|
|
import streamlit as st |
|
|
import pdfplumber |
|
|
import re |
|
|
import pandas as pd |
|
|
import plotly.express as px |
|
|
import plotly.graph_objects as go |
|
|
import numpy as np |
|
|
from datetime import datetime, timedelta |
|
|
import sqlite3 |
|
|
import hashlib |
|
|
import tempfile |
|
|
import PyPDF2 |
|
|
import os |
|
|
import webbrowser |
|
|
import threading |
|
|
import uuid |
|
|
import subprocess |
|
|
import time |
|
|
from http.server import HTTPServer, SimpleHTTPRequestHandler |
|
|
|
|
|
|
|
|
try: |
|
|
import xgboost as xgb |
|
|
from sklearn.ensemble import RandomForestClassifier, IsolationForest |
|
|
from sklearn.model_selection import train_test_split |
|
|
from sklearn.preprocessing import StandardScaler |
|
|
from sklearn.cluster import KMeans |
|
|
import nltk |
|
|
from textblob import TextBlob |
|
|
except ImportError as e: |
|
|
st.warning(f"Some advanced features may not be available. Missing: {str(e)}") |
|
|
|
|
|
|
|
|
st.set_page_config( |
|
|
page_title='Universal Bank Statement Analyzer', |
|
|
page_icon='🏦', |
|
|
layout='wide', |
|
|
initial_sidebar_state='expanded' |
|
|
) |
|
|
|
|
|
|
|
|
if 'user_profile' not in st.session_state: |
|
|
st.session_state.user_profile = None |
|
|
if 'transactions_df' not in st.session_state: |
|
|
st.session_state.transactions_df = None |
|
|
if 'analysis_complete' not in st.session_state: |
|
|
st.session_state.analysis_complete = False |
|
|
if 'detected_bank' not in st.session_state: |
|
|
st.session_state.detected_bank = None |
|
|
|
|
|
class DatabaseManager: |
|
|
"""Handles all database operations for user profiles and financial data""" |
|
|
def __init__(self): |
|
|
self.db_path = 'financial_analysis.db' |
|
|
self.init_database() |
|
|
|
|
|
def init_database(self): |
|
|
"""Initialize database tables""" |
|
|
try: |
|
|
conn = sqlite3.connect(self.db_path) |
|
|
cursor = conn.cursor() |
|
|
|
|
|
|
|
|
cursor.execute("PRAGMA integrity_check;") |
|
|
integrity_result = cursor.fetchone() |
|
|
|
|
|
if integrity_result[0] != "ok": |
|
|
conn.close() |
|
|
raise sqlite3.DatabaseError("Database integrity check failed") |
|
|
|
|
|
except sqlite3.DatabaseError as e: |
|
|
|
|
|
import os |
|
|
if os.path.exists(self.db_path): |
|
|
os.remove(self.db_path) |
|
|
conn = sqlite3.connect(self.db_path) |
|
|
cursor = conn.cursor() |
|
|
|
|
|
|
|
|
cursor.execute(''' |
|
|
CREATE TABLE IF NOT EXISTS user_profiles ( |
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
|
user_id TEXT UNIQUE NOT NULL, |
|
|
name TEXT NOT NULL, |
|
|
email TEXT UNIQUE NOT NULL, |
|
|
password_hash TEXT NOT NULL, |
|
|
financial_goals TEXT, |
|
|
risk_tolerance TEXT, |
|
|
monthly_income REAL, |
|
|
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP |
|
|
) |
|
|
''') |
|
|
|
|
|
|
|
|
cursor.execute(''' |
|
|
CREATE TABLE IF NOT EXISTS financial_data ( |
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
|
user_id TEXT NOT NULL, |
|
|
bank_name TEXT, |
|
|
date TEXT NOT NULL, |
|
|
description TEXT, |
|
|
amount REAL, |
|
|
category TEXT, |
|
|
balance REAL, |
|
|
analysis_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
|
|
FOREIGN KEY (user_id) REFERENCES user_profiles (user_id) |
|
|
) |
|
|
''') |
|
|
|
|
|
|
|
|
cursor.execute(''' |
|
|
CREATE TABLE IF NOT EXISTS recommendations ( |
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
|
user_id TEXT NOT NULL, |
|
|
bank_name TEXT, |
|
|
recommendation_type TEXT, |
|
|
title TEXT, |
|
|
description TEXT, |
|
|
priority INTEGER, |
|
|
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, |
|
|
FOREIGN KEY (user_id) REFERENCES user_profiles (user_id) |
|
|
) |
|
|
''') |
|
|
|
|
|
conn.commit() |
|
|
conn.close() |
|
|
|
|
|
def create_user(self, user_id, name, email, password, financial_goals="", risk_tolerance="moderate", monthly_income=0): |
|
|
"""Create a new user profile""" |
|
|
conn = sqlite3.connect(self.db_path) |
|
|
cursor = conn.cursor() |
|
|
|
|
|
password_hash = hashlib.sha256(password.encode()).hexdigest() |
|
|
|
|
|
try: |
|
|
cursor.execute(''' |
|
|
INSERT INTO user_profiles (user_id, name, email, password_hash, financial_goals, risk_tolerance, monthly_income) |
|
|
VALUES (?, ?, ?, ?, ?, ?, ?) |
|
|
''', (user_id, name, email, password_hash, financial_goals, risk_tolerance, monthly_income)) |
|
|
conn.commit() |
|
|
return True |
|
|
except sqlite3.IntegrityError: |
|
|
return False |
|
|
finally: |
|
|
conn.close() |
|
|
|
|
|
def authenticate_user(self, email, password): |
|
|
"""Authenticate user login""" |
|
|
conn = sqlite3.connect(self.db_path) |
|
|
cursor = conn.cursor() |
|
|
|
|
|
password_hash = hashlib.sha256(password.encode()).hexdigest() |
|
|
cursor.execute('SELECT user_id, name FROM user_profiles WHERE email = ? AND password_hash = ?', |
|
|
(email, password_hash)) |
|
|
result = cursor.fetchone() |
|
|
conn.close() |
|
|
|
|
|
return result |
|
|
|
|
|
def get_user_profile(self, user_id): |
|
|
"""Get user profile data""" |
|
|
conn = sqlite3.connect(self.db_path) |
|
|
cursor = conn.cursor() |
|
|
|
|
|
