S1T4L commited on
Commit
bc7a93c
1 Parent(s): 7f85325

Upload 19 files

Browse files

Zero123++ model upload

README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ datasets:
4
+ - allenai/objaverse
5
+ library_name: diffusers
6
+ pipeline_tag: image-to-image
7
+ tags:
8
+ - art
9
+ ---
10
+
11
+ Recommended version of `diffusers` is `0.20.2` with `torch` `2`.
12
+
13
+ Usage Example:
14
+ ```python
15
+ import torch
16
+ import requests
17
+ from PIL import Image
18
+ from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
19
+
20
+ # Load the pipeline
21
+ pipeline = DiffusionPipeline.from_pretrained(
22
+ "sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline",
23
+ torch_dtype=torch.float16
24
+ )
25
+ # Feel free to tune the scheduler
26
+ pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
27
+ pipeline.scheduler.config, timestep_spacing='trailing'
28
+ )
29
+ pipeline.to('cuda:0')
30
+ # Run the pipeline
31
+ cond = Image.open(requests.get("https://d.skis.ltd/nrp/sample-data/lysol.png", stream=True).raw)
32
+ result = pipeline(cond).images[0]
33
+ result.show()
34
+ result.save("output.png")
35
+ ```
feature_extractor_clip/preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 224,
4
+ "width": 224
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "shortest_edge": 224
26
+ }
27
+ }
feature_extractor_vae/preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 512,
4
+ "width": 512
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": 0.5,
12
+ "image_processor_type": "CLIPImageProcessor",
13
+ "image_std": 0.8,
14
+ "resample": 2,
15
+ "rescale_factor": 0.00392156862745098,
16
+ "size": {
17
+ "shortest_edge": 512
18
+ }
19
+ }
inference.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Optional
2
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
3
+ from diffusers.schedulers import KarrasDiffusionSchedulers
4
+
5
+ import numpy
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.utils.checkpoint
9
+ import torch.distributed
10
+ import transformers
11
+ from collections import OrderedDict
12
+ from PIL import Image
13
+ from torchvision import transforms
14
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
15
+
16
+ import diffusers
17
+ from diffusers import (
18
+ AutoencoderKL,
19
+ DDPMScheduler,
20
+ DiffusionPipeline,
21
+ EulerAncestralDiscreteScheduler,
22
+ UNet2DConditionModel,
23
+ ImagePipelineOutput
24
+ )
25
+ from diffusers.image_processor import VaeImageProcessor
26
+ from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
27
+ from diffusers.utils.import_utils import is_xformers_available
28
+
29
+
30
+ def to_rgb_image(maybe_rgba: Image.Image):
31
+ if maybe_rgba.mode == 'RGB':
32
+ return maybe_rgba
33
+ elif maybe_rgba.mode == 'RGBA':
34
+ rgba = maybe_rgba
35
+ img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
36
+ img = Image.fromarray(img, 'RGB')
37
+ img.paste(rgba, mask=rgba.getchannel('A'))
38
+ return img
39
+ else:
40
+ raise ValueError("Unsupported image type.", maybe_rgba.mode)
41
+
42
+
43
+ class ReferenceOnlyAttnProc(torch.nn.Module):
44
+ def __init__(
45
+ self,
46
+ chained_proc,
47
+ enabled=False,
48
+ name=None
49
+ ) -> None:
50
+ super().__init__()
51
+ self.enabled = enabled
52
+ self.chained_proc = chained_proc
53
+ self.name = name
54
+
55
+ def __call__(
56
+ self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
57
+ mode="w", ref_dict: dict = None, is_cfg_guidance = False
58
+ ) -> Any:
59
+ if encoder_hidden_states is None:
60
+ encoder_hidden_states = hidden_states
61
+ if self.enabled and is_cfg_guidance:
62
+ res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
63
+ hidden_states = hidden_states[1:]
64
+ encoder_hidden_states = encoder_hidden_states[1:]
65
+ if self.enabled:
66
+ if mode == 'w':
67
+ ref_dict[self.name] = encoder_hidden_states
68
+ elif mode == 'r':
69
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
