Rolo commited on
Commit
54841df
1 Parent(s): f89770e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1501.25 +/- 245.65
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86c285c3de75992fb2cc7572af2862865aac647467dc29468f1b842a521e19cb
3
+ size 129418
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff905e41b40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff905e41bd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff905e41c60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff905e41cf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff905e41d80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff905e41e10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff905e41ea0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff905e41f30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff905e41fc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff905e42050>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff905e420e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff905e42170>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff905e3e700>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676896886585348692,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL3JvbG8vLnB5ZW52L3ZlcnNpb25zLzMuMTAuOC9lbnZzL2hmZGVlcHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvcm9sby8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvaGZkZWVwcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANfQij0luxk+eNQDPwbbCL2OQ+Q97+b5PtaLEr+GCHY9I9KiPgUiOT809xe/TwpKv2Vdz7465JY/+NSXPsW6RD6mb48/7RYzQF/CLb9vOgbAvfJwvuHc1j+oCyQ/fca0Podhk78zNAU/f3AMP/J6bD/WUmG/kLVPv0XrpD5wsAe/UCyFPtOboD+7tHI/PfAqP19pMz+adQ2+0FHrPUBh576DTZ+/vE+/Pl1NpT4yczjAw2YkPqbgPj8xzi8/kCVkv8QLMb+9HtY+Xxp3v0FSjz7aVV4/sP/1v39wDD/yemw/59vOvjSpNL3iAAc/QG+tPgbWQj56SSA9MVikPlO0p74teSk/evz2vlHekT7IFpq+kbKhv/aSrDzID90+BKeLvxhJ4rr6zC2/0+4iPxXZvL2swDG//wwhPefIN7/IVfk+2lVeP7D/9b9/cAw/w5CKvy4jBD/Rg7U/OmSTvocCtT7lZqw+h/9twGAULr55uWO9VZ7svgI7UL6Bgg0/E2mqP4Fbob/qJo87XnhDP4hmNjweys2/c9cWwKlStj2eD7FAoJ0Rv1x9Cb/pMcQ++P83wNpVXj+w//W/JFPpv8OQir+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACqyPc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4TX8vQAAAADu+uW/AAAAADWHDT0AAAAAIS/iPwAAAADpseY9AAAAAGXb7T8AAAAAW1lDvQAAAAD5fNq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAus4NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMSkEL0AAAAA3pH5vwAAAABATbI9AAAAAM6b8T8AAAAA171xPQAAAADrIvo/AAAAAAW9gT0AAAAAm8DsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBTAbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB98oO9AAAAADhm+b8AAAAADf4APAAAAADmDvc/AAAAADoc+LwAAAAACZT8PwAAAACLqvU9AAAAAFH8/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb0SW