{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6921803010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b69218030a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6921803130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b69218031c0>", "_build": "<function ActorCriticPolicy._build at 0x7b6921803250>", "forward": "<function ActorCriticPolicy.forward at 0x7b69218032e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6921803370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6921803400>", "_predict": "<function ActorCriticPolicy._predict at 0x7b6921803490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6921803520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b69218035b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b6921803640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b692198e3c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711278034482252893, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOzvzwpWHC6o8rwuiKw47War0O6MgkNOgAAgD8AAIA/Zu+1vcPZBLoHs4i6JKENNkLt+LkWpaM5AAAAAAAAgD+ABlU9OU9tPu6F1jwrbyK+t2ZtPf458bwAAAAAAAAAAG3bTT6AJZs+SojNvV/jUb4sNXs99+ISvQAAAAAAAAAAerEwvhzRMrwtU3C6AEYXuNqLkz3SlWc5AACAPwAAgD9tOhq+7YsyP8IhVz1JqFa+bFdbvK48qz0AAAAAAAAAABoEhr2Plk+6198dO8ug4DatTb+6pWkZugAAgD8AAIA/AHLlvXSe4j7CpYo9HDB7vu0bP71PcMW9AAAAAAAAAABmF9K84RSLuuKCNjtW9bU34ew4u4BNAroAAIA/AACAPwC0qLwptHq6bjFFuj78KLW0KAy7Jo5mOQAAgD8AAIA/yl2CPg7mgD9dX2Q+4KOlvt4HWz49Z2y8AAAAAAAAAABN8kK9jzZtuo1RZrjmokOz5IqMOkIGhzcAAIA/AACAP02Lyj06Iow+GudAvvbuGb4umlm9m1U+vQAAAAAAAAAAmsHrPI+WUrpTuIy5mvpotMkfCrq9w6U4AACAPwAAgD8aeri9cieLP2sR2L0+/Ii+1SHMvX6UPj0AAAAAAAAAAGaATbxcJ1e6GOrsOvHCrDUhf+a6c40LugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNryLqD9O2MAWyUTegDjAF0lEdAmac4VEd/8XV9lChoBkdAYt6ScLBsRGgHTegDaAhHQJmsl59mYjV1fZQoaAZHQGcWBn8KohpoB03oA2gIR0CZsc60IC2ddX2UKGgGR0Bguj7fpD/maAdN6ANoCEdAmbTCf6Ggz3V9lChoBkdAY7NMqz7di2gHTegDaAhHQJm1ZhDw6Qx1fZQoaAZHQGaKlV1fVqhoB03oA2gIR0CZuLsNUfgadX2UKGgGR0Bhvp3Roh6jaAdN6