cursor.execute('SELECT * FROM user_profiles WHERE user_id = ?', (user_id,)) |
|
|
result = cursor.fetchone() |
|
|
conn.close() |
|
|
|
|
|
if result: |
|
|
columns = ['id', 'user_id', 'name', 'email', 'password_hash', 'financial_goals', |
|
|
'risk_tolerance', 'monthly_income', 'created_at'] |
|
|
return dict(zip(columns, result)) |
|
|
return None |
|
|
|
|
|
class PersonalizationEngine: |
|
|
"""Advanced personalization and recommendation system""" |
|
|
def __init__(self, user_profile=None): |
|
|
self.user_profile = user_profile |
|
|
self.scaler = StandardScaler() |
|
|
|
|
|
def analyze_spending_patterns(self, df): |
|
|
"""Analyze user spending patterns using advanced ML""" |
|
|
if df.empty: |
|
|
return {} |
|
|
|
|
|
|
|
|
spending_by_category = df.groupby('Category')['Amount'].agg(['sum', 'mean', 'count', 'std']) |
|
|
|
|
|
|
|
|
df['Date'] = pd.to_datetime(df['Date']) |
|
|
df['DayOfWeek'] = df['Date'].dt.dayofweek |
|
|
df['Month'] = df['Date'].dt.month |
|
|
df['IsWeekend'] = df['DayOfWeek'].isin([5, 6]) |
|
|
|
|
|
patterns = { |
|
|
'spending_by_category': spending_by_category.to_dict(), |
|
|
'weekend_vs_weekday': { |
|
|
'weekend_avg': df[df['IsWeekend']]['Amount'].mean(), |
|
|
'weekday_avg': df[~df['IsWeekend']]['Amount'].mean() |
|
|
}, |
|
|
'monthly_trends': df.groupby('Month')['Amount'].mean().to_dict(), |
|
|
'transaction_frequency': len(df) / max(1, (df['Date'].max() - df['Date'].min()).days), |
|
|
'balance_trend': df['Balance'].iloc[-1] - df['Balance'].iloc[0] if len(df) > 1 else 0 |
|
|
} |
|
|
|
|
|
return patterns |
|
|
|
|
|
def generate_personalized_recommendations(self, df, patterns): |
|
|
"""Generate personalized financial recommendations""" |
|
|
recommendations = [] |
|
|
|
|
|
if df.empty: |
|
|
return recommendations |
|
|
|
|
|
|
|
|
total_spending = abs(df[df['Amount'] < 0]['Amount'].sum()) |
|
|
|
|
|
if self.user_profile and self.user_profile.get('monthly_income', 0) > 0: |
|
|
spending_ratio = total_spending / self.user_profile['monthly_income'] |
|
|
|
|
|
if spending_ratio > 0.8: |
|
|
recommendations.append({ |
|
|
'type': 'budget', |
|
|
'priority': 'high', |
|
|
'title': 'Reduce Monthly Spending', |
|
|
'description': f'Your spending is {spending_ratio:.1%} of your income. Consider reducing expenses by 20%.' |
|
|
}) |
|
|
elif spending_ratio < 0.5: |
|
|
recommendations.append({ |
|
|
'type': 'savings', |
|
|
'priority': 'medium', |
|
|
'title': 'Increase Savings', |
|
|
'description': f'Great job! You\'re only spending {spending_ratio:.1%} of your income. Consider increasing your savings rate.' |
|
|
}) |
|
|
|
|
|
|
|
|
for category, data in patterns.get('spending_by_category', {}).items(): |
|
|
if data.get('sum', 0) < 0 and abs(data['sum']) > 1000: |
|
|
recommendations.append({ |
|
|
'type': 'category', |
|
|
'priority': 'medium', |
|
|
'title': f'Optimize {category} Spending', |
|
|
'description': f'You spent R{abs(data["sum"]):.2f} on {category}. Consider reviewing these expenses.' |
|
|
}) |
|
|
|
|
|
|
|
|
if patterns.get('balance_trend', 0) > 5000: |
|
|
recommendations.append({ |
|
|
'type': 'investment', |
|
|
'priority': 'medium', |
|
|
'title': 'Consider Investment Options', |
|
|
'description': 'Your balance is growing steadily. Consider investing excess funds for better returns.' |
|
|
}) |
|
|
|
|
|
return recommendations |
|
|
|
|
|
def calculate_financial_health_score(self, df, patterns): |
|
|
"""Calculate comprehensive financial health score""" |
|
|
if df.empty: |
|
|
return 0 |
|
|
|
|
|
score_components = { |
|
|
'income_stability': 0, |
|
|
'spending_control': 0, |
|
|
'savings_rate': 0, |
|
|
'transaction_diversity': 0, |
|
|
'balance_growth': 0 |
|
|
} |
|
|
|
|
|
|
|
|
credits = df[df['Amount'] > 0] |
|
|
if len(credits) > 0: |
|
|
credit_std = credits['Amount'].std() |
|
|
credit_mean = credits['Amount'].mean() |
|
|
stability = max(0, 1 - (credit_std / credit_mean if credit_mean > 0 else 1)) |
|
|
score_components['income_stability'] = min(stability * 25, 25) |
|
|
|
|
|
|
|
|
debits = df[df['Amount'] < 0] |
|
|
if len(debits) > 0: |
|
|
spending_consistency = 1 - (debits['Amount'].std() / abs(debits['Amount'].mean()) if debits['Amount'].mean() != 0 else 1) |
|
|
score_components['spending_control'] = max(0, spending_consistency * 20) |
|
|
|
|
|
|
|
|
if self.user_profile and self.user_profile.get('monthly_income', 0) > 0: |
|
|
total_spending = abs(df[df['Amount'] < 0]['Amount'].sum()) |
|
|
savings_rate = 1 - (total_spending / self.user_profile['monthly_income']) |
|
|
score_components['savings_rate'] = max(0, min(savings_rate * 25, 25)) |
|
|
|
|
|
|
|
|
unique_categories = df['Category'].nunique() |
|
|
diversity_score = min(unique_categories / 8 * 15, 15) |
|
|
score_components['transaction_diversity'] = diversity_score |
|
|
|
|
|
|
|
|
balance_trend = patterns.get('balance_trend', 0) |
|
|
if balance_trend > 0: |
|
|
score_components['balance_growth'] = min(balance_trend / 5000 * 15, 15) |
|
|
|
|
|
total_score = sum(score_components.values()) |
|
|
return min(100, max(0, total_score)), score_components |
|
|
|
|
|
class AdvancedAnalytics: |
|
|
