm_mlp_adapter": false,
68
+ "tune_mm_vision_resampler": false,
69
+ "unfreeze_mm_vision_tower": true,
70
+ "use_cache": true,
71
+ "use_mm_proj": true,
72
+ "vocab_size": 32000
73
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fb82c3660319e6d0b239950b20c28181e97f1ade117dc0660b40e2ad94a89b
3
+ size 912
trainer_state.json ADDED
@@ -0,0 +1,504 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 79,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 6.666666666666667e-06,
14
+ "loss": 1.563,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 1.3333333333333333e-05,
20
+ "loss": 1.3043,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 2e-05,
26
+ "loss": 1.2638,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 1.999145758387301e-05,
32
+ "loss": 1.3178,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.06,
37
+ "learning_rate": 1.99658449300667e-05,
38
+ "loss": 0.9881,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.08,
43
+ "learning_rate": 1.992320579737045e-05,
44
+ "loss": 0.9734,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "learning_rate": 1.9863613034027224e-05,
50
+ "loss": 1.0088,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.1,
55
+ "learning_rate": 1.9787168453273546e-05,
56
+ "loss": 0.996,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.11,
61
+ "learning_rate": 1.9694002659393306e-05,
62
+ "loss": 0.8973,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.13,
67
+ "learning_rate": 1.958427482458253e-05,
68
+ "loss": 0.9568,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.14,
73
+ "learning_rate": 1.9458172417006347e-05,
74
+ "loss": 0.9458,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.15,
79
+ "learning_rate": 1.9315910880512792e-05,
80
+ "loss": 0.9379,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.16,
85
+ "learning_rate": 1.9157733266550577e-05,
86
+ "loss": 0.9296,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.18,
91
+ "learning_rate": 1.898390981891979e-05,
92
+ "loss": 0.8659,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.19,
97
+ "learning_rate": 1.879473751206489e-05,
98
+ "loss": 0.876,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.2,
103
+ "learning_rate": 1.8590539543698852e-05,
104
+ "loss": 0.8748,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.22,
109
+ "learning_rate": 1.8371664782625287e-05,
110
+ "loss": 0.9528,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.23,
115
+ "learning_rate": 1.813848717270195e-05,
116
+ "loss": 0.9572,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.24,
121
+ "learning_rate": 1.789140509396394e-05,
122
+ "loss": 0.903,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.25,
127
+ "learning_rate": 1.7630840681998068e-05,
128
+ "loss": 0.8989,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.27,
133
+ "learning_rate": 1.735723910673132e-05,
134
+ "loss": 0.8918,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.28,
139
+ "learning_rate": 1.7071067811865477e-05,
140
+ "loss": 0.8911,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.29,
145
+ "learning_rate": 1.6772815716257414e-05,
146
+ "loss": 0.9015,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.3,
151
+ "learning_rate": 1.646299237860941e-05,
152
+ "loss": 0.8788,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.32,
157
+ "learning_rate": 1.6142127126896682e-05,
158
+ "loss": 0.8929,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.33,
163
+ "learning_rate": 1.5810768154019386e-05,
164
+ "loss": 0.9049,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.34,
169
+ "learning_rate": 1.5469481581224274e-05,
170
+ "loss": 0.8985,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.35,
175
+ "learning_rate": 1.5118850490896012e-05,
176
+ "loss": 0.9353,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.37,
181
+ "learning_rate": 1.4759473930370738e-05,
182
+ "loss": 0.8249,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.38,
187
+ "learning_rate": 1.4391965888473705e-05,
188
+ "loss": 0.8426,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.39,
193
+ "learning_rate": 1.4016954246529697e-05,
194
+ "loss": 0.8492,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.41,
199
+ "learning_rate": 1.3635079705638298e-05,
200
+ "loss": 0.8952,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.42,
205
+ "learning_rate": 1.3246994692046837e-05,
206
+ "loss": 0.8821,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.43,
211
+ "learning_rate": 1.2853362242491054e-05,
212
+ "loss": 0.8758,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.44,
217
+ "learning_rate": 1.2454854871407993e-05,
218
+ "loss": 0.8224,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.46,
223
+ "learning_rate": 1.2052153421956343e-05,
224
+ "loss": 0.8758,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.47,
229
+ "learning_rate": 1.164594590280734e-05,
230
+ "loss": 0.8689,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.48,
235
+ "learning_rate": 1.123692631269348e-05,
236
+ "loss": 0.7884,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.49,
241
+ "learning_rate": 1.0825793454723325e-05,
242
+ "loss": 0.8356,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.51,
247
+ "learning_rate": 1.0413249742488132e-05,
248
+ "loss": 0.8492,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.52,
253