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5n02PQAAAAB3q/W/AAAAALF16rwAAAAAutwAQAAAAAC/+6s9AAAAANLz3z8AAAAAh2zlPQAAAAA15Pe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJhMYVCXyAiMAWyUTegDjAF0lEdAntOWkvboKXV9lChoBkdAmvygAlv602gHTegDaAhHQJ7YA5S3sol1fZQoaAZHQJ4j8q+ajN9oB03oA2gIR0Ce2YwXZXdTdX2UKGgGR0Cb8UNNJvpAaAdN6ANoCEdAnuHzn7pFC3V9lChoBkdAm3pawhW5pmgHTegDaAhHQJ7jnk4m1IB1fZQoaAZHQJqtKDL8rI5oB03oA2gIR0Ce6AbayrxRdX2UKGgGR0CbSXEG7jDLaAdN6ANoCEdAnumO2AoXsXV9lChoBkdAedz/yXlbNmgHTQcBaAhHQJ7sOjpLVWl1fZQoaAZHQKBHNmozeoFoB03oA2gIR0Ce8e0wrUb2dX2UKGgGR0Cefl4LCvX9aAdN6ANoCEdAnvOUD2alUXV9lChoBkdAoA49Z7ojfWgHTegDaAhHQJ75iACnxax1fZQoaAZHQJpHF9lVcUxoB03oA2gIR0Ce/DYmLLpzdX2UKGgGR0CTNu+ZgG8maAdN6ANoCEdAnwH1wkxASnV9lChoBkdAmKM4mw7kn2gHTegDaAhHQJ8DomjTKDF1fZQoaAZHQJ/wmL74zrNoB03oA2gIR0CfCZdlum78dX2UKGgGR0CZsxh60IC2aAdN6ANoCEdAnwxGXC0ngHV9lChoBkdAoDer3TNMXmgHTegDaAhHQJ8R/+glF+d1fZQoaAZHQKBHPgv114hoB03oA2gIR0CfE6v7WNFSdX2UKGgGR0CWJYPxQSBcaAdN6ANoCEdAnxmhSk0rLHV9lChoBkdAmFoapPykK2gHTegDaAhHQJ8cUOskpqh1fZQoaAZHQJmv2Zb6guhoB03oA2gIR0CfIgdld1MedX2UKGgGR0CayLn7HhjwaAdN6ANoCEdAnyOwblzU7XV9lChoBkdAmaXw88s+V2gHTegDaAhHQJ8poawUxmF1fZQoaAZHQJ2zo8SwnploB03oA2gIR0CfLEryDqW1dX2UKGgGR0Ccu5TSsr/baAdN6ANoCEdAnzIC2phnanV9lChoBkdAn3YTpC8e0WgHTegDaAhHQJ8zq58Sf191fZQoaAZHQJ0AbR0EHMVoB03oA2gIR0CfOZ9L6DXfdX2UKGgGR0Calg5u63AmaAdN6ANoCEdAnzxLBwdbPnV9lChoBkdAmwAlUlzEJmgHTegDaAhHQJ9CCo60Y0l1fZQoaAZHQJf7Gois4kxoB03oA2gIR0CfQ7bayrxRdX2UKGgGR0CYhZux8lXzaAdN6ANoCEdAn0m4WcjJMnV9lChoBkdAkGXbW3BpH2gHTegDaAhHQJ9Mcq6OHWV1fZQoaAZHQIrWgZ4wAVBoB03oA2gIR0CfUj052hZhdX2UKGgGR0Cabt8KG+K1aAdN6ANoCEdAn1PlpTMq0HV9lChoBkdAmrDkPczqKWgHTegDaAhHQJ9Z1NlAeJZ1fZQoaAZHQJerpUS7GvRoB03oA2gIR0CfXICI1tO3dX2UKGgGR0CXUIHWjGkvaAdN6ANoCEdAn2Iwaef7JnV9lChoBkdAnNhZl4C6pmgHTegDaAhHQJ9j1z3h4t91fZQoaAZHQJh1dSGahHtoB03oA2gIR0Cfab/SpiqidX2UKGgGR0Cb4tzWwu/UaAdN6ANoCEdAn2xo55qubXV9lChoBkdAnx3JYPoV22gHTegDaAhHQJ9yJUgjhUB1fZQoaAZHQJdlTPgNwzdoB03oA2gIR0Cfc9IZqEeydX2UKGgGR0CbnmNayKNyaAdN6ANoCEdAn3m9rO7g9HV9lChoBkdAoFKoh4dIXmgHTegDaAhHQJ98ay6cy311fZQoaAZHQJ/v8TufEn9oB03oA2gIR0CfgiKfFrEcdX2UKGgGR0Cb7gH5rP+oaAdN6ANoCEdAn4PJCngpB3V9lChoBkdAncbzBuXNT2gHTegDaAhHQJ+JuzVtoBd1fZQoaAZHQJ/rCyD7IktoB03oA2gIR0CfjGcriEQHdX2UKGgGR0CgR9bYTTOPaAdN6ANoCEdAn5IbpJPIn3V9lChoBkdAn0q0j1PFemgHTegDaAhHQJ+TxuejEeh1fZQoaAZHQJizGiO/+KloB03oA2gIR0CfmcDtw71adX2UKGgGR0CfqUV1fVqfaAdN6ANoCEdAn5xteUpuuXV9lChoBkdAm+gzjNpudmgHTegDaAhHQJ+iJiSaEzx1fZQoaAZHQJ9DaW6bvw5oB03oA2gIR0Cfo85tFa0QdX2UKGgGR0Ce8OAaNuLraAdN6ANoCEdAn6nAE2YOUnV9lChoBkdAn0qSlrM1TGgHTegDaAhHQJ+sbp+tr9F1fZQoaAZHQJ2vPAuZkTZoB03oA2gIR0CfsinHvMKUdX2UKGgGR0CdyA48lolEaAdN6ANoCEdAn7PSGBWge3V9lChoBkdAlzP5w4sEq2gHTegDaAhHQJ+5x+w1R+B1fZQoaAZHQJ1mWpZOi35oB03oA2gIR0CfvHKL876pdX2UKGgGR0CaDPTYukDZaAdN6ANoCEdAn8InizcAR3V9lChoBkdAmvuvaxoqTmgHTegDaAhHQJ/D0Ajps411fZQoaAZHQJmF7HDJlrdoB03oA2gIR0Cfyb7LdN34dX2UKGgGR0CaajZydWhiaAdN6ANoCEdAn8xmG/N7jXV9lChoBkdAnj10w35vcmgHTegDaAhHQJ/SFnTRYzV1fZQoaAZHQJv2JoXbdrRoB03oA2gIR0Cf07/ag261dX2UKGgGR0Cfd6D+R5kcaAdN6ANoCEdAn9mqZhKDkHV9lChoBkdAni+Ya99MK2gHTegDaAhHQJ/cU+3Ytg91fZQoaAZHQJ1VlxtHhCNoB03oA2gIR0Cf4gfEXLvDdX2UKGgGR0CfYe+TeO4oaAdN6ANoCEdAn+OvXwsoUnV9lChoBkdAmfSv3BYV7GgHTegDaAhHQJ/pqCZnctZ1fZQoaAZHQJRbLPQfIS1oB03oA2gIR0Cf7Fm4y44IdX2UKGgGR0CaRnVYISlFaAdN6ANoCEdAn/IbKRuCPXV9lChoBkdAncT+rQw9JWgHTegDaAhHQJ/zxZq20At1fZQoaAZHQJryd3aBZp1oB03oA2gIR0Cf+bsoUi6hdX2UKGgGR0CfVLMB6rvLaAdN6ANoCEdAn/xn9JjDsXV9lChoBkdAng2/sqril2gHTegDaAhHQKABEljVhCt1fZQoaAZHQJ0hBD5TIeZoB03oA2gIR0CgAefQjUutdX2UKGgGR0CdnsbSJCSiaAdN6ANoCEdAoATnggow23V9lChoBkdAkUHORDCxeWgHTegDaAhHQKAGP2ys0YV1fZQoaAZHQJmHyBI4EOloB03oA2gIR0CgCR5dnkDIdX2UKGgGR0CW5nCv5gw5aAdN6ANoCEdAoAn2ki2UjnV9lChoBkdAkLSt2X9it2gHTegDaAhHQKAM+Hpr1ul1fZQoaAZHQJl3Zkd3jdZoB03oA2gIR0CgDlCzsyBTdX2UKGgGR0CWq3/KhcqwaAdN6ANoCEdAoBE1twaR6nV9lChoBkdAmd/xzNliB2gHTegDaAhHQKASC7wKBup1fZQoaAZHQIllcFwDNhVoB03oA2gIR0CgFQ6uOjqOdX2UKGgGR0CXJygEEC/5aAdN6ANoCEdAoBZmr2g3+HV9lChoBkdAmIew4wRGt2gHTegDaAhHQKAZRjhDPWx1fZQoaAZHQJxOPgGbCrNoB03oA2gIR0CgGhr5qM3qdX2UKGgGR0Cb/4otL+PzaAdN6ANoCEdAoB0WGGmDUXV9lChoBkdAnd6vEjxCpmgHTegDaAhHQKAebG+9Jz11fZQoaAZHQJwdo/zJ6ppoB03oA2gIR0CgIUtxVAAydX2UKGgGR0Cd+Ft+1Bt2aAdN6ANoCEdAoCIiDXe3yHV9lChoBkdAiH8GIbfgrGgHTegDaAhHQKAlJG5tm+V1fZQoaAZHQJl4fOY6XBxoB03oA2gIR0CgJns/pt78dX2UKGgGR0CadIr7fpEAaAdN6ANoCEdAoClaZ2IO6XV9lChoBkdAmFFRLwnYx2gHTegDaAhHQKAqMiSq2jR1fZQoaAZHQJW+qZw4sEtoB03oA2gIR0CgLTEDQqqfdX2UKGgGR0CXv1ce8wpOaAdN6ANoCEdAoC6HnSv1UXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d165d5ea0ebfc31f059f98f1df8fda39f6ada3f3fd88dd3e270b9623e226d51b
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0db00d8c3edbed023f79793248116f057d4b82c3689a8b900eff97128a359f0
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.10.8
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff905e41b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff905e41bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff905e41c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff905e41cf0>", "_build": "<function ActorCriticPolicy._build at 0x7ff905e41d80>", "forward": "<function ActorCriticPolicy.forward at 