Mainak Manna
commited on
Commit
·
4701bcf
1
Parent(s):
c0f5fa7
First version of the model
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
datasets:
|
7 |
- dcep europarl jrc-acquis
|
8 |
widget:
|
9 |
-
- text: "di
|
10 |
|
11 |
---
|
12 |
|
@@ -38,7 +38,7 @@ tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/l
|
|
38 |
device=0
|
39 |
)
|
40 |
|
41 |
-
it_text = "di
|
42 |
|
43 |
pipeline([it_text], max_length=512)
|
44 |
```
|
@@ -49,12 +49,12 @@ The legal_t5_small_trans_it_de model was trained on [JRC-ACQUIS](https://wt-publ
|
|
49 |
|
50 |
## Training procedure
|
51 |
|
52 |
-
An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
|
53 |
-
|
54 |
The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
|
55 |
|
56 |
### Preprocessing
|
57 |
|
|
|
|
|
58 |
### Pretraining
|
59 |
|
60 |
|
@@ -67,7 +67,7 @@ Test results :
|
|
67 |
|
68 |
| Model | BLEU score |
|
69 |
|:-----:|:-----:|
|
70 |
-
| legal_t5_small_trans_it_de | 40.
|
71 |
|
72 |
|
73 |
### BibTeX entry and citation info
|
|
|
6 |
datasets:
|
7 |
- dcep europarl jrc-acquis
|
8 |
widget:
|
9 |
+
- text: "Pur essendo la tredicesima lingua dell’Unione per numero di parlanti, il catalano non è tuttavia una lingua ufficiale dell’UE, sebbene quest’ultima conti 23 lingue ufficiali."
|
10 |
|
11 |
---
|
12 |
|
|
|
38 |
device=0
|
39 |
)
|
40 |
|
41 |
+
it_text = "Pur essendo la tredicesima lingua dell’Unione per numero di parlanti, il catalano non è tuttavia una lingua ufficiale dell’UE, sebbene quest’ultima conti 23 lingue ufficiali."
|
42 |
|
43 |
pipeline([it_text], max_length=512)
|
44 |
```
|
|
|
49 |
|
50 |
## Training procedure
|
51 |
|
|
|
|
|
52 |
The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
|
53 |
|
54 |
### Preprocessing
|
55 |
|
56 |
+
An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
|
57 |
+
|
58 |
### Pretraining
|
59 |
|
60 |
|
|
|
67 |
|
68 |
| Model | BLEU score |
|
69 |
|:-----:|:-----:|
|
70 |
+
| legal_t5_small_trans_it_de | 40.62|
|
71 |
|
72 |
|
73 |
### BibTeX entry and citation info
|