ANoCEdAmdkF67dzn3V9lChoBkdAY8HQ66reZWgHTegDaAhHQJnaRuk1uR91fZQoaAZHQGDjjiGWUr1oB03oA2gIR0CZ3oANoakzdX2UKGgGR0Bi17jaPCEYaAdN6ANoCEdAmeNCi22G7HV9lChoBkdAY00BeXzDoGgHTegDaAhHQJnjUlnh86V1fZQoaAZHQGPZBttQ9A5oB03oA2gIR0CZ5L8rqdH2dX2UKGgGR0Bk2vrv9cbBaAdN6ANoCEdAmeZmpIczZnV9lChoBkdAY0DORkmQbWgHTegDaAhHQJnnALgGbCt1fZQoaAZHQGGRz6zmfXhoB03oA2gIR0CZ7Sh60IC2dX2UKGgGR0Bglm/vfCQ+aAdN6ANoCEdAme6S0KJEY3V9lChoBkdAQEI1pCa7VmgHS/9oCEdAmfE+hCdBjXV9lChoBkdAYXdHmRvFWGgHTegDaAhHQJn4C9YfW+Z1fZQoaAZHQGKz5nDiwStoB03oA2gIR0CZ/nxoZhrndX2UKGgGR0BjdbZBcAzYaAdN6ANoCEdAmgNowdsBQ3V9lChoBkdAXJtuxbB42WgHTegDaAhHQJoGTLt/nW91fZQoaAZHQGVqdmg8KXxoB03oA2gIR0CaBvEAHVwxdX2UKGgGR0Bjy8D0UXYUaAdN6ANoCEdAmgppWzWwvHV9lChoBkdAY6BtPYWcjWgHTegDaAhHQJosNyhi9Zl1fZQoaAZHQGUC60x/NJRoB03oA2gIR0CaLjeCTUy6dX2UKGgGR0Bwcxbt7a7FaAdNnwFoCEdAmi48x9G7SXV9lChoBkdAZbNZxJd0JWgHTegDaAhHQJozDk5p8F91fZQoaAZHQF+yih37k4poB03oA2gIR0CaOEG/vfCRdX2UKGgGR0Bm+wuscQyzaAdN6ANoCEdAmjnUlzEJjXV9lChoBkdAYkpBGhEjPmgHTegDaAhHQJo7sdU83dd1fZQoaAZHQGC5ZmI0qH5oB03oA2gIR0CaPFhybQTmdX2UKGgGR0Bh/J8c+7lJaAdN6ANoCEdAmkLjgl4TsnV9lChoBkdAZwAzi0fHP2gHTegDaAhHQJpEcdxQzk91fZQoaAZHQHBnysKb8WNoB02NAWgIR0CaRyoDPnjidX2UKGgGR0BlS+jqOcUeaAdN6ANoCEdAmkdgcghbGHV9lChoBkdAZFqll9SdfGgHTegDaAhHQJpMkkB0ZFZ1fZQoaAZHQGdmQ9zOopBoB03oA2gIR0CaVbIBBAv+dX2UKGgGR0BhqLiKiwjdaAdN6ANoCEdAmllnk1dgOXV9lChoBkdAYMDOerdWQ2gHTegDaAhHQJpaLBDXvph1fZQoaAZHQG747x/d69loB024A2gIR0CaWt8gIQe4dX2UKGgGR0BvJXOhTOxCaAdNdgJoCEdAmnQ7o4dZJXV9lChoBkdAZsM/8l5WzWgHTegDaAhHQJp8J72L5yl1fZQoaAZHQF8nzZYgaFVoB03oA2gIR0CafZGc4HX3dX2UKGgGR0BwZmHoHLRsaAdNugNoCEdAmn8L6P8ye3V9lChoBkdAZILOLzf78GgHTegDaAhHQJqHfykKu0V1fZQoaAZHQGdy1EmY0EZoB03oA2gIR0Caiaa8Yht+dX2UKGgGR0Bj4NERaouPaAdN6ANoCEdAmowid8RcvHV9lChoBkdAZaCGgSOBD2gHTegDaAhHQJqUmgxrSE11fZQoaAZHQGS7jdYW+GpoB03oA2gIR0CallfsNUfgdX2UKGgGR0BhnSrLhaTwaAdN6ANoCEdAmpkt96Tnq3V9lChoBkdAYt1oOhCdBmgHTegDaAhHQJqZdeVs1sN1fZQoaAZHQFsZ1wo9cKRoB03oA2gIR0Can4os7MgVdX2UKGgGR0Bidp3iaRZEaAdN6ANoCEdAmqpewcHW0HV9lChoBkdAYN8LORkmQmgHTegDaAhHQJqtcPpY9