Rolv-Arild
commited on
Commit
•
0020927
1
Parent(s):
50254ac
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: ''
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
#
|
13 |
+
|
14 |
+
This model was trained from scratch on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.3350
|
17 |
+
- Wer: 0.3441
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0003
|
37 |
+
- train_batch_size: 8
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- gradient_accumulation_steps: 8
|
41 |
+
- total_train_batch_size: 64
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 400
|
45 |
+
- num_epochs: 20.0
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
52 |
+
| 2.2943 | 0.51 | 400 | 4.4367 | 0.9745 |
|
53 |
+
| 2.8816 | 1.02 | 800 | 2.8103 | 1.2576 |
|
54 |
+
| 2.7842 | 1.53 | 1200 | 2.6832 | 1.1330 |
|
55 |
+
| 2.313 | 2.04 | 1600 | 2.6678 | 1.1348 |
|
56 |
+
| 2.2897 | 2.55 | 2000 | 2.5744 | 1.2102 |
|
57 |
+
| 1.3821 | 3.06 | 2400 | 2.9908 | 0.9377 |
|
58 |
+
| 1.074 | 3.57 | 2800 | 2.6649 | 0.8966 |
|
59 |
+
| 1.3643 | 4.08 | 3200 | 1.0064 | 0.7236 |
|
60 |
+
| 0.8286 | 4.59 | 3600 | 0.6339 | 0.5454 |
|
61 |
+
| 0.3872 | 5.1 | 4000 | 0.5170 | 0.4718 |
|
62 |
+
| 0.3654 | 5.61 | 4400 | 0.4386 | 0.4420 |
|
63 |
+
| 0.2672 | 6.12 | 4800 | 0.5186 | 0.4679 |
|
64 |
+
| 0.2519 | 6.63 | 5200 | 0.4238 | 0.4177 |
|
65 |
+
| 0.3293 | 7.14 | 5600 | 0.3584 | 0.3970 |
|
66 |
+
| 0.314 | 7.65 | 6000 | 0.3325 | 0.3911 |
|
67 |
+
| 0.1698 | 8.16 | 6400 | 0.3411 | 0.3855 |
|
68 |
+
| 0.1682 | 8.67 | 6800 | 0.3239 | 0.3801 |
|
69 |
+
| 0.1325 | 9.18 | 7200 | 0.3474 | 0.3832 |
|
70 |
+
| 0.1577 | 9.69 | 7600 | 0.3289 | 0.3839 |
|
71 |
+
| 0.2259 | 10.2 | 8000 | 0.3183 | 0.3756 |
|
72 |
+
| 0.2473 | 10.71 | 8400 | 0.3132 | 0.3654 |
|
73 |
+
| 0.1136 | 11.22 | 8800 | 0.3242 | 0.3670 |
|
74 |
+
| 0.108 | 11.73 | 9200 | 0.3201 | 0.3601 |
|
75 |
+
| 0.0806 | 12.24 | 9600 | 0.3223 | 0.3609 |
|
76 |
+
| 0.0896 | 12.75 | 10000 | 0.3228 | 0.3584 |
|
77 |
+
| 0.1642 | 13.27 | 10400 | 0.3140 | 0.3547 |
|
78 |
+
| 0.1442 | 13.77 | 10800 | 0.3235 | 0.3539 |
|
79 |
+
| 0.0802 | 14.29 | 11200 | 0.3175 | 0.3553 |
|
80 |
+
| 0.0747 | 14.8 | 11600 | 0.3126 | 0.3512 |
|
81 |
+
| 0.0488 | 15.31 | 12000 | 0.3292 | 0.3525 |
|
82 |
+
| 0.0469 | 15.82 | 12400 | 0.3231 | 0.3504 |
|
83 |
+
| 0.1021 | 16.33 | 12800 | 0.3230 | 0.3502 |
|
84 |
+
| 0.0841 | 16.84 | 13200 | 0.3348 | 0.3513 |
|
85 |
+
| 0.0502 | 17.35 | 13600 | 0.3318 | 0.3486 |
|
86 |
+
| 0.059 | 17.86 | 14000 | 0.3359 | 0.3462 |
|
87 |
+
| 0.0417 | 18.37 | 14400 | 0.3310 | 0.3467 |
|
88 |
+
| 0.0322 | 18.88 | 14800 | 0.3325 | 0.3467 |
|
89 |
+
| 0.0531 | 19.39 | 15200 | 0.3357 | 0.3449 |
|
90 |
+
| 0.0623 | 19.9 | 15600 | 0.3350 | 0.3441 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.17.0.dev0
|
96 |
+
- Pytorch 1.10.0+cu113
|
97 |
+
- Datasets 1.18.1
|
98 |
+
- Tokenizers 0.11.0
|