"""Advanced analytics and ML models for financial analysis""" |
|
|
def __init__(self): |
|
|
self.models = {} |
|
|
self.scaler = StandardScaler() |
|
|
|
|
|
def detect_anomalies(self, df): |
|
|
"""Detect unusual transactions using Isolation Forest""" |
|
|
if len(df) < 10: |
|
|
return df |
|
|
|
|
|
|
|
|
features = df[['Amount']].copy() |
|
|
features['DayOfWeek'] = pd.to_datetime(df['Date']).dt.dayofweek |
|
|
features['IsWeekend'] = features['DayOfWeek'].isin([5, 6]).astype(int) |
|
|
|
|
|
|
|
|
features_scaled = self.scaler.fit_transform(features) |
|
|
|
|
|
|
|
|
iso_forest = IsolationForest(contamination=0.1, random_state=42) |
|
|
anomalies = iso_forest.fit_predict(features_scaled) |
|
|
|
|
|
df_copy = df.copy() |
|
|
df_copy['IsAnomaly'] = anomalies == -1 |
|
|
|
|
|
return df_copy |
|
|
|
|
|
def predict_future_spending(self, df, days_ahead=30): |
|
|
"""Predict future spending patterns""" |
|
|
if len(df) < 10: |
|
|
return None |
|
|
|
|
|
|
|
|
df_daily = df.groupby(pd.to_datetime(df['Date']).dt.date)['Amount'].sum().reset_index() |
|
|
df_daily['Date'] = pd.to_datetime(df_daily['Date']) |
|
|
df_daily = df_daily.sort_values('Date') |
|
|
|
|
|
|
|
|
x = np.arange(len(df_daily)) |
|
|
y = df_daily['Amount'].values |
|
|
|
|
|
coeffs = np.polyfit(x, y, 1) |
|
|
|
|
|
|
|
|
future_x = np.arange(len(df_daily), len(df_daily) + days_ahead) |
|
|
future_predictions = np.polyval(coeffs, future_x) |
|
|
|
|
|
future_dates = [df_daily['Date'].max() + timedelta(days=i+1) for i in range(days_ahead)] |
|
|
|
|
|
return pd.DataFrame({ |
|
|
'Date': future_dates, |
|
|
'Predicted_Amount': future_predictions |
|
|
}) |
|
|
|
|
|
def enhanced_loan_prediction(self, df, bank_name): |
|
|
"""Enhanced loan eligibility prediction""" |
|
|
try: |
|
|
|
|
|
training_data = pd.read_csv(f'{bank_name.lower().replace(" ", "_")}.csv') |
|
|
|
|
|
|
|
|
total_credits = df[df['Amount'] > 0]['Amount'].sum() |
|
|
total_debits = abs(df[df['Amount'] < 0]['Amount'].sum()) |
|
|
num_transactions = len(df) |
|
|
avg_balance = df['Balance'].mean() |
|
|
closing_balance = df['Balance'].iloc[-1] if len(df) > 0 else 0 |
|
|
|
|
|
|
|
|
features = pd.DataFrame({ |
|
|
'Total_Credits': [total_credits], |
|
|
'Total_Debits': [total_debits], |
|
|
'Average_Balance': [avg_balance], |
|
|
'Num_Transactions': [num_transactions], |
|
|
'Closing_Balance': [closing_balance] |
|
|
}) |
|
|
|
|
|
|
|
|
available_columns = [col for col in features.columns if col in training_data.columns] |
|
|
features = features[available_columns] |
|
|
|
|
|
|
|
|
model = RandomForestClassifier(n_estimators=100, random_state=42) |
|
|
X_train = training_data[available_columns] |
|
|
y_train = training_data['Eligibility'] |
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
prediction = model.predict(features)[0] |
|
|
prediction_proba = model.predict_proba(features)[0] |
|
|
|
|
|
return { |
|
|
'eligible': bool(prediction), |
|
|
'confidence': float(max(prediction_proba)), |
|
|
'model_type': 'Random Forest' |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
st.error(f"Error in loan prediction: {str(e)}") |
|
|
return {'eligible': False, 'confidence': 0.0, 'model_type': 'Error'} |
|
|
|
|
|
def extract_text_from_pdf(file): |
|
|
"""Extract text from PDF file""" |
|
|
try: |
|
|
if isinstance(file, str): |
|
|
with open(file, 'rb') as f: |
|
|
reader = PyPDF2.PdfReader(f) |
|
|
text = '' |
|
|
for page in reader.pages: |
|
|
text += page.extract_text() |
|
|
else: |
|
|
reader = PyPDF2.PdfReader(file) |
|
|
text = '' |
|
|
for page in reader.pages: |
|
|
text += page.extract_text() |
|
|
return text |
|
|
except Exception as e: |
|
|
st.error(f"Error extracting text from PDF: {str(e)}") |
|
|
return "" |
|
|
|
|
|
def identify_bank_from_text(text): |
|
|
"""Identify bank from statement text""" |
|
|
text_lower = text.lower() |
|
|
bank_keywords = { |
|
|
'FNB': ['fnb', 'first national bank'], |
|
|
'Standard Bank': ['standard bank'], |
|
|
'Nedbank': ['nedbank'], |
|
|
'ABSA': ['absa'], |
|
|
'Capitec Bank': ['capitec'] |
|
|
} |
|
|
|
|
|
for bank, keywords in bank_keywords.items(): |
|
|
if any(keyword in text_lower for keyword in keywords): |
|
|
return bank |
|
|
return None |
|
|
|
|
|
def extract_bank_statement_metadata(text, bank_name): |
|
|
"""Extract metadata from bank statement based on bank""" |
|
|
if bank_name == 'FNB': |
|
|
|
|
|
name_match = re.search(r"(MR|MRS)\s+([A-Z\s]+)", text) |
|
|
account_holder_name = name_match.group(0) if name_match else "Name not found" |
|
|
|
|
|
|
|
|
closing_balance_match = re.search(r"Closing Balance\s+([\d,]+\.?\d*)", text) |
|
|
closing_balance = float(closing_balance_match.group(1).replace(',', '')) if closing_balance_match else 0.0 |
|
|
|
|
|
return account_holder_name, closing_balance |
|
|
|
|
|
elif bank_name == 'Standard Bank': |
|
|
name_match = re.search(r"Account Holder:\s*(.+?)\n", text) |
|
|
account_holder_name = name_match.group(1).strip() if name_match else "Name not found" |
|
|
|
|
|
acc_match = re.search(r"Account Number:\s*(\d+)", text) |
|
|
account_number = acc_match.group(1) if acc_match else "Not found" |