xJ1fZQoaAZHQF27Z3cHnlpoB03oA2gIR0Carie/pMYedX2UKGgGR0BlGtn003wTaAdN6ANoCEdAmq69nGsFMnV9lChoBkdAYX6iKR+z+mgHTegDaAhHQJq2A+V1Oj91fZQoaAZHQHBTIQSSNfhoB03TAWgIR0Cay8m/FirldX2UKGgGR0BhZrvd/J/5aAdN6ANoCEdAmtMi++M6zXV9lChoBkdAYZlIyTINmWgHTegDaAhHQJrUj1pTMq11fZQoaAZHQGGovVVghKVoB03oA2gIR0Ca1gdLg4wRdX2UKGgGR0BjDcp7TlT4aAdN6ANoCEdAmt5AUg0TDnV9lChoBkdAZwAZ6Uqx1WgHTegDaAhHQJrf/Hfdhy91fZQoaAZHQF7g3cHnln1oB03oA2gIR0Ca4eDm8ujAdX2UKGgGR0Btg/uLJjlQaAdNugFoCEdAmunOPJaJRHV9lChoBkdAZErIf8uSOmgHTegDaAhHQJrq5dyDIzZ1fZQoaAZHQFz4k6tDD0loB03oA2gIR0Ca7SiwSrYHdX2UKGgGR0Bi5UXpGFzuaAdN6ANoCEdAmvCnlCCz1XV9lChoBkdAYu075Ec81WgHTegDaAhHQJr3Bx//ech1fZQoaAZHQG1xhpQDV6NoB03ZA2gIR0CbAJJfICEIdX2UKGgGR0Bh4qlN1yNoaAdN6ANoCEdAmwR9eMQ2/HV9lChoBkdAX9NR8+iaiWgHTegDaAhHQJsFKb4Ju2t1fZQoaAZHQF9LAskIHC5oB03oA2gIR0CbBbeKsMiKdX2UKGgGR0BhlXJ9y926aAdN6ANoCEdAmwxI/Vy3kXV9lChoBkdAcT5lpGnXNGgHTYoBaAhHQJsjmDkELYx1fZQoaAZHQGLekpy6tkpoB03oA2gIR0CbJ/Tq0MPSdX2UKGgGR0Bk2iILw4KhaAdN6ANoCEdAmykV5fMOgHV9lChoBkdAZBWEW69TP2gHTegDaAhHQJsqUofCAMF1fZQoaAZHQG+TZGBnSORoB02AA2gIR0CbLIF6zE75dX2UKGgGR0BwR4bbUPQOaAdNqAFoCEdAmyzQu/UONHV9lChoBkdAYDYukk8ifWgHTegDaAhHQJswa4XoC+11fZQoaAZHQGLS9+gDifhoB03oA2gIR0CbM0qSowVTdX2UKGgGR0BjMoeV9nbqaAdN6ANoCEdAmzl33L3bmHV9lChoBkdAYhqro4dZJWgHTegDaAhHQJs6QaXKKYR1fZQoaAZHQGv12/JvHcVoB01bAmgIR0CbOpf7aZhKdX2UKGgGR0BwQzor4FibaAdN6gFoCEdAmzqn1e0G/3V9lChoBkdAYlhvTgEU02gHTegDaAhHQJs7mm3vx6R1fZQoaAZHQHC8ro8p1A9oB03XAWgIR0CbPGpoK2KEdX2UKGgGR0Bir1CeEqUeaAdN6ANoCEdAmz24jfNzKnV9lChoBkdAcGEwGGEf1mgHTdQBaAhHQJtAB6LOzIF1fZQoaAZHQGuxNhVlwtJoB03fAWgIR0CbQY5tFa0QdX2UKGgGR0BCotY0VJtjaAdL7mgIR0CbRdVvddmhdX2UKGgGR0BG7xPfsNUgaAdL4mgIR0CbRlMyJsO5dX2UKGgGR0BuFKmTC+DfaAdNgQJoCEdAm0xtat9x63V9lChoBkdAY7WzLOiWV2gHTegDaAhHQJtP2GJvYOF1fZQoaAZHQGINmfXf645oB03oA2gIR0CbUGNR3u/ldX2UKGgGR0Bw70Qrc0tRaAdNkwJoCEdAm1DP5tWMj3V9lChoBkdAIW6C+UQkHGgHTRcBaAhHQJtSpgogFHJ1fZQoaAZHQHFIRESdvsJoB02HAWgIR0CbVvCoCMgmdX2UKGgGR0BwPuB6KLsKaAdN5gFoCEdAm1fMFMZgonVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |