|
import os |
|
from typing import List |
|
|
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.pipelines.controlnet import MultiControlNetModel |
|
from PIL import Image |
|
from safetensors import safe_open |
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection |
|
|
|
from .utils import is_torch2_available |
|
|
|
if is_torch2_available(): |
|
from .attention_processor import ( |
|
AttnProcessor2_0 as AttnProcessor, |
|
) |
|
from .attention_processor import ( |
|
CNAttnProcessor2_0 as CNAttnProcessor, |
|
) |
|
from .attention_processor import ( |
|
IPAttnProcessor2_0 as IPAttnProcessor, |
|
) |
|
from .attention_processor import IPAttnProcessor2_0_Lora |
|
|
|
|
|
from .resampler import Resampler |
|
from diffusers.models.lora import LoRALinearLayer |
|
|
|
|
|
class ImageProjModel(torch.nn.Module): |
|
"""Projection Model""" |
|
|
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): |
|
super().__init__() |
|
|
|
self.cross_attention_dim = cross_attention_dim |
|
self.clip_extra_context_tokens = clip_extra_context_tokens |
|
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) |
|
self.norm = torch.nn.LayerNorm(cross_attention_dim) |
|
|
|
def forward(self, image_embeds): |
|
embeds = image_embeds |
|
clip_extra_context_tokens = self.proj(embeds).reshape( |
|
-1, self.clip_extra_context_tokens, self.cross_attention_dim |
|
) |
|
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class MLPProjModel(torch.nn.Module): |
|
"""SD model with image prompt""" |
|
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): |
|
super().__init__() |
|
|
|
self.proj = torch.nn.Sequential( |
|
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), |
|
torch.nn.GELU(), |
|
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), |
|
torch.nn.LayerNorm(cross_attention_dim) |
|
) |
|
|
|
def forward(self, image_embeds): |
|
clip_extra_context_tokens = self.proj(image_embeds) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class IPAdapter: |
|
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4): |
|
self.device = device |
|
self.image_encoder_path = image_encoder_path |
|
self.ip_ckpt = ip_ckpt |
|
self.num_tokens = num_tokens |
|
|
|
self.pipe = sd_pipe.to(self.device) |
|
self.set_ip_adapter() |
|
|
|
|
|
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( |
|
self.device, dtype=torch.float16 |
|
) |
|
self.clip_image_processor = CLIPImageProcessor() |
|
|
|
self.image_proj_model = self.init_proj() |
|
|
|
self.load_ip_adapter() |
|
|
|
def init_proj(self): |
|
image_proj_model = ImageProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.projection_dim, |
|
clip_extra_context_tokens=self.num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
def set_ip_adapter(self): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[name] = AttnProcessor() |
|
else: |
|
attn_procs[name] = IPAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=self.num_tokens, |
|
).to(self.device, dtype=torch.float16) |
|
unet.set_attn_processor(attn_procs) |
|
if hasattr(self.pipe, "controlnet"): |
|
if isinstance(self.pipe.controlnet, MultiControlNetModel): |
|
for controlnet in self.pipe.controlnet.nets: |
|
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
else: |
|
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
|
|
def load_ip_adapter(self): |
|
if self.ip_ckpt is not None: |
|
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(self.ip_ckpt, map_location="cpu") |
|
self.image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) |
|
ip_layers.load_state_dict(state_dict["ip_adapter"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds |
|
else: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def get_image_embeds_train(self, pil_image=None, clip_image_embeds=None): |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float32)).image_embeds |
|
else: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float32) |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds)) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
|
|
def set_scale(self, scale): |
|
for attn_processor in self.pipe.unet.attn_processors.values(): |
|
if isinstance(attn_processor, IPAttnProcessor): |
|
attn_processor.scale = scale |
|
|
|
def generate( |
|
self, |
|
pil_image=None, |
|
clip_image_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
if pil_image is not None: |
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
else: |
|
num_prompts = clip_image_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( |
|
pil_image=pil_image, clip_image_embeds=clip_image_embeds |
|
) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
class IPAdapterXL(IPAdapter): |
|
"""SDXL""" |
|
|
|
def generate_test( |
|
self, |
|
pil_image, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return images |
|
|
|
|
|
def generate( |
|
self, |
|
pil_image, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return images |
|
|
|
|
|
class IPAdapterPlus(IPAdapter): |
|
"""IP-Adapter with fine-grained features""" |
|
|
|
def generate( |
|
self, |
|
pil_image=None, |
|
clip_image_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
if pil_image is not None: |
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
else: |
|
num_prompts = clip_image_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( |
|
pil_image=pil_image, clip_image=clip_image_embeds |
|
) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
def init_proj(self): |
|
image_proj_model = Resampler( |
|
dim=self.pipe.unet.config.cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=12, |
|
num_queries=self.num_tokens, |
|
embedding_dim=self.image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None): |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
else: |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
|
|
|
|
|
|
class IPAdapterPlus_Lora(IPAdapter): |
|
"""IP-Adapter with fine-grained features""" |
|
|
|
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32): |
|
self.rank = rank |
|
super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens) |
|
|
|
|
|
def generate( |
|
self, |
|
pil_image=None, |
|
clip_image_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
if pil_image is not None: |
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
else: |
|
num_prompts = clip_image_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( |
|
pil_image=pil_image, clip_image=clip_image_embeds |
|
) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
def init_proj(self): |
|
image_proj_model = Resampler( |
|
dim=self.pipe.unet.config.cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=12, |
|
num_queries=self.num_tokens, |
|
embedding_dim=self.image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None): |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
else: |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def set_ip_adapter(self): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
unet_sd = unet.state_dict() |
|
|
|
for attn_processor_name, attn_processor in unet.attn_processors.items(): |
|
|
|
cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if attn_processor_name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif attn_processor_name.startswith("up_blocks"): |
|
block_id = int(attn_processor_name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif attn_processor_name.startswith("down_blocks"): |
|
block_id = int(attn_processor_name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[attn_processor_name] = AttnProcessor() |
|
else: |
|
layer_name = attn_processor_name.split(".processor")[0] |
|
weights = { |
|
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"], |
|
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"], |
|
} |
|
attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens) |
|
attn_procs[attn_processor_name].load_state_dict(weights,strict=False) |
|
|
|
attn_module = unet |
|
for n in attn_processor_name.split(".")[:-1]: |
|
attn_module = getattr(attn_module, n) |
|
|
|
attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank) |
|
attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank) |
|
attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank) |
|
attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank) |
|
|
|
unet.set_attn_processor(attn_procs) |
|
if hasattr(self.pipe, "controlnet"): |
|
if isinstance(self.pipe.controlnet, MultiControlNetModel): |
|
for controlnet in self.pipe.controlnet.nets: |
|
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
else: |
|
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
|
|
|
|
|
|
class IPAdapterPlus_Lora_up(IPAdapter): |
|
"""IP-Adapter with fine-grained features""" |
|
|
|
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32): |
|
self.rank = rank |
|
super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens) |
|
|
|
|
|
def generate( |
|
self, |
|
pil_image=None, |
|
clip_image_embeds=None, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
if pil_image is not None: |
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
else: |
|
num_prompts = clip_image_embeds.size(0) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds( |
|
pil_image=pil_image, clip_image=clip_image_embeds |
|
) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( |
|
prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|
|
|
|
def init_proj(self): |
|
image_proj_model = Resampler( |
|
dim=self.pipe.unet.config.cross_attention_dim, |
|
depth=4, |
|
dim_head=64, |
|
heads=12, |
|
num_queries=self.num_tokens, |
|
embedding_dim=self.image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None): |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
else: |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def set_ip_adapter(self): |
|
unet = self.pipe.unet |
|
attn_procs = {} |
|
unet_sd = unet.state_dict() |
|
|
|
for attn_processor_name, attn_processor in unet.attn_processors.items(): |
|
|
|
cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if attn_processor_name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif attn_processor_name.startswith("up_blocks"): |
|
block_id = int(attn_processor_name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif attn_processor_name.startswith("down_blocks"): |
|
block_id = int(attn_processor_name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
attn_procs[attn_processor_name] = AttnProcessor() |
|
else: |
|
layer_name = attn_processor_name.split(".processor")[0] |
|
weights = { |
|
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"], |
|
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"], |
|
} |
|
attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens) |
|
attn_procs[attn_processor_name].load_state_dict(weights,strict=False) |
|
|
|
attn_module = unet |
|
for n in attn_processor_name.split(".")[:-1]: |
|
attn_module = getattr(attn_module, n) |
|
|
|
|
|
if "up_blocks" in attn_processor_name: |
|
attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank) |
|
attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank) |
|
attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank) |
|
attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank) |
|
|
|
|
|
|
|
unet.set_attn_processor(attn_procs) |
|
if hasattr(self.pipe, "controlnet"): |
|
if isinstance(self.pipe.controlnet, MultiControlNetModel): |
|
for controlnet in self.pipe.controlnet.nets: |
|
controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
else: |
|
self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens)) |
|
|
|
|
|
|
|
class IPAdapterFull(IPAdapterPlus): |
|
"""IP-Adapter with full features""" |
|
|
|
def init_proj(self): |
|
image_proj_model = MLPProjModel( |
|
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, |
|
clip_embeddings_dim=self.image_encoder.config.hidden_size, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
|
|
class IPAdapterPlusXL(IPAdapter): |
|
"""SDXL""" |
|
|
|
def init_proj(self): |
|
image_proj_model = Resampler( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=self.num_tokens, |
|
embedding_dim=self.image_encoder.config.hidden_size, |
|
output_dim=self.pipe.unet.config.cross_attention_dim, |
|
ff_mult=4, |
|
).to(self.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
@torch.inference_mode() |
|
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): |
|
if pil_image is not None: |
|
if isinstance(pil_image, Image.Image): |
|
pil_image = [pil_image] |
|
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values |
|
clip_image = clip_image.to(self.device, dtype=torch.float16) |
|
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] |
|
else: |
|
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16) |
|
image_prompt_embeds = self.image_proj_model(clip_image_embeds) |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def generate( |
|
self, |
|
pil_image, |
|
prompt=None, |
|
negative_prompt=None, |
|
scale=1.0, |
|
num_samples=4, |
|
seed=None, |
|
num_inference_steps=30, |
|
**kwargs, |
|
): |
|
self.set_scale(scale) |
|
|
|
num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image) |
|
|
|
if prompt is None: |
|
prompt = "best quality, high quality" |
|
if negative_prompt is None: |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) |
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=num_samples, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) |
|
|
|
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None |
|
images = self.pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
**kwargs, |
|
).images |
|
|
|
return images |
|
|