|
|
|
|
|
period_match = re.search(r"Statement Period:\s*(.+?)\n", text) |
|
|
statement_period = period_match.group(1).strip() if period_match else "Not specified" |
|
|
|
|
|
balance_match = re.search(r"Closing Balance:\s*(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)", text) |
|
|
closing_balance = float(balance_match.group(1).replace(',', '').replace('R', '')) if balance_match else 0.0 |
|
|
|
|
|
return account_holder_name, account_number, statement_period, closing_balance |
|
|
|
|
|
elif bank_name == 'Nedbank': |
|
|
name_match = re.search(r"Account Holder:\s*(.+?)\n", text) |
|
|
account_holder_name = name_match.group(1).strip() if name_match else "Name not found" |
|
|
|
|
|
acc_match = re.search(r"Account Number:\s*(\d+)", text) |
|
|
account_number = acc_match.group(1) if acc_match else "Not found" |
|
|
|
|
|
period_match = re.search(r"Statement Period:\s*(.+?)\n", text) |
|
|
statement_period = period_match.group(1).strip() if period_match else "Not specified" |
|
|
|
|
|
balance_match = re.search(r"Closing Balance:\s*(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)", text) |
|
|
closing_balance = float(balance_match.group(1).replace(',', '').replace('R', '')) if balance_match else 0.0 |
|
|
|
|
|
return account_holder_name, account_number, statement_period, closing_balance |
|
|
|
|
|
elif bank_name == 'ABSA': |
|
|
name_match = re.search(r"Account Holder:\s*(.+?)\n", text) |
|
|
account_holder_name = name_match.group(1).strip() if name_match else "Name not found" |
|
|
|
|
|
acc_match = re.search(r"Account Number:\s*(\d+)", text) |
|
|
account_number = acc_match.group(1) if acc_match else "Not found" |
|
|
|
|
|
period_match = re.search(r"Statement Period:\s*(.+?)\n", text) |
|
|
statement_period = period_match.group(1).strip() if period_match else "Not specified" |
|
|
|
|
|
balance_match = re.search(r"Closing Balance:\s*(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)", text) |
|
|
closing_balance = float(balance_match.group(1).replace(',', '').replace('R', '')) if balance_match else 0.0 |
|
|
|
|
|
return account_holder_name, account_number, statement_period, closing_balance |
|
|
|
|
|
else: |
|
|
name_match = re.search(r"Account Holder:\s*(.+?)\n", text) |
|
|
account_holder_name = name_match.group(1).strip() if name_match else "Name not found" |
|
|
|
|
|
balance_match = re.search(r"Closing Balance:\s*(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)", text) |
|
|
closing_balance = float(balance_match.group(1).replace(',', '').replace('R', '')) if balance_match else 0.0 |
|
|
|
|
|
return account_holder_name, closing_balance |
|
|
|
|
|
def parse_pdf_enhanced(file): |
|
|
"""Enhanced PDF parsing with better text extraction""" |
|
|
try: |
|
|
with pdfplumber.open(file) as pdf: |
|
|
text = '' |
|
|
for page in pdf.pages: |
|
|
page_text = page.extract_text() |
|
|
if page_text: |
|
|
text += page_text + '\n' |
|
|
return text |
|
|
except Exception as e: |
|
|
st.error(f"Error parsing PDF: {str(e)}") |
|
|
return "" |
|
|
|
|
|
def process_text_to_df_enhanced(text, bank_name): |
|
|
"""Process text to DataFrame based on bank format""" |
|
|
transactions = [] |
|
|
|
|
|
if bank_name == 'FNB': |
|
|
transaction_pattern = re.compile( |
|
|
r'(\d{2} \w{3})\s+' |
|
|
r'(.+?)\s+' |
|
|
r'(-?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)(Cr|Dr)?\s*' |
|
|
r'(-?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)(Cr|Dr)?' |
|
|
) |
|
|
|
|
|
for line in text.split('\n'): |
|
|
line = line.strip() |
|
|
if not line or 'Transactions in RAND' in line or 'Date Description' in line: |
|
|
continue |
|
|
|
|
|
match = transaction_pattern.search(line) |
|
|
if match: |
|
|
try: |
|
|
groups = match.groups() |
|
|
date_str, description, amount_str, cr_dr1, balance_str, _ = groups |
|
|
|
|
|
|
|
|
current_year = datetime.now().year |
|
|
date_obj = datetime.strptime(f"{date_str} {current_year}", "%d %b %Y") |
|
|
date_str = date_obj.strftime("%Y-%m-%d") |
|
|
|
|
|
|
|
|
amount = float(amount_str.replace(',', '')) |
|
|
if cr_dr1 == 'Cr': |
|
|
amount = -amount |
|
|
|
|
|
balance = float(balance_str.replace(',', '')) |
|
|
|
|
|
transactions.append([date_str, description.strip(), amount, balance]) |
|
|
except (ValueError, AttributeError): |
|
|
continue |
|
|
|
|
|
elif bank_name == 'Standard Bank': |
|
|
transaction_pattern = re.compile( |
|
|
r'(\d{2} \w{3} \d{2})\s+' |
|
|
r'(.+?)\s+' |
|
|
r'(-?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s+' |
|
|
r'(-?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)' |
|
|
) |
|
|
|
|
|
for line in text.split('\n'): |
|
|
line = line.strip() |
|
|
if not line or 'Date Description' in line or 'Transactions in RAND' in line: |
|
|
continue |
|
|
|
|
|
match = transaction_pattern.search(line) |
|
|
if match: |
|
|
try: |
|
|
date_str, description, amount_str, balance_str = match.groups() |
|
|
|
|
|
|
|
|
date_obj = datetime.strptime(date_str, '%d %b %y') |
|
|
date_str = date_obj.strftime('%Y-%m-%d') |
|
|
|
|
|
|
|
|
amount = float(amount_str.replace(',', '')) |
|
|
balance = float(balance_str.replace(',', '')) |
|
|
|
|
|
transactions.append([date_str, description.strip(), amount, balance]) |
|
|
except (ValueError, AttributeError): |
|
|
continue |
|
|
|
|
|
elif bank_name == 'Nedbank': |
|
|
transaction_pattern = re.compile( |
|
|
r'(\d{2}/\d{2}/\d{4})\s+' |
|
|
r'(.+?)\s+' |
|
|
r'(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s+' |
|
|
r'(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)' |
|
|
) |
|
|
|
|
|
for line in text.split('\n'): |
|
|
line = line.strip() |
|
|
if not line or 'Date Description' in line or 'Transactions in RAND' in line: |
|
|
continue |
|
|
|
|
|
match = transaction_pattern.search(line) |
|
|
if match: |
|
|
try: |
|
|
date_str, description, amount_str, balance_str = match.groups() |
|
|
|
|
|
|
|
|
amount = float(amount_str.replace(',', '').replace('R', '').replace(' ', '')) |
|
|
balance = float(balance_str.replace(',', '').replace('R', '').replace(' ', '')) |
|
|
|
|
|
transactions.append([date_str, description.strip(), amount, balance]) |
|
|
except (ValueError, AttributeError): |
|
|
continue |
|
|
|
|
|
else: |
|
|
transaction_pattern = re.compile( |
|
|
r'(\d{4}-\d{2}-\d{2})\s+' |
|
|
r'(.+?)\s+' |
|
|
r'(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s+' |
|
|
r'(-?R?\d{1,3}(?:,\d{3})*(?:\.\d{2})?)' |
|
|
) |
|
|
|
|
|
for line in text.split('\n'): |
|
|
line = line.strip() |
|
|
if not line: |
|
|
continue |
|
|
|
|
|
match = transaction_pattern.search(line) |
|
|
if match: |
|
|
try: |
|
|
date_str, description, amount_str, balance_str = match.groups() |
|
|
|
|
|
|
|
|
amount = float(amount_str.replace(',', '').replace('R', '').replace(' ', '')) |
|
|
balance = float(balance_str.replace(',', '').replace('R', '').replace(' ', '')) |
|
|
|
|
|
transactions.append([date_str, description.strip(), amount, balance]) |
|
|
except (ValueError, AttributeError): |
|
|
continue |
|
|
|
|
|
if not transactions: |
|
|
return pd.DataFrame(columns=['Date', 'Description', 'Amount', 'Balance']) |
|
|
|
|
|
df = pd.DataFrame(transactions, columns=['Date', 'Description', 'Amount', 'Balance']) |
|
|
df['Date'] = pd.to_datetime(df['Date']) |
|
|
df = df.sort_values('Date').reset_index(drop=True) |
|
|
df['Bank'] = bank_name |
|
|
|
|
|
return df |
|
|
|
|
|
def categorize_expense_enhanced(description, bank_name): |
|
|
"""Enhanced expense categorization with bank-specific rules""" |
|
|
description_lower = description.lower() |
|
|
|
|
|
|
|
|
common_categories = { |
|
|
'Salary/Income': ['salary', 'wage', 'income', 'payroll', 'refund'], |
|
|
'Groceries': ['grocery', 'supermarket', 'food', 'spar', 'checkers', 'woolworths'], |
|
|
'Transport': ['fuel', 'petrol', 'uber', 'taxi', 'transport', 'car payment'], |
|
|
'Utilities': ['electricity', 'water', 'municipal', 'rates', 'internet', 'phone'], |
|
|
'Entertainment': ['restaurant', 'movie', 'entertainment', 'netflix', 'spotify'], |
|
|
'Healthcare': ['medical', 'doctor', 'hospital', 'pharmacy', 'health'], |
|
|
'Shopping': ['retail', 'clothing', 'amazon', 'takealot', 'mall'], |
|
|
'Investments': ['investment', 'shares', 'unit trust', 'retirement'], |
|
|
'Insurance': ['insurance', 'medical aid', 'life cover', 'short term'], |
|
|
'Bank Charges': ['fees', 'charge', 'service', 'cost', 'monthly account fee'], |
|
|
'Cash Transactions': ['atm', 'cash', 'withdrawal', 'deposit'], |
|
|
'Cellular': ['airtime', 'data', 'vodacom', 'mtn', 'cell c'], |
|
|
'Interest': ['interest'], |
|
|
'Failed Transactions': ['unsuccessful', 'declined', 'failed'] |
|
|
} |
|
|
|
|
|
|
|
|
bank_specific = { |
|
|
'FNB': { |
|
|
'POS Purchases': ['pos purchase', 'card purchase', 'debit order'], |
|
|
'Payments': ['payment to', 'fnb app rtc pmt', 'internet pmt', 'debit order'] |
|
|
}, |
|
|
'Standard Bank': { |
|
|
'Payments': ['payment', 'transfer', 'debit order', 'immediate trf', 'digital payment'] |
|
|
}, |
|
|
'Nedbank': { |
|
|
'POS Purchases': ['pos purchase', 'card purchase', 'debit order', 'cashsend'], |
|
|
'Payments': ['payment to', 'immediate trf', 'digital payment', 'pmt to'], |
|
|
'Loans': ['loan payment', 'nedloan', 'personal loan'] |
|
|
}, |
|
|
'ABSA': { |
|
|
'POS Purchases': ['cashsend mobile', 'pos purchase'], |
|
|
'Payments': ['immediate trf', 'digital payment', 'payment'] |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
category_keywords = {**common_categories, **(bank_specific.get(bank_name, {}))} |
|
|
|
|
|
|
|
|
for category, keywords in category_keywords.items(): |
|
|
if any(keyword in description_lower for keyword in keywords): |
|
|
return category |
|
|
|
|
|
|
|
|
try: |
|
|
if 'TextBlob' in globals(): |
|
|
blob = TextBlob(description) |
|
|
|
|
|
pass |
|
|
except: |
|
|
pass |
|
|
|
|
|
return 'Other' |
|
|
|
|
|
def create_advanced_visualizations(df, patterns, recommendations): |
|
|
"""Create advanced interactive visualizations""" |
|
|
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
|
|
|
|
total_income = df[df['Amount'] > 0]['Amount'].sum() |
|
|
total_expenses = abs(df[df['Amount'] < 0]['Amount'].sum()) |
|
|
net_flow = total_income - total_expenses |
|
|