70
+ elif mode == 'm':
71
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
72
+ else:
73
+ assert False, mode
74
+ res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
75
+ if self.enabled and is_cfg_guidance:
76
+ res = torch.cat([res0, res])
77
+ return res
78
+
79
+
80
+ class RefOnlyNoisedUNet(torch.nn.Module):
81
+ def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
82
+ super().__init__()
83
+ self.unet = unet
84
+ self.train_sched = train_sched
85
+ self.val_sched = val_sched
86
+
87
+ unet_lora_attn_procs = dict()
88
+ for name, _ in unet.attn_processors.items():
89
+ if torch.__version__ >= '2.0':
90
+ default_attn_proc = AttnProcessor2_0()
91
+ elif is_xformers_available():
92
+ default_attn_proc = XFormersAttnProcessor()
93
+ else:
94
+ default_attn_proc = AttnProcessor()
95
+ unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
96
+ default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
97
+ )
98
+ unet.set_attn_processor(unet_lora_attn_procs)
99
+
100
+ def __getattr__(self, name: str):
101
+ try:
102
+ return super().__getattr__(name)
103
+ except AttributeError:
104
+ return getattr(self.unet, name)
105
+
106
+ def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
107
+ if is_cfg_guidance:
108
+ encoder_hidden_states = encoder_hidden_states[1:]
109
+ class_labels = class_labels[1:]
110
+ self.unet(
111
+ noisy_cond_lat, timestep,
112
+ encoder_hidden_states=encoder_hidden_states,
113
+ class_labels=class_labels,
114
+ cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
115
+ **kwargs
116
+ )
117
+
118
+ def forward(
119
+ self, sample, timestep, encoder_hidden_states, class_labels=None,
120
+ *args, cross_attention_kwargs,
121
+ down_block_res_samples=None, mid_block_res_sample=None,
122
+ **kwargs
123
+ ):
124
+ cond_lat = cross_attention_kwargs['cond_lat']
125
+ is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
126
+ noise = torch.randn_like(cond_lat)
127
+ if self.training:
128
+ noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
129
+ noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
130
+ else:
131
+ noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
132
+ noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
133
+ ref_dict = {}
134
+ self.forward_cond(
135
+ noisy_cond_lat, timestep,
136
+ encoder_hidden_states, class_labels,
137
+ ref_dict, is_cfg_guidance, **kwargs
138
+ )
139
+ weight_dtype = self.unet.dtype
140
+ return self.unet(
141
+ sample, timestep,
142
+ encoder_hidden_states, *args,
143
+ class_labels=class_labels,
144
+ cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
145
+ down_block_additional_residuals=[
146
+ sample.to(dtype=weight_dtype) for sample in down_block_res_samples
147
+ ] if down_block_res_samples is not None else None,
148
+ mid_block_additional_residual=(
149
+ mid_block_res_sample.to(dtype=weight_dtype)
150
+ if mid_block_res_sample is not None else None
151
+ ),
152
+ **kwargs
153
+ )
154
+
155
+
156
+ def scale_latents(latents):
157
+ latents = (latents - 0.22) * 0.75
158
+ return latents
159
+
160
+
161
+ def unscale_latents(latents):
162
+ latents = latents / 0.75 + 0.22
163
+ return latents
164
+
165
+
166
+ def scale_image(image):
167
+ image = image * 0.5 / 0.8
168
+ return image
169
+
170
+
171
+ def unscale_image(image):
172
+ image = image / 0.5 * 0.8
173
+ return image
174
+
175
+
176
+ class DepthControlUNet(torch.nn.Module):
177
+ def __init__(self, unet: RefOnlyNoisedUNet) -> None:
178
+ super().__init__()
179
+ self.unet = unet
180
+ self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
181
+ DefaultAttnProc = AttnProcessor2_0
182
+ if is_xformers_available():
183
+ DefaultAttnProc = XFormersAttnProcessor
184
+ self.controlnet.set_attn_processor(DefaultAttnProc())
185
+
186
+ def __getattr__(self, name: str):
187
+ try:
188
+ return super().__getattr__(name)
189
+ except AttributeError:
