xls-r-300m-npsc-seq2seq / create_model.py
Rolv-Arild's picture
Training in progress, step 400
3308cff
raw
history blame
1.12 kB
#!/usr/bin/env python3
from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer
import torch
encoder_id = "facebook/wav2vec2-xls-r-300m"
decoder_id = "facebook/bart-large"
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=True)
model.config.encoder.feat_proj_dropout = 0.0
model.config.encoder.final_dropout = 0.0
model.config.encoder.mask_time_prob = 0.1
model.config.decoder_start_token_id = model.decoder.config.bos_token_id
model.config.pad_token_id = model.decoder.config.pad_token_id
model.config.eos_token_id = model.decoder.config.eos_token_id
model.config.max_length = 200
model.config.num_beams = 5
model.config.encoder.layerdrop = 0.0
model.config.use_cache = False
model.config.processor_class = "Wav2Vec2Processor"
# check if generation works
out = model.generate(torch.ones((1, 2000)))
model.save_pretrained("./")
feature_etxractor = AutoFeatureExtractor.from_pretrained(encoder_id)
feature_etxractor.save_pretrained("./")
tokenizer = AutoTokenizer.from_pretrained(decoder_id)
tokenizer.save_pretrained("./")