transaction_count = len(df) |
|
|
|
|
|
with col1: |
|
|
st.metric("Total Income", f"R{total_income:,.2f}", delta=None) |
|
|
with col2: |
|
|
st.metric("Total Expenses", f"R{total_expenses:,.2f}", delta=None) |
|
|
with col3: |
|
|
st.metric("Net Cash Flow", f"R{net_flow:,.2f}", |
|
|
delta=f"{'Positive' if net_flow > 0 else 'Negative'}") |
|
|
with col4: |
|
|
st.metric("Transactions", f"{transaction_count}", delta=None) |
|
|
|
|
|
|
|
|
fig_treemap = px.treemap( |
|
|
df.groupby('Category')['Amount'].sum().abs().reset_index(), |
|
|
path=['Category'], |
|
|
values='Amount', |
|
|
title='Spending Distribution by Category (Treemap)' |
|
|
) |
|
|
st.plotly_chart(fig_treemap, use_container_width=True) |
|
|
|
|
|
|
|
|
daily_spending = df.groupby(df['Date'].dt.date)['Amount'].sum().reset_index() |
|
|
daily_spending['Date'] = pd.to_datetime(daily_spending['Date']) |
|
|
|
|
|
fig_timeseries = go.Figure() |
|
|
fig_timeseries.add_trace(go.Scatter( |
|
|
x=daily_spending['Date'], |
|
|
y=daily_spending['Amount'], |
|
|
mode='lines+markers', |
|
|
name='Actual Spending', |
|
|
line=dict(color='blue') |
|
|
)) |
|
|
|
|
|
|
|
|
x_numeric = np.arange(len(daily_spending)) |
|
|
z = np.polyfit(x_numeric, daily_spending['Amount'], 1) |
|
|
p = np.poly1d(z) |
|
|
fig_timeseries.add_trace(go.Scatter( |
|
|
x=daily_spending['Date'], |
|
|
y=p(x_numeric), |
|
|
mode='lines', |
|
|
name='Trend', |
|
|
line=dict(color='red', dash='dash') |
|
|
)) |
|
|
|
|
|
fig_timeseries.update_layout(title='Daily Spending Trend with Projection') |
|
|
st.plotly_chart(fig_timeseries, use_container_width=True) |
|
|
|
|
|
|
|
|
df['Month'] = df['Date'].dt.to_period('M') |
|
|
monthly_category = df.groupby(['Month', 'Category'])['Amount'].sum().abs().reset_index() |
|
|
monthly_category['Month'] = monthly_category['Month'].astype(str) |
|
|
|
|
|
fig_monthly = px.bar( |
|
|
monthly_category, |
|
|
x='Month', |
|
|
y='Amount', |
|
|
color='Category', |
|
|
title='Monthly Spending by Category' |
|
|
) |
|
|
st.plotly_chart(fig_monthly, use_container_width=True) |
|
|
|
|
|
def main(): |
|
|
"""Main application function""" |
|
|
|
|
|
db = DatabaseManager() |
|
|
|
|
|
|
|
|
with st.sidebar: |
|
|
st.title("🏦 Universal Bank Analyzer") |
|
|
|
|
|
if st.session_state.user_profile is None: |
|
|
tab1, tab2 = st.tabs(["Login", "Sign Up"]) |
|
|
|
|
|
with tab1: |
|
|
st.subheader("Login") |
|
|
email = st.text_input("Email", key="login_email") |
|
|
password = st.text_input("Password", type="password", key="login_password") |
|
|
|
|
|
if st.button("Login", key="login_btn"): |
|
|
user_data = db.authenticate_user(email, password) |
|
|
if user_data: |
|
|
user_id, name = user_data |
|
|
st.session_state.user_profile = db.get_user_profile(user_id) |
|
|
st.success(f"Welcome back, {name}!") |
|
|
st.rerun() |
|
|
else: |
|
|
st.error("Invalid credentials") |
|
|
|
|
|
with tab2: |
|
|
st.subheader("Create Account") |
|
|
new_name = st.text_input("Full Name", key="signup_name") |
|
|
new_email = st.text_input("Email", key="signup_email") |
|
|
new_password = st.text_input("Password", type="password", key="signup_password") |
|
|
monthly_income = st.number_input("Monthly Income (R)", min_value=0.0, key="signup_income") |
|
|
risk_tolerance = st.selectbox("Risk Tolerance", ["conservative", "moderate", "aggressive"], key="signup_risk") |
|
|
financial_goals = st.text_area("Financial Goals", key="signup_goals") |
|
|
|
|
|
if st.button("Create Account", key="signup_btn"): |
|
|
if new_name and new_email and new_password: |
|
|
user_id = hashlib.md5(new_email.encode()).hexdigest()[:8] |
|
|
if db.create_user(user_id, new_name, new_email, new_password, financial_goals, risk_tolerance, monthly_income): |
|
|
st.success("Account created successfully! Please login.") |
|
|
else: |
|
|
st.error("Email already exists") |
|
|
else: |
|
|
st.error("Please fill all required fields") |
|
|
st.rerun() |
|
|
|
|
|
else: |
|
|
st.success(f"Welcome, {st.session_state.user_profile['name']}!") |
|
|
if st.button("Logout"): |
|
|
st.session_state.user_profile = None |
|
|
st.session_state.transactions_df = None |
|
|
st.session_state.analysis_complete = False |
|
|
st.session_state.detected_bank = None |
|
|
st.experimental_rerun() |
|
|
|
|
|
|
|
|
if st.session_state.user_profile is None: |
|
|
st.markdown(""" |
|
|
# 🏦 Universal Bank Statement Analysis |
|
|
|
|
|
### Welcome to the next generation of financial analysis for all major banks! |
|
|
|
|
|
**Supported Banks:** |
|
|
- FNB (First National Bank) |
|
|
- Standard Bank |
|
|
- Nedbank |
|
|
- ABSA |
|
|
- Capitec Bank |
|
|
|
|
|
**Key Features:** |
|
|
- 🤖 **AI-Powered Insights**: Advanced machine learning for personalized recommendations |
|
|
- 📊 **Comprehensive Analytics**: Deep dive into your spending patterns |
|
|
- 🎯 **Goal Tracking**: Set and monitor your financial objectives |
|
|
- 🔮 **Predictive Analysis**: Forecast future spending trends |
|
|
- 🛡️ **Anomaly Detection**: Identify unusual transactions |
|
|
- 💡 **Smart Recommendations**: Personalized financial advice |
|
|