190
+ return getattr(self.unet, name)
191
+
192
+ def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
193
+ cross_attention_kwargs = dict(cross_attention_kwargs)
194
+ control_depth = cross_attention_kwargs.pop('control_depth')
195
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
196
+ sample,
197
+ timestep,
198
+ encoder_hidden_states=encoder_hidden_states,
199
+ controlnet_cond=control_depth,
200
+ return_dict=False,
201
+ )
202
+ return self.unet(
203
+ sample,
204
+ timestep,
205
+ encoder_hidden_states=encoder_hidden_states,
206
+ down_block_res_samples=down_block_res_samples,
207
+ mid_block_res_sample=mid_block_res_sample,
208
+ cross_attention_kwargs=cross_attention_kwargs
209
+ )
210
+
211
+
212
+ class ModuleListDict(torch.nn.Module):
213
+ def __init__(self, procs: dict) -> None:
214
+ super().__init__()
215
+ self.keys = sorted(procs.keys())
216
+ self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
217
+
218
+ def __getitem__(self, key):
219
+ return self.values[self.keys.index(key)]
220
+
221
+
222
+ class SuperNet(torch.nn.Module):
223
+ def __init__(self, state_dict: Dict[str, torch.Tensor]):
224
+ super().__init__()
225
+ state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
226
+ self.layers = torch.nn.ModuleList(state_dict.values())
227
+ self.mapping = dict(enumerate(state_dict.keys()))
228
+ self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
229
+
230
+ # .processor for unet, .self_attn for text encoder
231
+ self.split_keys = [".processor", ".self_attn"]
232
+
233
+ # we add a hook to state_dict() and load_state_dict() so that the
234
+ # naming fits with `unet.attn_processors`
235
+ def map_to(module, state_dict, *args, **kwargs):
236
+ new_state_dict = {}
237
+ for key, value in state_dict.items():
238
+ num = int(key.split(".")[1]) # 0 is always "layers"
239
+ new_key = key.replace(f"layers.{num}", module.mapping[num])
240
+ new_state_dict[new_key] = value
241
+
242
+ return new_state_dict
243
+
244
+ def remap_key(key, state_dict):
245
+ for k in self.split_keys:
246
+ if k in key:
247
+ return key.split(k)[0] + k
248
+ return key.split('.')[0]
249
+
250
+ def map_from(module, state_dict, *args, **kwargs):
251
+ all_keys = list(state_dict.keys())
252
+ for key in all_keys:
253
+ replace_key = remap_key(key, state_dict)
254
+ new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
255
+ state_dict[new_key] = state_dict[key]
256
+ del state_dict[key]
257
+
258
+ self._register_state_dict_hook(map_to)
259
+ self._register_load_state_dict_pre_hook(map_from, with_module=True)
260
+
261
+
262
+ class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
263
+ tokenizer: transformers.CLIPTokenizer
264
+ text_encoder: transformers.CLIPTextModel
265
+ vision_encoder: transformers.CLIPVisionModelWithProjection
266
+
267
+ feature_extractor_clip: transformers.CLIPImageProcessor
268
+ unet: UNet2DConditionModel
269
+ scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
270
+
271
+ vae: AutoencoderKL
272
+ ramping: nn.Linear
273
+
274
+ feature_extractor_vae: transformers.CLIPImageProcessor
275
+
276
+ depth_transforms_multi = transforms.Compose([
277
+ transforms.ToTensor(),
278
+ transforms.Normalize([0.5], [0.5])
279
+ ])
280
+
281
+ def __init__(
282
+ self,
283
+ vae: AutoencoderKL,
284
+ text_encoder: CLIPTextModel,
285
+ tokenizer: CLIPTokenizer,
286
+ unet: UNet2DConditionModel,
287
+ scheduler: KarrasDiffusionSchedulers,
288
+ vision_encoder: transformers.CLIPVisionModelWithProjection,
289
+ feature_extractor_clip: CLIPImageProcessor,
290
+ feature_extractor_vae: CLIPImageProcessor,
291
+ ramping_coefficients: Optional[list] = None,
292
+ safety_checker=None,
293
+ ):
294
+ DiffusionPipeline.__init__(self)
295
+
296
+ self.register_modules(
297
+ vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
298
+ unet=unet, scheduler=scheduler, safety_checker=None,
299
