AIingit commited on
Commit
2cd844e
·
1 Parent(s): 6350426

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.47 +/- 16.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe4b3e30040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe4b3e300d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe4b3e30160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe4b3e301f0>", "_build": "<function ActorCriticPolicy._build at 0x7fe4b3e30280>", "forward": "<function ActorCriticPolicy.forward at 0x7fe4b3e30310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe4b3e303a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe4b3e30430>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe4b3e304c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe4b3e30550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe4b3e305e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe4b3e30670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe4b3eab840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676585761526641936, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAItFlb5+Qn0/Y6XcvtCWpb5qK9y+Mk8NvgAAAAAAAAAAZm6tvI8uHrrsLY25Cb0jtPRVbboR+qY4AACAPwAAgD+aSL69e56MujAqmjsMDEE4iEtIOgIkC7gAAAAAAACAP81M9bt7KpG6rqhXuXybS7TMGdI5xSR6OAAAgD8AAIA/s1zBva6ngbpm10Y7aWBgOCzeCzvqXAi5AACAPwAAgD/NlYc9xUy5PK5oQr4bmHO+wi94vVNzVb0AAAAAAAAAAADu4TwfMIA8VdjqvIRXdL6Ozz095dDyPQAAAAAAAAAATXnkPfuAhz+/Np8+Xgr+vi3o+D3cwwI+AAAAAAAAAACa4Ji8j0ZdunYxrLuORHU49nI7O1PSWzgAAIA/AACAP/NBt732BBS60VUYPHQKkrahtIY6ZuaOtQAAgD8AAIA/mqkNvY+2JrpIzZi7888Dt3BImzoBF7I6AACAPwAAgD+aRpA8Vr6UPiuy671gH52+cBpXPQQTpL0AAAAAAAAAAIDCGr0U1KW6WIjQO5lGjTeQoYC66ipYNgAAgD8AAIA/ZpL9O67tmLrYts45Ir/CNF9iuzp+zO64AACAPwAAgD8avA09j6JDul5qxrgEsFe0mCSEO/hO5TcAAIA/AACAP2Zt9jxcKym6AqSouMaitbNNTgq6N0HHNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+IpuvaagZ0CUhpRSlIwBbJRN6AOMAXSUR0CSpMGuLaVVdX2UKGgGaAloD0MIrW71nHT1ZUCUhpRSlGgVTegDaBZHQJKoKeHzpX91fZQoaAZoCWgPQwgotRfR9jRlQJSGlFKUaBVN6ANoFkdAkqgtFrl/6XV9lChoBmgJaA9DCOCCbFm+T11AlIaUUpRoFU3oA2gWR0CSqexgRbr1dX2UKGgGaAloD0MIjzUjg1yyZUCUhpRSlGgVTegDaBZHQJKvUrMC9yt1fZQoaAZoCWgPQwjURQpl4esFwJSGlFKUaBVL2GgWR0CSs1iQDFIedX2UKGgGaAloD0MIOV6B6EmYYkCUhpRSlGgVTegDaBZHQJK5W8M/hVF1fZQoaAZoCWgPQwiZuiu7YEVnQJSGlFKUaBVN6ANoFkdAkr48v/R3NnV9lChoBmgJaA9DCLRzmgVagWNAlIaUUpRoFU3oA2gWR0CSxfLwF1SwdX2UKGgGaAloD0MIopv9gXI9TUCUhpRSlGgVS7doFkdAksf04ecQRXV9lChoBmgJaA9DCPvrFRZcDmZAlIaUUpRoFU3oA2gWR0CSyRzjWCmNdX2UKGgGaAloD0MInFHzVXLnY0CUhpRSlGgVTegDaBZHQJLhl5rxiG51fZQoaAZoCWgPQwjJdVPKax9iQJSGlFKUaBVN6ANoFkdAkuKDR6Ww/3V9lChoBmgJaA9DCF7b2y3JoGFAlIaUUpRoFU3oA2gWR0CS5XA4XGfgdX2UKGgGaAloD0MINlmjHqJEYECUhpRSlGgVTegDaBZHQJLr5kEs8Pp1fZQoaAZoCWgPQwhmTMEaZ85mQJSGlFKUaBVN6ANoFkdAkvJxTGYKIHV9lChoBmgJaA9DCEnyXN8HbWFAlIaUUpRoFU3oA2gWR0CS9qmPYFq0dX2UKGgGaAloD0MIX5uNlRjHZECUhpRSlGgVTegDaBZHQJL4f9MsYl91fZQoaAZoCWgPQwhLAWn/Az5mQJSGlFKUaBVN6ANoFkdAkvmST+vQnnV9lChoBmgJaA9DCKnCn+HNOWZAlIaUUpRoFU3oA2gWR0CS/nOKwY+CdX2UKGgGaAloD0MIH0dzZOViZUCUhpRSlGgVTegDaBZHQJMBF/BnBcl1fZQoaAZoCWgPQwhMcVXZdxhQQJSGlFKUaBVLt2gWR0CTBPEm6XjVdX2UKGgGaAloD0MIpU5AE+GTZUCUhpRSlGgVTegDaBZHQJMGuATZg5R1fZQoaAZoCWgPQwiRC87gb+RjQJSGlFKUaBVN6ANoFkdAkwqGXXyy2XV9lChoBmgJaA9DCKbTug1qO2NAlIaUUpRoFU3oA2gWR0CTEZmQ8wHrdX2UKGgGaAloD0MIMC/APjpdYkCUhpRSlGgVTegDaBZHQJMWxuk1uR91fZQoaAZoCWgPQwgx7gbRWnlmQJSGlFKUaBVN6ANoFkdAkxiHwCr923V9lChoBmgJaA9DCNZUFoVd32VAlIaUUpRoFU3oA2gWR0CTGY6nivPkdX2UKGgGaAloD0MIH/XXK6yyaECUhpRSlGgVTegDaBZHQJM0gs4DLbJ1fZQoaAZoCWgPQwjHKTqSS/9jQJSGlFKUaBVN6ANoFkdAkzW6qS5iE3V9lChoBmgJaA9DCIXSF0LO6mVAlIaUUpRoFU3oA2gWR0CTOZp3os7NdX2UKGgGaAloD0MI6/8c5kuvYECUhpRSlGgVTegDaBZHQJNABuUD+zd1fZQoaAZoCWgPQwj2CaAY2Q1oQJSGlFKUaBVN6ANoFkdAk0Slog3cYnV9lChoBmgJaA9DCK3e4XboxWNAlIaUUpRoFU3oA2gWR0CTR2vuw5eadX2UKGgGaAloD0MIV5QSgtUTZkCUhpRSlGgVTegDaBZHQJNJTm4iHIp1fZQoaAZoCWgPQwjK/Q5FgYVlQJSGlFKUaBVN6ANoFkdAk0yAokRjBnV9lChoBmgJaA9DCMxB0NEqoWNAlIaUUpRoFU3oA2gWR0CTTjk8ifQKdX2UKGgGaAloD0MIp3oy/+jiZkCUhpRSlGgVTegDaBZHQJNR0LeANG51fZQoaAZoCWgPQwj6X65FCxpmQJSGlFKUaBVN6ANoFkdAk1N1BhQWN3V9lChoBmgJaA9DCI+rkV3pMWNAlIaUUpRoFU3oA2gWR0CTVxqhlDnedX2UKGgGaAloD0MI9uy5TM07YUCUhpRSlGgVTegDaBZHQJNeC/UONHZ1fZQoaAZoCWgPQwieKAmJtBZSQJSGlFKUaBVLzGgWR0CTYh3fQ8fWdX2UKGgGaAloD0MIh1ClZg+ZZUCUhpRSlGgVTegDaBZHQJNjPgHeJpF1fZQoaAZoCWgPQwi366UpgpliQJSGlFKUaBVN6ANoFkdAk2VICMglnnV9lChoBmgJaA9DCNtpa0QwtGFAlIaUUpRoFU3oA2gWR0CTZs8K5TZQdX2UKGgGaAloD0MI+FEN+z2AYkCUhpRSlGgVTegDaBZHQJODr9l2/zt1fZQoaAZoCWgPQwjH8xlQb4JgQJSGlFKUaBVN6ANoFkdAk4R8i0OVgXV9lChoBmgJaA9DCCqNmNnnTGZAlIaUUpRoFU3oA2gWR0CThxS/TLGJdX2UKGgGaAloD0MIesiUD0EoYUCUhpRSlGgVTegDaBZHQJOMr5Lytmt1fZQoaAZoCWgPQwgKSPsfYOtRQJSGlFKUaBVLwmgWR0CTkNl5GBnSdX2UKGgGaAloD0MIS+oENJFWZECUhpRSlGgVTegDaBZHQJORXZuhsZZ1fZQoaAZoCWgPQwimtz8XjQFlQJSGlFKUaBVN6ANoFkdAk5PS4OMER3V9lChoBmgJaA9DCDgyj/xBkWNAlIaUUpRoFU3oA2gWR0CTlXtPYWcjdX2UKGgGaAloD0MIHqhTHt3FZ0CUhpRSlGgVTegDaBZHQJOYRxR2r4p1fZQoaAZoCWgPQwgfEVMiiQhQQJSGlFKUaBVLuGgWR0CTmYCOWBz4dX2UKGgGaAloD0MIQPomTYM5YUCUhpRSlGgVTegDaBZHQJOZwYXO4Xp1fZQoaAZoCWgPQwipbFhTWUhlQJSGlFKUaBVN6ANoFkdAk5zaw2VE/nV9lChoBmgJaA9DCBYUBmUa1mJAlIaUUpRoFU3oA2gWR0CTnlzd1uBMdX2UKGgGaAloD0MITkNU4U+1ZECUhpRSlGgVTegDaBZHQJOs3p7kXDZ1fZQoaAZoCWgPQwjtYprp3gllQJSGlFKUaBVN6ANoFkdAk7Jkxh2GI3V9lChoBmgJaA9DCO6yX3e64WRAlIaUUpRoFU3oA2gWR0CTs4O8kD6ndX2UKGgGaAloD0MI944aE+KbYUCUhpRSlGgVTegDaBZHQJO1NzfaYeF1fZQoaAZoCWgPQwjHEWvxqXdjQJSGlFKUaBVN6ANoFkdAk7Y8fms/6nV9lChoBmgJaA9DCHwsfegCoGZAlIaUUpRoFU3oA2gWR0CTzdDej2zwdX2UKGgGaAloD0MIdZDXg0kOYUCUhpRSlGgVTegDaBZHQJPOlCBwuNB1fZQoaAZoCWgPQwgH7GryFF5jQJSGlFKUaBVN6ANoFkdAk9c6DGtITXV9lChoBmgJaA9DCECH+fIC3WlAlIaUUpRoFU3oA2gWR0CT3cYukDZEdX2UKGgGaAloD0MIDeIDO/4QZUCUhpRSlGgVTegDaBZHQJPhtAX2ugZ1fZQoaAZoCWgPQwidEDroEg9jQJSGlFKUaBVN6ANoFkdAk+RvtlZownV9lChoBmgJaA9DCJpAEYuY72NAlIaUUpRoFU3oA2gWR0CT6SNj9XLedX2UKGgGaAloD0MIFXE6ydamZ0CUhpRSlGgVTegDaBZHQJPrYJokAxV1fZQoaAZoCWgPQwg3cXK/w19kQJSGlFKUaBVN6ANoFkdAk+vT+717IHV9lChoBmgJaA9DCCjv42iOc2NAlIaUUpRoFU3oA2gWR0CT761HvttzdX2UKGgGaAloD0MIoiWPp+WfRUCUhpRSlGgVS7VoFkdAk/AzS1E3KnV9lChoBmgJaA9DCIuIYvIG2l5AlIaUUpRoFU3oA2gWR0CT8VEAYHgQdX2UKGgGaAloD0MITiUDQBX4Y0CUhpRSlGgVTegDaBZHQJP7z3QD3dt1fZQoaAZoCWgPQwiWsDbGTnRiQJSGlFKUaBVN6ANoFkdAlAAsl1KXfXV9lChoBmgJaA9DCDdPdcjN8GJAlIaUUpRoFU3oA2gWR0CUAVhy8zyjdX2UKGgGaAloD0MIay3MQrvvZECUhpRSlGgVTegDaBZHQJQDDTI/7i11fZQoaAZoCWgPQwgGvqJbL6FhQJSGlFKUaBVN6ANoFkdAlAQbBsQ/YHV9lChoBmgJaA9DCOqT3GETz2FAlIaUUpRoFU3oA2gWR0CUCJ6eoUBXdX2UKGgGaAloD0MIW5iFds7iZkCUhpRSlGgVTegDaBZHQJQJZXT3IuJ1fZQoaAZoCWgPQwiJt86/XXVRQJSGlFKUaBVLuWgWR0CUI2oQ4CIUdX2UKGgGaAloD0MI1/hM9s8fZECUhpRSlGgVTegDaBZHQJQpyfvnbIt1fZQoaAZoCWgPQwgJ3SVxVshnQJSGlFKUaBVN6ANoFkdAlC5lE7W/anV9lChoBmgJaA9DCFs//WfN6mJAlIaUUpRoFU3oA2gWR0CUMObPhQ3xdX2UKGgGaAloD0MIhGdCk8R+Z0CUhpRSlGgVTegDaBZHQJQ1+mLtNSJ1fZQoaAZoCWgPQwjKb9HJ0lpgQJSGlFKUaBVN6ANoFkdAlDdtsJpnH3V9lChoBmgJaA9DCD6yuWoekmFAlIaUUpRoFU3oA2gWR0CUN8O2AoXsdX2UKGgGaAloD0MIpvCg2fXiYUCUhpRSlGgVTegDaBZHQJQ7Nhpg1FZ1fZQoaAZoCWgPQwiPUZ55OcVkQJSGlFKUaBVN6ANoFkdAlDuwco6S1XV9lChoBmgJaA9DCNP1RNeFKWVAlIaUUpRoFU3oA2gWR0CUPKhuwX67dX2UKGgGaAloD0MI7gbRWtEWUECUhpRSlGgVS7ZoFkdAlD9S9EkSmXV9lChoBmgJaA9DCJcA/FOqZFBAlIaUUpRoFUvFaBZHQJRAKMVDa5B1fZQoaAZoCWgPQwjNBS6PtZJiQJSGlFKUaBVN6ANoFkdAlEUWITGo73V9lChoBmgJaA9DCDB/hcwVOGFAlIaUUpRoFU3oA2gWR0CUSGjVQQ+VdX2UKGgGaAloD0MInieeswXZZECUhpRSlGgVTegDaBZHQJRJW7f51vF1fZQoaAZoCWgPQwj4VblQ+f1nQJSGlFKUaBVN6ANoFkdAlEu1dX1an3V9lChoBmgJaA9DCGMmUS94LWdAlIaUUpRoFU3oA2gWR0CUUHkiliz+dX2UKGgGaAloD0MI41RrYRa/ZECUhpRSlGgVTegDaBZHQJRRoPRRdhR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d687ff3cbdbb24fa4219443b0e261437b7fd4b87814d21b3c8f1ebd935e83e31
3
+ size 147412