- 💰 **Loan Eligibility**: Check your loan eligibility instantly |
|
|
|
|
|
**Please login or create an account to get started.** |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
st.title(f"🏦 Universal Bank Analysis Dashboard - {st.session_state.user_profile['name']}") |
|
|
|
|
|
|
|
|
st.markdown("### 📄 Upload Your Bank Statement") |
|
|
uploaded_file = st.file_uploader( |
|
|
"Choose a PDF bank statement", |
|
|
type="pdf", |
|
|
help="Upload your bank statement in PDF format for analysis" |
|
|
) |
|
|
|
|
|
if uploaded_file is not None: |
|
|
try: |
|
|
|
|
|
with st.spinner("🔍 Analyzing bank statement..."): |
|
|
text = extract_text_from_pdf(uploaded_file) |
|
|
bank_name = identify_bank_from_text(text) |
|
|
|
|
|
if not bank_name: |
|
|
st.error("Could not identify bank from statement. Please ensure it's from a supported bank.") |
|
|
return |
|
|
|
|
|
st.session_state.detected_bank = bank_name |
|
|
st.success(f"Detected Bank: {bank_name}") |
|
|
|
|
|
|
|
|
metadata = extract_bank_statement_metadata(text, bank_name) |
|
|
|
|
|
|
|
|
df = process_text_to_df_enhanced(text, bank_name) |
|
|
|
|
|
if df.empty: |
|
|
st.warning("⚠️ No transactions found in the uploaded statement. Please check the file format.") |
|
|
return |
|
|
|
|
|
|
|
|
st.session_state.transactions_df = df |
|
|
|
|
|
|
|
|
df['Category'] = df['Description'].apply(lambda x: categorize_expense_enhanced(x, bank_name)) |
|
|
|
|
|
|
|
|
personalization = PersonalizationEngine(st.session_state.user_profile) |
|
|
analytics = AdvancedAnalytics() |
|
|
|
|
|
|
|
|
with st.spinner("🧠 Analyzing your financial data..."): |
|
|
patterns = personalization.analyze_spending_patterns(df) |
|
|
recommendations = personalization.generate_personalized_recommendations(df, patterns) |
|
|
health_score, score_components = personalization.calculate_financial_health_score(df, patterns) |
|
|
loan_prediction = analytics.enhanced_loan_prediction(df, bank_name) |
|
|
df_with_anomalies = analytics.detect_anomalies(df) |
|
|
|
|
|
st.session_state.analysis_complete = True |
|
|
|
|
|
|
|
|
if bank_name == 'FNB': |
|
|
account_holder_name, closing_balance = metadata |
|
|
st.success(f"Account Holder: {account_holder_name}") |
|
|
st.info(f"Closing Balance: R{closing_balance:,.2f}") |
|
|
else: |
|
|
account_holder_name, account_number, statement_period, closing_balance = metadata |
|
|
st.success(f"Account Holder: {account_holder_name}") |
|
|
st.info(f"Account Number: {account_number} | Statement Period: {statement_period}") |
|
|
st.info(f"Closing Balance: R{closing_balance:,.2f}") |
|
|
|
|
|
|
|
|
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([ |
|
|
"📊 Overview", "💡 Recommendations", "🏥 Health Score", |
|
|
"🔍 Detailed Analysis", "🚨 Anomalies", "💰 Loan Eligibility" |
|
|
]) |
|
|
|
|
|
with tab1: |
|
|
st.markdown("### 📈 Financial Overview") |
|
|
create_advanced_visualizations(df, patterns, recommendations) |
|
|
|
|
|
|
|
|
st.markdown("### 📋 Transaction History") |
|
|
st.dataframe( |
|
|
df[['Date', 'Description', 'Category', 'Amount', 'Balance']], |
|
|
use_container_width=True |
|
|
) |
|
|
|
|
|
with tab2: |
|
|
st.markdown("### 💡 Personalized Recommendations") |
|
|
|
|
|
if recommendations: |
|
|
for i, rec in enumerate(recommendations): |
|
|
priority_color = { |
|
|
'high': '🔴', |
|
|
'medium': '🟡', |
|
|
'low': '🟢' |
|
|
}.get(rec['priority'], '⚪') |
|
|
|
|
|
st.markdown(f""" |
|
|
**{priority_color} {rec['title']}** |
|
|
|
|
|
{rec['description']} |
|
|
|
|
|
*Category: {rec['type'].title()} | Priority: {rec['priority'].title()}* |
|
|
""") |
|
|
st.divider() |
|
|
else: |
|
|
st.info("💫 Great job! Your financial habits look healthy. Keep up the good work!") |
|
|
|
|
|
with tab3: |
|
|
st.markdown("### 🏥 Financial Health Score") |
|
|
|
|
|
|
|
|
col1, col2 = st.columns([1, 2]) |
|
|
|
|
|
with col1: |
|
|
|
|
|
fig_gauge = go.Figure(go.Indicator( |
|
|
mode = "gauge+number+delta", |
|
|
value = health_score, |
|
|
domain = {'x': [0, 1], 'y': [0, 1]}, |
|
|
title = {'text': "Financial Health Score"}, |
|
|
delta = {'reference': 75}, |
|
|
gauge = { |
|
|
'axis': {'range': [None, 100]}, |
|
|
'bar': {'color': "darkblue"}, |
|
|
'steps': [ |
|
|
{'range': [0, 25], 'color': "lightgray"}, |
|
|
{'range': [25, 50], 'color': "gray"}, |
|
|
{'range': [50, 75], 'color': "lightgreen"}, |
|
|
{'range': [75, 100], 'color': "green"} |
|
|
], |
|
|
'threshold': { |
|
|
'line': {'color': "red", 'width': 4}, |
|
|
'thickness': 0.75, |
|
|
'value': 90 |
|
|
} |
|
|
} |
|
|
)) |
|
|
fig_gauge.update_layout(height=300) |
|
|
st.plotly_chart(fig_gauge, use_container_width=True) |
|
|
|
|
|
with col2: |
|
|
st.markdown("#### Score Breakdown") |
|
|
for component, score in score_components.items(): |
|
|
component_name = component.replace('_', ' ').title() |
|
|
st.progress(score/25, text=f"{component_name}: {score:.1f}/25") |
|
|
|
|
|
|
|
|
if health_score < 60: |
|
|
st.warning("⚠️ Your financial health needs attention. Consider the recommendations above.") |
|
|
elif health_score < 80: |
|
|
st.info("💡 Good financial health! A few improvements could boost your score.") |