+ vision_encoder=vision_encoder,
300
+ feature_extractor_clip=feature_extractor_clip,
301
+ feature_extractor_vae=feature_extractor_vae
302
+ )
303
+ self.register_to_config(ramping_coefficients=ramping_coefficients)
304
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
305
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
306
+
307
+ def prepare(self):
308
+ train_sched = DDPMScheduler.from_config(self.scheduler.config)
309
+ if isinstance(self.unet, UNet2DConditionModel):
310
+ self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
311
+
312
+ def add_controlnet(self):
313
+ self.unet = DepthControlUNet(self.unet)
314
+ return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
315
+
316
+ def encode_condition_image(self, image: torch.Tensor):
317
+ image = self.vae.encode(image).latent_dist.sample()
318
+ return image
319
+
320
+ @torch.no_grad()
321
+ def __call__(
322
+ self,
323
+ image: Image.Image = None,
324
+ prompt = "",
325
+ *args,
326
+ num_images_per_prompt: Optional[int] = 1,
327
+ guidance_scale=4.0,
328
+ depth_image: Image.Image = None,
329
+ output_type: Optional[str] = "pil",
330
+ width=640,
331
+ height=960,
332
+ num_inference_steps=28,
333
+ return_dict=True,
334
+ **kwargs
335
+ ):
336
+ self.prepare()
337
+ if image is None:
338
+ raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
339
+ assert not isinstance(image, torch.Tensor)
340
+ image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
341
+ image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
342
+ if depth_image is not None and hasattr(self.unet, "controlnet"):
343
+ depth_image = self.depth_transforms_multi(depth_image).to(
344
+ device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
345
+ )
346
+ image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
347
+ image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
348
+ cond_lat = self.encode_condition_image(image)
349
+ if guidance_scale > 1:
350
+ negative_lat = self.encode_condition_image(torch.zeros_like(image))
351
+ cond_lat = torch.cat([negative_lat, cond_lat])
352
+ encoded = self.vision_encoder(image_2, output_hidden_states=False)
353
+ global_embeds = encoded.image_embeds
354
+ global_embeds = global_embeds.unsqueeze(-2)
355
+
356
+ encoder_hidden_states = self._encode_prompt(
357
+ prompt,
358
+ self.device,
359
+ num_images_per_prompt,
360
+ False
361
+ )
362
+ ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
363
+ encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
364
+ cak = dict(cond_lat=cond_lat)
365
+ if hasattr(self.unet, "controlnet"):
366
+ cak['control_depth'] = depth_image
367
+ latents: torch.Tensor = super().__call__(
368
+ None,
369
+ *args,
370
+ cross_attention_kwargs=cak,
371
+ guidance_scale=guidance_scale,
372
+ num_images_per_prompt=num_images_per_prompt,
373
+ prompt_embeds=encoder_hidden_states,
374
+ num_inference_steps=num_inference_steps,
375
+ output_type='latent',
376
+ width=width,
377
+ height=height,
378
+ **kwargs
379
+ ).images
380
+ latents = unscale_latents(latents)
381
+ if not output_type == "latent":
382
+ image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
383
+ else:
384
+ image = latents
385
+
386
+ image = self.image_processor.postprocess(image, output_type=output_type)
387
+ if not return_dict:
388
+ return (image,)
389
+
390
+ return ImagePipelineOutput(images=image)
model_index.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "Zero123PlusPipeline",
3
+ "_diffusers_version": "0.17.1",
4
+ "feature_extractor_clip": [
5
+ "transformers",
6
+ "CLIPImageProcessor"
7
+ ],
8
+ "feature_extractor_vae": [
9
+ "transformers",
10
+ "CLIPImageProcessor"
11
+ ],
12
+ "ramping_coefficients": [
13
+ 0.0,
14
+ 0.2060057818889618,
15
+ 0.18684479594230652,
16
+ 0.24342191219329834,
17
+ 0.18507817387580872,
18
+ 0.1703828126192093,
19
+ 0.15628913044929504,
20
+ 0.14174538850784302,
21
