Mainak Manna commited on
Commit
ef2e5bc
·
1 Parent(s): 8529eb7

First version of the model

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -6,7 +6,7 @@ tags:
6
  datasets:
7
  - dcep europarl jrc-acquis
8
  widget:
9
- - text: "Absolutorium za rozpočtový rok 2005: Evropská agentura pro léčivé přípravky"
10
 
11
  ---
12
 
@@ -38,7 +38,7 @@ tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/l
38
  device=0
39
  )
40
 
41
- cs_text = "Absolutorium za rozpočtový rok 2005: Evropská agentura pro léčivé přípravky"
42
 
43
  pipeline([cs_text], max_length=512)
44
  ```
@@ -49,12 +49,12 @@ The legal_t5_small_trans_cs_it model was trained on [JRC-ACQUIS](https://wt-publ
49
 
50
  ## Training procedure
51
 
52
- An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
53
-
54
  The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
55
 
56
  ### Preprocessing
57
 
 
 
58
  ### Pretraining
59
 
60
 
 
6
  datasets:
7
  - dcep europarl jrc-acquis
8
  widget:
9
+ - text: " Měly by se podporovat normy sportovní správy prostřednictvím výměny osvědčených postupů."
10
 
11
  ---
12
 
 
38
  device=0
39
  )
40
 
41
+ cs_text = " Měly by se podporovat normy sportovní správy prostřednictvím výměny osvědčených postupů."
42
 
43
  pipeline([cs_text], max_length=512)
44
  ```
 
49
 
50
  ## Training procedure
51
 
 
 
52
  The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
53
 
54
  ### Preprocessing
55
 
56
+ An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
57
+
58
  ### Pretraining
59
 
60