|
|
else: |
|
|
st.success("🎉 Excellent financial health! You're doing great!") |
|
|
|
|
|
with tab4: |
|
|
st.markdown("### 🔍 Detailed Financial Analysis") |
|
|
|
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
with col1: |
|
|
st.markdown("#### Spending Patterns") |
|
|
weekend_avg = patterns.get('weekend_vs_weekday', {}).get('weekend_avg', 0) |
|
|
weekday_avg = patterns.get('weekend_vs_weekday', {}).get('weekday_avg', 0) |
|
|
|
|
|
st.write(f"Weekend Average: R{weekend_avg:.2f}") |
|
|
st.write(f"Weekday Average: R{weekday_avg:.2f}") |
|
|
st.write(f"Transaction Frequency: {patterns.get('transaction_frequency', 0):.2f} per day") |
|
|
|
|
|
with col2: |
|
|
st.markdown("#### Monthly Trends") |
|
|
monthly_trends = patterns.get('monthly_trends', {}) |
|
|
for month, avg_spending in monthly_trends.items(): |
|
|
month_name = pd.to_datetime(f"2023-{month:02d}-01").strftime("%B") |
|
|
st.write(f"{month_name}: R{avg_spending:.2f}") |
|
|
|
|
|
|
|
|
st.markdown("#### Category Analysis") |
|
|
category_data = [] |
|
|
for category, data in patterns.get('spending_by_category', {}).items(): |
|
|
if isinstance(data, dict): |
|
|
category_data.append({ |
|
|
'Category': category, |
|
|
'Total': data.get('sum', 0), |
|
|
'Average': data.get('mean', 0), |
|
|
'Count': data.get('count', 0), |
|
|
'Std Dev': data.get('std', 0) |
|
|
}) |
|
|
|
|
|
if category_data: |
|
|
category_df = pd.DataFrame(category_data) |
|
|
st.dataframe(category_df, use_container_width=True) |
|
|
|
|
|
with tab5: |
|
|
st.markdown("### 🚨 Anomaly Detection") |
|
|
|
|
|
anomalies = df_with_anomalies[df_with_anomalies['IsAnomaly']] |
|
|
|
|
|
if not anomalies.empty: |
|
|
st.warning(f"⚠️ Found {len(anomalies)} unusual transactions:") |
|
|
st.dataframe( |
|
|
anomalies[['Date', 'Description', 'Amount', 'Category']], |
|
|
use_container_width=True |
|
|
) |
|
|
|
|
|
|
|
|
fig_anomaly = px.scatter( |
|
|
df_with_anomalies, |
|
|
x='Date', |
|
|
y='Amount', |
|
|
color='IsAnomaly', |
|
|
title='Transaction Anomalies', |
|
|
color_discrete_map={True: 'red', False: 'blue'} |
|
|
) |
|
|
st.plotly_chart(fig_anomaly, use_container_width=True) |
|
|
else: |
|
|
st.success("✅ No unusual transactions detected. Your spending patterns look normal!") |
|
|
|
|
|
with tab6: |
|
|
st.markdown("### 💰 Loan Eligibility Assessment") |
|
|
|
|
|
|
|
|
if loan_prediction['eligible']: |
|
|
st.success(f"✅ **Congratulations!** You are eligible for a loan.") |
|
|
else: |
|
|
st.error(f"❌ **Unfortunately,** you are not currently eligible for a loan.") |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
with col1: |
|
|
st.metric("Confidence Score", f"{loan_prediction['confidence']:.1%}") |
|
|
with col2: |
|
|
st.metric("Model Used", loan_prediction['model_type']) |
|
|
|
|
|
|
|
|
st.markdown("#### Loan Assessment Factors") |
|
|
|
|
|
total_credits = df[df['Amount'] > 0]['Amount'].sum() |
|
|
total_debits = abs(df[df['Amount'] < 0]['Amount'].sum()) |
|
|
debt_to_income = total_debits / total_credits if total_credits > 0 else float('inf') |
|
|
|
|
|
factors = { |
|
|
"Total Income": f"R{total_credits:,.2f}", |
|
|
"Total Expenses": f"R{total_debits:,.2f}", |
|
|
"Debt-to-Income Ratio": f"{debt_to_income:.2%}", |
|
|
"Net Cash Flow": f"R{total_credits - total_debits:,.2f}", |
|
|
"Transaction Count": str(len(df)), |
|
|
"Account Balance Trend": f"R{patterns.get('balance_trend', 0):,.2f}" |
|
|
} |
|
|
|
|
|
for factor, value in factors.items(): |
|
|
st.write(f"**{factor}:** {value}") |
|
|
|
|
|
|
|
|
if not loan_prediction['eligible']: |
|
|
st.markdown("#### 💡 How to Improve Your Loan Eligibility") |
|
|
st.markdown(""" |
|
|
- **Increase Income**: Look for ways to boost your monthly income |
|
|
- **Reduce Expenses**: Cut down on non-essential spending |
|
|
- **Build Savings**: Maintain a higher account balance |
|
|
- **Regular Transactions**: Show consistent financial activity |
|
|
- **Improve Cash Flow**: Ensure more money comes in than goes out |
|
|
""") |
|
|
|
|
|
except Exception as e: |
|
|
st.error(f"❌ An error occurred while processing your statement: {str(e)}") |
|
|
st.info("Please ensure your PDF is a valid bank statement and try again.") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|
|
|
|
|
|
st.markdown(""" |
|
|
<style> |
|
|
.metric-card { |
|
|
background-color: #f0f2f6; |
|
|
padding: 1rem; |
|
|
border-radius: 0.5rem; |
|
|
border-left: 4px solid #1f77b4; |
|
|
} |
|
|
|
|
|
.recommendation-card { |
|
|
background-color: #f8f9fa; |
|
|
padding: 1rem; |
|
|
border-radius: 0.5rem; |
|
|
margin: 0.5rem 0; |
|
|
border-left: 4px solid #28a745; |
|
|
} |
|
|
|
|
|
.stTabs [data-baseweb="tab-list"] { |
|
|
gap: 24px; |
|
|
} |
|
|
|
|
|
.stTabs [data-baseweb="tab"] { |
|
|
height: 50px; |
|
|
white-space: pre-wrap; |
|
|
background-color: #f0f2f6; |
|
|
border-radius: 4px 4px 0px 0px; |
|
|
gap: 1px; |
|
|
padding-top: 10px; |
|
|
padding-bottom: 10px; |
|
|
} |
|
|
|
|
|
.stTabs [aria-selected="true"] { |
|
|
background-color: #1f77b4; |
|
|
color: white; |
|
|
} |
|
|
</style> |
|
|
""", unsafe_allow_html=True) |