|
|
import torch |
|
|
from torch import optim, nn |
|
|
|
|
|
|
|
|
|
|
|
class LoRA(nn.Module): |
|
|
def __init__(self, in_features, out_features, rank): |
|
|
super().__init__() |
|
|
self.rank = rank |
|
|
self.A = nn.Linear(in_features, rank, bias=False) |
|
|
self.B = nn.Linear(rank, out_features, bias=False) |
|
|
|
|
|
self.A.weight.data.normal_(mean=0.0, std=0.02) |
|
|
|
|
|
self.B.weight.data.zero_() |
|
|
|
|
|
def forward(self, x): |
|
|
return self.B(self.A(x)) |
|
|
|
|
|
|
|
|
def apply_lora(model, rank=8): |
|
|
for name, module in model.named_modules(): |
|
|
if isinstance(module, nn.Linear) and module.weight.shape[0] == module.weight.shape[1]: |
|
|
lora = LoRA(module.weight.shape[0], module.weight.shape[1], rank=rank).to(model.device) |
|
|
setattr(module, "lora", lora) |
|
|
original_forward = module.forward |
|
|
|
|
|
|
|
|
def forward_with_lora(x, layer1=original_forward, layer2=lora): |
|
|
return layer1(x) + layer2(x) |
|
|
|
|
|
module.forward = forward_with_lora |
|
|
|
|
|
|
|
|
def load_lora(model, path): |
|
|
state_dict = torch.load(path, map_location=model.device) |
|
|
for name, module in model.named_modules(): |
|
|
if hasattr(module, 'lora'): |
|
|
lora_state = {k.replace(f'{name}.lora.', ''): v for k, v in state_dict.items() if f'{name}.lora.' in k} |
|
|
module.lora.load_state_dict(lora_state) |
|
|
|
|
|
|
|
|
def save_lora(model, path): |
|
|
state_dict = {} |
|
|
for name, module in model.named_modules(): |
|
|
if hasattr(module, 'lora'): |
|
|
lora_state = {f'{name}.lora.{k}': v for k, v in module.lora.state_dict().items()} |
|
|
state_dict.update(lora_state) |
|
|
torch.save(state_dict, path) |
|
|
|