+ 0.13617539405822754,
22
+ 0.13569170236587524,
23
+ 0.1269884556531906,
24
+ 0.1200924888253212,
25
+ 0.12816639244556427,
26
+ 0.13058121502399445,
27
+ 0.14201879501342773,
28
+ 0.15004529058933258,
29
+ 0.1620427817106247,
30
+ 0.17207716405391693,
31
+ 0.18534132838249207,
32
+ 0.20002241432666779,
33
+ 0.21657466888427734,
34
+ 0.22996725142002106,
35
+ 0.24613411724567413,
36
+ 0.25141021609306335,
37
+ 0.26613450050354004,
38
+ 0.271847128868103,
39
+ 0.2850190997123718,
40
+ 0.285749226808548,
41
+ 0.2813953757286072,
42
+ 0.29509517550468445,
43
+ 0.30109965801239014,
44
+ 0.31370124220848083,
45
+ 0.3134534955024719,
46
+ 0.3108579218387604,
47
+ 0.32147032022476196,
48
+ 0.33548328280448914,
49
+ 0.3301997184753418,
50
+ 0.3254660964012146,
51
+ 0.3514464199542999,
52
+ 0.35993096232414246,
53
+ 0.3510829508304596,
54
+ 0.37661612033843994,
55
+ 0.3913513123989105,
56
+ 0.42122599482536316,
57
+ 0.3954688012599945,
58
+ 0.4260983467102051,
59
+ 0.479139506816864,
60
+ 0.4588979482650757,
61
+ 0.4873477816581726,
62
+ 0.5095643401145935,
63
+ 0.5133851170539856,
64
+ 0.520708441734314,
65
+ 0.5363377928733826,
66
+ 0.5661528706550598,
67
+ 0.5859065651893616,
68
+ 0.6207258701324463,
69
+ 0.6560986638069153,
70
+ 0.6379964351654053,
71
+ 0.6777164340019226,
72
+ 0.6589891910552979,
73
+ 0.7574057579040527,
74
+ 0.7446827292442322,
75
+ 0.7695522308349609,
76
+ 0.8163619041442871,
77
+ 0.9502472281455994,
78
+ 0.9918442368507385,
79
+ 0.9398387670516968,
80
+ 1.005432367324829,
81
+ 0.9295969605445862,
82
+ 0.9899859428405762,
83
+ 1.044832706451416,
84
+ 1.0427014827728271,
85
+ 1.0829696655273438,
86
+ 1.0062562227249146,
87
+ 1.0966323614120483,
88
+ 1.0550328493118286,
89
+ 1.2108079195022583
90
+ ],
91
+ "safety_checker": [
92
+ null,
93
+ null
94
+ ],
95
+ "scheduler": [
96
+ "diffusers",
97
+ "EulerAncestralDiscreteScheduler"
98
+ ],
99
+ "text_encoder": [
100
+ "transformers",
101
+ "CLIPTextModel"
102
+ ],
103
+ "tokenizer": [
104
+ "transformers",
105
+ "CLIPTokenizer"
106
+ ],
107
+ "unet": [
108
+ "diffusers",
109
+ "UNet2DConditionModel"
110
+ ],
111
+ "vae": [
112
+ "diffusers",
113
+ "AutoencoderKL"
114
+ ],
115
+ "vision_encoder": [
116
+ "transformers",
117
+ "CLIPVisionModelWithProjection"
118
+ ]
119
+ }
scheduler/scheduler_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "EulerAncestralDiscreteScheduler",
3
+ "_diffusers_version": "0.17.1",
4
+ "beta_end": 0.012,
5
+ "beta_schedule": "linear",
6
+ "beta_start": 0.00085,
7
+ "clip_sample": false,
8
+ "num_train_timesteps": 1000,
9
+ "prediction_type": "v_prediction",
10
+ "set_alpha_to_one": false,
11
+ "skip_prk_steps": true,
12
+ "steps_offset": 1,
13
+ "trained_betas": null
14
+ }
text_encoder/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "D:\\.cache\\huggingface\\hub\\models--stabilityai--stable-diffusion-2\\snapshots\\1e128c8891e52218b74cde8f26dbfc701cb99d79\\text_encoder",
3
+ "architectures": [
4
+ "CLIPTextModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "dropout": 0.0,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_size": 1024,
12
+ "initializer_factor": 1.0,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 77,
17
+ "model_type": "clip_text_model",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 23,
20
+ "pad_token_id": 1,
21
+ "projection_dim": 512,
22
+ "torch_dtype": "float16",
23
+ "transformers_version": "4.29.0",
24
+ "vocab_size": 49408
25
+ }
text_encoder/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2a06cf32cf585d03b55fef302142a5321b761ec440113925f64f4ceaffc7730
3
+ size 680904225
tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "!",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "do_lower_case": true,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "errors": "replace",
22
+ "model_max_length": 77,
23
+ "pad_token": "<|endoftext|>",
24