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe4b3e30040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe4b3e300d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe4b3e30160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe4b3e301f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe4b3e30280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe4b3e30310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe4b3e303a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe4b3e30430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe4b3e304c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe4b3e30550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe4b3e305e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe4b3e30670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe4b3eab840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676585761526641936,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAItFlb5+Qn0/Y6XcvtCWpb5qK9y+Mk8NvgAAAAAAAAAAZm6tvI8uHrrsLY25Cb0jtPRVbboR+qY4AACAPwAAgD+aSL69e56MujAqmjsMDEE4iEtIOgIkC7gAAAAAAACAP81M9bt7KpG6rqhXuXybS7TMGdI5xSR6OAAAgD8AAIA/s1zBva6ngbpm10Y7aWBgOCzeCzvqXAi5AACAPwAAgD/NlYc9xUy5PK5oQr4bmHO+wi94vVNzVb0AAAAAAAAAAADu4TwfMIA8VdjqvIRXdL6Ozz095dDyPQAAAAAAAAAATXnkPfuAhz+/Np8+Xgr+vi3o+D3cwwI+AAAAAAAAAACa4Ji8j0ZdunYxrLuORHU49nI7O1PSWzgAAIA/AACAP/NBt732BBS60VUYPHQKkrahtIY6ZuaOtQAAgD8AAIA/mqkNvY+2JrpIzZi7888Dt3BImzoBF7I6AACAPwAAgD+aRpA8Vr6UPiuy671gH52+cBpXPQQTpL0AAAAAAAAAAIDCGr0U1KW6WIjQO5lGjTeQoYC66ipYNgAAgD8AAIA/ZpL9O67tmLrYts45Ir/CNF9iuzp+zO64AACAPwAAgD8avA09j6JDul5qxrgEsFe0mCSEO/hO5TcAAIA/AACAP2Zt9jxcKym6AqSouMaitbNNTgq6N0HHNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+IpuvaagZ0CUhpRSlIwBbJRN6AOMAXSUR0CSpMGuLaVVdX2UKGgGaAloD0MIrW71nHT1ZUCUhpRSlGgVTegDaBZHQJKoKeHzpX91fZQoaAZoCWgPQwgotRfR9jRlQJSGlFKUaBVN6ANoFkdAkqgtFrl/6XV9lChoBmgJaA9DCOCCbFm+T11AlIaUUpRoFU3oA2gWR0CSqexgRbr1dX2UKGgGaAloD0MIjzUjg1yyZUCUhpRSlGgVTegDaBZHQJKvUrMC9yt1fZQoaAZoCWgPQwjURQpl4esFwJSGlFKUaBVL2GgWR0CSs1iQDFIedX2UKGgGaAloD0MIOV6B6EmYYkCUhpRSlGgVTegDaBZHQJK5W8M/hVF1fZQoaAZoCWgPQwiZuiu7YEVnQJSGlFKUaBVN6ANoFkdAkr48v/R3NnV9lChoBmgJaA9DCLRzmgVagWNAlIaUUpRoFU3oA2gWR0CSxfLwF1SwdX2UKGgGaAloD0MIopv9gXI9TUCUhpRSlGgVS7doFkdAksf04ecQRXV9lChoBmgJaA9DCPvrFRZcDmZAlIaUUpRoFU3oA2gWR0CSyRzjWCmNdX2UKGgGaAloD0MInFHzVXLnY0CUhpRSlGgVTegDaBZHQJLhl5rxiG51fZQoaAZoCWgPQwjJdVPKax9iQJSGlFKUaBVN6ANoFkdAkuKDR6Ww/3V9lChoBmgJaA9DCF7b2y3JoGFAlIaUUpRoFU3oA2gWR0CS5XA4XGfgdX2UKGgGaAloD0MINlmjHqJEYECUhpRSlGgVTegDaBZHQJLr5kEs8Pp1fZQoaAZoCWgPQwhmTMEaZ85mQJSGlFKUaBVN6ANoFkdAkvJxTGYKIHV9lChoBmgJaA9DCEnyXN8HbWFAlIaUUpRoFU3oA2gWR0CS9qmPYFq0dX2UKGgGaAloD0MIX5uNlRjHZECUhpRSlGgVTegDaBZHQJL4f9MsYl91fZQoaAZoCWgPQwhLAWn/Az5mQJSGlFKUaBVN6ANoFkdAkvmST+vQnnV9lChoBmgJaA9DCKnCn+HNOWZAlIaUUpRoFU3oA2gWR0CS/nOKwY+CdX2UKGgGaAloD0MIH0dzZOViZUCUhpRSlGgVTegDaBZHQJMBF/BnBcl1fZQoaAZoCWgPQwhMcVXZdxhQQJSGlFKUaBVLt2gWR0CTBPEm6XjVdX2UKGgGaAloD0MIpU5AE+GTZUCUhpRSlGgVTegDaBZHQJMGuATZg5R1fZQoaAZoCWgPQwiRC87gb+RjQJSGlFKUaBVN6ANoFkdAkwqGXXyy2XV9lChoBmgJaA9DCKbTug1qO2NAlIaUUpRoFU3oA2gWR0CTEZmQ8wHrdX2UKGgGaAloD0MIMC/APjpdYkCUhpRSlGgVTegDaBZHQJMWxuk1uR91fZQoaAZoCWgPQwgx7gbRWnlmQJSGlFKUaBVN6ANoFkdAkxiHwCr923V9lChoBmgJaA9DCNZUFoVd32VAlIaUUpRoFU3oA2gWR0CTGY6nivPkdX2UKGgGaAloD0MIH/XXK6yyaECUhpRSlGgVTegDaBZHQJM0gs4DLbJ1fZQoaAZoCWgPQwjHKTqSS/9jQJSGlFKUaBVN6ANoFkdAkzW6qS5iE3V9lChoBmgJaA9DCIXSF0LO6mVAlIaUUpRoFU3oA2gWR0CTOZp3os7NdX2UKGgGaAloD0MI6/8c5kuvYECUhpRSlGgVTegDaBZHQJNABuUD+zd1fZQoaAZoCWgPQwj2CaAY2Q1oQJSGlFKUaBVN6ANoFkdAk0Slog3cYnV9lChoBmgJaA9DCK3e4XboxWNAlIaUUpRoFU3oA2gWR0CTR2vuw5eadX2UKGgGaAloD0MIV5QSgtUTZkCUhpRSlGgVTegDaBZHQJNJTm4iHIp1fZQoaAZoCWgPQwjK/Q5FgYVlQJSGlFKUaBVN6ANoFkdAk0yAokRjBnV9lChoBmgJaA9DCMxB0NEqoWNAlIaUUpRoFU3oA2gWR0CTTjk8ifQKdX2UKGgGaAloD0MIp3oy/+jiZkCUhpRSlGgVTegDaBZHQJNR0LeANG51fZQoaAZoCWgPQwj6X65FCxpmQJSGlFKUaBVN6ANoFkdAk1N1BhQWN3V9lChoBmgJaA9DCI+rkV3pMWNAlIaUUpRoFU3oA2gWR0CTVxqhlDnedX2UKGgGaAloD0MI9uy5TM07YUCUhpRSlGgVTegDaBZHQJNeC/UONHZ1fZQoaAZoCWgPQwieKAmJtBZSQJSGlFKUaBVLzGgWR0CTYh3fQ8fWdX2UKGgGaAloD0MIh1ClZg+ZZUCUhpRSlGgVTegDaBZHQJNjPgHeJpF1fZQoaAZoCWgPQwi366UpgpliQJSGlFKUaBVN6ANoFkdAk2VICMglnnV9lChoBmgJaA9DCNtpa0QwtGFAlIaUUpRoFU3oA2gWR0CTZs8K5TZQdX2UKGgGaAloD0MI+FEN+z2AYkCUhpRSlGgVTegDaBZHQJODr9l2/zt1fZQoaAZoCWgPQwjH8xlQb4JgQJSGlFKUaBVN6ANoFkdAk4R8i0OVgXV9lChoBmgJaA9DCCqNmNnnTGZAlIaUUpRoFU3oA2gWR0CThxS/TLGJdX2UKGgGaAloD0MIesiUD0EoYUCUhpRSlGgVTegDaBZHQJOMr5Lytmt1fZQoaAZoCWgPQwgKSPsfYOtRQJSGlFKUaBVLwmgWR0CTkNl5GBnSdX2UKGgGaAloD0MIS+oENJFWZECUhpRSlGgVTegDaBZHQJORXZuhsZZ1fZQoaAZoCWgPQwimtz8XjQFlQJSGlFKUaBVN6ANoFkdAk5PS4OMER3V9lChoBmgJaA9DCDgyj/xBkWNAlIaUUpRoFU3oA2gWR0CTlXtPYWcjdX2UKGgGaAloD0MIHqhTHt3FZ0CUhpRSlGgVTegDaBZHQJOYRxR2r4p1fZQoaAZoCWgPQwgfEVMiiQhQQJSGlFKUaBVLuGgWR0CTmYCOWBz4dX2UKGgGaAloD0MIQPomTYM5YUCUhpRSlGgVTegDaBZHQJOZwYXO4Xp1fZQoaAZoCWgPQwipbFhTWUhlQJSGlFKUaBVN6ANoFkdAk5zaw2VE/nV9lChoBmgJaA9DCBYUBmUa1mJAlIaUUpRoFU3oA2gWR0CTnlzd1uBMdX2UKGgGaAloD0MITkNU4U+1ZECUhpRSlGgVTegDaBZHQJOs3p7kXDZ1fZQoaAZoCWgPQwjtYprp3gllQJSGlFKUaBVN6ANoFkdAk7Jkxh2GI3V9lChoBmgJaA9DCO6yX3e64WRAlIaUUpRoFU3oA2gWR0CTs4O8kD6ndX2UKGgGaAloD0MI944aE+KbYUCUhpRSlGgVTegDaBZHQJO1NzfaYeF1fZQoaAZoCWgPQwjHEWvxqXdjQJSGlFKUaBVN6ANoFkdAk7Y8fms/6nV9lChoBmgJaA9DCHwsfegCoGZAlIaUUpRoFU3oA2gWR0CTzdDej2zwdX2UKGgGaAloD0MIdZDXg0kOYUCUhpRSlGgVTegDaBZHQJPOlCBwuNB1fZQoaAZoCWgPQwgH7GryFF5jQJSGlFKUaBVN6ANoFkdAk9c6DGtITXV9lChoBmgJaA9DCECH+fIC3WlAlIaUUpRoFU3oA2gWR0CT3cYukDZEdX2UKGgGaAloD0MIDeIDO/4QZUCUhpRSlGgVTegDaBZHQJPhtAX2ugZ1fZQoaAZoCWgPQwidEDroEg9jQJSGlFKUaBVN6ANoFkdAk+RvtlZownV9lChoBmgJaA9DCJpAEYuY72NAlIaUUpRoFU3oA2gWR0CT6SNj9XLedX2UKGgGaAloD0MIFXE6ydamZ0CUhpRSlGgVTegDaBZHQJPrYJokAxV1fZQoaAZoCWgPQwg3cXK/w19kQJSGlFKUaBVN6ANoFkdAk+vT+717IHV9lChoBmgJaA9DCCjv42iOc2NAlIaUUpRoFU3oA2gWR0CT761HvttzdX2UKGgGaAloD0MIoiWPp+WfRUCUhpRSlGgVS7VoFkdAk/AzS1E3KnV9lChoBmgJaA9DCIuIYvIG2l5AlIaUUpRoFU3oA2gWR0CT8VEAYHgQdX2UKGgGaAloD0MITiUDQBX4Y0CUhpRSlGgVTegDaBZHQJP7z3QD3dt1fZQoaAZoCWgPQwiWsDbGTnRiQJSGlFKUaBVN6ANoFkdAlAAsl1KXfXV9lChoBmgJaA9DCDdPdcjN8GJAlIaUUpRoFU3oA2gWR0CUAVhy8zyjdX2UKGgGaAloD0MIay3MQrvvZECUhpRSlGgVTegDaBZHQJQDDTI/7i11fZQoaAZoCWgPQwgGvqJbL6FhQJSGlFKUaBVN6ANoFkdAlAQbBsQ/YHV9lChoBmgJaA9DCOqT3GETz2FAlIaUUpRoFU3oA2gWR0CUCJ6eoUBXdX2UKGgGaAloD0MIW5iFds7iZkCUhpRSlGgVTegDaBZHQJQJZXT3IuJ1fZQoaAZoCWgPQwiJt86/XXVRQJSGlFKUaBVLuWgWR0CUI2oQ4CIUdX2UKGgGaAloD0MI1/hM9s8fZECUhpRSlGgVTegDaBZHQJQpyfvnbIt1fZQoaAZoCWgPQwgJ3SVxVshnQJSGlFKUaBVN6ANoFkdAlC5lE7W/anV9lChoBmgJaA9DCFs//WfN6mJAlIaUUpRoFU3oA2gWR0CUMObPhQ3xdX2UKGgGaAloD0MIhGdCk8R+Z0CUhpRSlGgVTegDaBZHQJQ1+mLtNSJ1fZQoaAZoCWgPQwjKb9HJ0lpgQJSGlFKUaBVN6ANoFkdAlDdtsJpnH3V9lChoBmgJaA9DCD6yuWoekmFAlIaUUpRoFU3oA2gWR0CUN8O2AoXsdX2UKGgGaAloD0MIpvCg2fXiYUCUhpRSlGgVTegDaBZHQJQ7Nhpg1FZ1fZQoaAZoCWgPQwiPUZ55OcVkQJSGlFKUaBVN6ANoFkdAlDuwco6S1XV9lChoBmgJaA9DCNP1RNeFKWVAlIaUUpRoFU3oA2gWR0CUPKhuwX67dX2UKGgGaAloD0MI7gbRWtEWUECUhpRSlGgVS7ZoFkdAlD9S9EkSmXV9lChoBmgJaA9DCJcA/FOqZFBAlIaUUpRoFUvFaBZHQJRAKMVDa5B1fZQoaAZoCWgPQwjNBS6PtZJiQJSGlFKUaBVN6ANoFkdAlEUWITGo73V9lChoBmgJaA9DCDB/hcwVOGFAlIaUUpRoFU3oA2gWR0CUSGjVQQ+VdX2UKGgGaAloD0MInieeswXZZECUhpRSlGgVTegDaBZHQJRJW7f51vF1fZQoaAZoCWgPQwj4VblQ+f1nQJSGlFKUaBVN6ANoFkdAlEu1dX1an3V9lChoBmgJaA9DCGMmUS94LWdAlIaUUpRoFU3oA2gWR0CUUHkiliz+dX2UKGgGaAloD0MI41RrYRa/ZECUhpRSlGgVTegDaBZHQJRRoPRRdhR1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a7a6245b1e3971d676a93f0a1caff380161ec236239ae4aae539311fdc69666
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:938736a927512585b0c8a907a68681a09b1a0160ba4c93c75453cc9055571d52
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (191 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.47187565479464, "std_reward": 16.73874620010125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T22:42:59.589623"}