Mainak Manna commited on
Commit
4701bcf
·
1 Parent(s): c0f5fa7

First version of the model

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -6,7 +6,7 @@ tags:
6
  datasets:
7
  - dcep europarl jrc-acquis
8
  widget:
9
- - text: "di Catherine Stihler (S-D)"
10
 
11
  ---
12
 
@@ -38,7 +38,7 @@ tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/l
38
  device=0
39
  )
40
 
41
- it_text = "di Catherine Stihler (S-D)"
42
 
43
  pipeline([it_text], max_length=512)
44
  ```
@@ -49,12 +49,12 @@ The legal_t5_small_trans_it_de model was trained on [JRC-ACQUIS](https://wt-publ
49
 
50
  ## Training procedure
51
 
52
- An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
53
-
54
  The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
55
 
56
  ### Preprocessing
57
 
 
 
58
  ### Pretraining
59
 
60
 
@@ -67,7 +67,7 @@ Test results :
67
 
68
  | Model | BLEU score |
69
  |:-----:|:-----:|
70
- | legal_t5_small_trans_it_de | 40.615|
71
 
72
 
73
  ### BibTeX entry and citation info
 
6
  datasets:
7
  - dcep europarl jrc-acquis
8
  widget:
9
+ - text: "Pur essendo la tredicesima lingua dell’Unione per numero di parlanti, il catalano non è tuttavia una lingua ufficiale dell’UE, sebbene quest’ultima conti 23 lingue ufficiali."
10
 
11
  ---
12
 
 
38
  device=0
39
  )
40
 
41
+ it_text = "Pur essendo la tredicesima lingua dell’Unione per numero di parlanti, il catalano non è tuttavia una lingua ufficiale dell’UE, sebbene quest’ultima conti 23 lingue ufficiali."
42
 
43
  pipeline([it_text], max_length=512)
44
  ```
 
49
 
50
  ## Training procedure
51
 
 
 
52
  The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
53
 
54
  ### Preprocessing
55
 
56
+ An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
57
+
58
  ### Pretraining
59
 
60
 
 
67
 
68
  | Model | BLEU score |
69
  |:-----:|:-----:|
70
+ | legal_t5_small_trans_it_de | 40.62|
71
 
72
 
73
  ### BibTeX entry and citation info