+ "tokenizer_class": "CLIPTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<|endoftext|>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
unet/config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DConditionModel",
3
+ "_diffusers_version": "0.17.1",
4
+ "_name_or_path": "D:\\.cache\\huggingface\\hub\\models--stabilityai--stable-diffusion-2\\snapshots\\1e128c8891e52218b74cde8f26dbfc701cb99d79\\unet",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": null,
7
+ "addition_embed_type_num_heads": 64,
8
+ "attention_head_dim": [
9
+ 5,
10
+ 10,
11
+ 20,
12
+ 20
13
+ ],
14
+ "block_out_channels": [
15
+ 320,
16
+ 640,
17
+ 1280,
18
+ 1280
19
+ ],
20
+ "center_input_sample": false,
21
+ "class_embed_type": null,
22
+ "class_embeddings_concat": false,
23
+ "conv_in_kernel": 3,
24
+ "conv_out_kernel": 3,
25
+ "cross_attention_dim": 1024,
26
+ "cross_attention_norm": null,
27
+ "down_block_types": [
28
+ "CrossAttnDownBlock2D",
29
+ "CrossAttnDownBlock2D",
30
+ "CrossAttnDownBlock2D",
31
+ "DownBlock2D"
32
+ ],
33
+ "downsample_padding": 1,
34
+ "dual_cross_attention": false,
35
+ "encoder_hid_dim": null,
36
+ "encoder_hid_dim_type": null,
37
+ "flip_sin_to_cos": true,
38
+ "freq_shift": 0,
39
+ "in_channels": 4,
40
+ "layers_per_block": 2,
41
+ "mid_block_only_cross_attention": null,
42
+ "mid_block_scale_factor": 1,
43
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
44
+ "norm_eps": 1e-05,
45
+ "norm_num_groups": 32,
46
+ "num_class_embeds": null,
47
+ "only_cross_attention": false,
48
+ "out_channels": 4,
49
+ "projection_class_embeddings_input_dim": null,
50
+ "resnet_out_scale_factor": 1.0,
51
+ "resnet_skip_time_act": false,
52
+ "resnet_time_scale_shift": "default",
53
+ "sample_size": 96,
54
+ "time_cond_proj_dim": null,
55
+ "time_embedding_act_fn": null,
56
+ "time_embedding_dim": null,
57
+ "time_embedding_type": "positional",
58
+ "timestep_post_act": null,
59
+ "up_block_types": [
60
+ "UpBlock2D",
61
+ "CrossAttnUpBlock2D",
62
+ "CrossAttnUpBlock2D",
63
+ "CrossAttnUpBlock2D"
64
+ ],
65
+ "upcast_attention": false,
66
+ "use_linear_projection": true
67
+ }
unet/diffusion_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d78d78421d1feb6871d13e13e86ed8099628648d7d9c51ffca9015b7d5fa3c4
3
+ size 1732056502
vae/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.17.1",
4
+ "_name_or_path": "stabilityai/sd-vae-ft-mse",
5
+ "act_fn": "silu",
6
+ "block_out_channels": [
7
+ 128,
8
+ 256,
9
+ 512,
10
+ 512
11
+ ],
12
+ "down_block_types": [
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "DownEncoderBlock2D",
16
+ "DownEncoderBlock2D"
17
+ ],
18
+ "in_channels": 3,
19
+ "latent_channels": 4,
20
+ "layers_per_block": 2,
21
+ "norm_num_groups": 32,
22
+ "out_channels": 3,
23
+ "sample_size": 256,
24
+ "scaling_factor": 0.18215,
25
+ "up_block_types": [
26
+ "UpDecoderBlock2D",
27
+ "UpDecoderBlock2D",
28
+ "UpDecoderBlock2D",
29
+ "UpDecoderBlock2D"
30
+ ]
31
+ }
vae/diffusion_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cfdd672df17db3283633acb3721afc7735927293c2d3bd2bf64939a6dcd950e
3
+ size 167407857
vision_encoder/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "stabilityai/stable-diffusion-2-1-unclip",
3
+ "architectures": [
4
+ "CLIPVisionModelWithProjection"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "dropout": 0.0,
8
+ "hidden_act": "gelu",
9
+ "hidden_size": 1280,
10
+ "image_size": 224,
11
+ "initializer_factor": 1.0,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5120,
14
+ "layer_norm_eps": 1e-05,
15
+ "model_type": "clip_vision_model",
16
+ "num_attention_heads": 16,
17
+ "num_channels": 3,
18
+ "num_hidden_layers": 32,
19
+ "patch_size": 14,
20
+ "projection_dim": 1024,
21
+ "torch_dtype": "float16",
22
+ "transformers_version": "4.29.0"
23
+ }
vision_encoder/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c626d61a7660d2f86a1f0b5f74f513f93789a99469f1af641cc1f77810427f7
3
+ size 1264335601