+ "learning_rate": 1e-05,
254
+ "loss": 0.9018,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.53,
259
+ "learning_rate": 9.586750257511868e-06,
260
+ "loss": 0.8776,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.54,
265
+ "learning_rate": 9.174206545276678e-06,
266
+ "loss": 0.8249,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.56,
271
+ "learning_rate": 8.763073687306523e-06,
272
+ "loss": 0.9175,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.57,
277
+ "learning_rate": 8.35405409719266e-06,
278
+ "loss": 0.8375,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.58,
283
+ "learning_rate": 7.947846578043658e-06,
284
+ "loss": 0.9021,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.59,
289
+ "learning_rate": 7.545145128592009e-06,
290
+ "loss": 0.8291,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.61,
295
+ "learning_rate": 7.14663775750895e-06,
296
+ "loss": 0.8727,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.62,
301
+ "learning_rate": 6.7530053079531664e-06,
302
+ "loss": 0.8673,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.63,
307
+ "learning_rate": 6.364920294361701e-06,
308
+ "loss": 0.8716,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.65,
313
+ "learning_rate": 5.983045753470308e-06,
314
+ "loss": 0.8658,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.66,
319
+ "learning_rate": 5.608034111526298e-06,
320
+ "loss": 0.8199,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.67,
325
+ "learning_rate": 5.240526069629265e-06,
326
+ "loss": 0.9193,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.68,
331
+ "learning_rate": 4.881149509103993e-06,
332
+ "loss": 0.7906,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.7,
337
+ "learning_rate": 4.530518418775734e-06,
338
+ "loss": 0.8785,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.71,
343
+ "learning_rate": 4.189231845980618e-06,
344
+ "loss": 0.8281,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.72,
349
+ "learning_rate": 3.857872873103322e-06,
350
+ "loss": 0.8772,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.73,
355
+ "learning_rate": 3.5370076213905904e-06,
356
+ "loss": 0.8723,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.75,
361
+ "learning_rate": 3.2271842837425917e-06,
362
+ "loss": 0.8242,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.76,
367
+ "learning_rate": 2.9289321881345257e-06,
368
+ "loss": 0.8723,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.77,
373
+ "learning_rate": 2.642760893268684e-06,
374
+ "loss": 0.8294,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.78,
379
+ "learning_rate": 2.369159318001937e-06,
380
+ "loss": 0.8132,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.8,
385
+ "learning_rate": 2.1085949060360654e-06,
386
+ "loss": 0.9158,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.81,
391
+ "learning_rate": 1.861512827298051e-06,
392
+ "loss": 0.8152,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.82,
397
+ "learning_rate": 1.6283352173747148e-06,
398
+ "loss": 0.8172,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.84,
403
+ "learning_rate": 1.409460456301147e-06,
404
+ "loss": 0.8718,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.85,
409
+ "learning_rate": 1.2052624879351105e-06,
410
+ "loss": 0.8251,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.86,
415
+ "learning_rate": 1.0160901810802114e-06,
416
+ "loss": 0.8401,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.87,
421
+ "learning_rate": 8.42266733449425e-07,
422
+ "loss": 0.8318,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.89,
427
+ "learning_rate": 6.840891194872112e-07,
428
+ "loss": 0.8563,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.9,
433
+ "learning_rate": 5.418275829936537e-07,
434
+ "loss": 0.87,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.91,
439
+ "learning_rate": 4.1572517541747294e-07,
440
+ "loss": 0.8736,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.92,
445
+ "learning_rate": 3.059973406066963e-07,
446
+ "loss": 0.837,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.94,
451
+ "learning_rate": 2.1283154672645522e-07,
452
+ "loss": 0.8477,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.95,
457
+ "learning_rate": 1.3638696597277678e-07,
458
+ "loss": 0.8302,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.96,
463
+ "learning_rate": 7.679420262954984e-08,
464
+ "loss": 0.8606,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.97,
469
+ "learning_rate": 3.4155069933301535e-08,
470
+ "loss": 0.904,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.99,
475
+ "learning_rate": 8.542416126989805e-09,
476
+ "loss": 0.8027,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 1.0,
481
+ "learning_rate": 0.0,
482
+ "loss": 0.8881,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 1.0,
487
+ "step": 79,
488
+ "total_flos": 2.0832241753627034e+17,
489
+ "train_loss": 0.9012186353719687,
490
+ "train_runtime": 1256.0083,
491
+ "train_samples_per_second": 3.981,
492
+ "train_steps_per_second": 0.063
493
+ }
494
+ ],
495
+ "logging_steps": 1.0,
496
+ "max_steps": 79,
497
+ "num_input_tokens_seen": 0,
498
+ "num_train_epochs": 1,
499
+ "save_steps": 1000,
500
+ "total_flos": 2.0832241753627034e+17,
501
+ "train_batch_size": 16,
502
+ "trial_name": null,
503
+ "trial_params": null
504
+ }