0x7ff905e41e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff905e41ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff905e41f30>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff905e41fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff905e42050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff905e420e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff905e42170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff905e3e700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676896886585348692, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL3JvbG8vLnB5ZW52L3ZlcnNpb25zLzMuMTAuOC9lbnZzL2hmZGVlcHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvcm9sby8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvaGZkZWVwcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANfQij0luxk+eNQDPwbbCL2OQ+Q97+b5PtaLEr+GCHY9I9KiPgUiOT809xe/TwpKv2Vdz7465JY/+NSXPsW6RD6mb48/7RYzQF/CLb9vOgbAvfJwvuHc1j+oCyQ/fca0Podhk78zNAU/f3AMP/J6bD/WUmG/kLVPv0XrpD5wsAe/UCyFPtOboD+7tHI/PfAqP19pMz+adQ2+0FHrPUBh576DTZ+/vE+/Pl1NpT4yczjAw2YkPqbgPj8xzi8/kCVkv8QLMb+9HtY+Xxp3v0FSjz7aVV4/sP/1v39wDD/yemw/59vOvjSpNL3iAAc/QG+tPgbWQj56SSA9MVikPlO0p74teSk/evz2vlHekT7IFpq+kbKhv/aSrDzID90+BKeLvxhJ4rr6zC2/0+4iPxXZvL2swDG//wwhPefIN7/IVfk+2lVeP7D/9b9/cAw/w5CKvy4jBD/Rg7U/OmSTvocCtT7lZqw+h/9twGAULr55uWO9VZ7svgI7UL6Bgg0/E2mqP4Fbob/qJo87XnhDP4hmNjweys2/c9cWwKlStj2eD7FAoJ0Rv1x9Cb/pMcQ++P83wNpVXj+w//W/JFPpv8OQir+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACqyPc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4TX8vQAAAADu+uW/AAAAADWHDT0AAAAAIS/iPwAAAADpseY9AAAAAGXb7T8AAAAAW1lDvQAAAAD5fNq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAus4NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMSkEL0AAAAA3pH5vwAAAABATbI9AAAAAM6b8T8AAAAA171xPQAAAADrIvo/AAAAAAW9gT0AAAAAm8DsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBTAbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB98oO9AAAAADhm+b8AAAAADf4APAAAAADmDvc/AAAAADoc+LwAAAAACZT8PwAAAACLqvU9AAAAAFH8/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb0SW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5n02PQAAAAB3q/W/AAAAALF16rwAAAAAutwAQAAAAAC/+6s9AAAAANLz3z8AAAAAh2zlPQAAAAA15Pe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJhMYVCXyAiMAWyUTegDjAF0lEdAntOWkvboKXV9lChoBkdAmvygAlv602gHTegDaAhHQJ7YA5S3sol1fZQoaAZHQJ4j8q+ajN9oB03oA2gIR0Ce2YwXZXdTdX2UKGgGR0Cb8UNNJvpAaAdN6ANoCEdAnuHzn7pFC3V9lChoBkdAm3pawhW5pmgHTegDaAhHQJ7jnk4m1IB1fZQoaAZHQJqtKDL8rI5oB03oA2gIR0Ce6AbayrxRdX2UKGgGR0CbSXEG7jDLaAdN6ANoCEdAnumO2AoXsXV9lChoBkdAedz/yXlbNmgHTQcBaAhHQJ7sOjpLVWl1fZQoaAZHQKBHNmozeoFoB03oA2gIR0Ce8e0wrUb2dX2UKGgGR0Cefl4LCvX9aAdN6ANoCEdAnvOUD2alUXV9lChoBkdAoA49Z7ojfWgHTegDaAhHQJ75iACnxax1fZQoaAZHQJpHF9lVcUxoB03oA2gIR0Ce/DYmLLpzdX2UKGgGR0CTNu+ZgG8maAdN6ANoCEdAnwH1wkxASnV9lChoBkdAmKM4mw7kn2gHTegDaAhHQJ8DomjTKDF1fZQoaAZHQJ/wmL74zrNoB03oA2gIR0CfCZdlum78dX2UKGgGR0CZsxh60IC2aAdN6ANoCEdAnwxGXC0ngHV9lChoBkdAoDer3TNMXmgHTegDaAhHQJ8R/+glF+d1fZQoaAZHQKBHPgv114hoB03oA2gIR0CfE6v7WNFSdX2UKGgGR0CWJYPxQSBcaAdN6ANoCEdAnxmhSk0rLHV9lChoBkdAmFoapPykK2gHTegDaAhHQJ8cUOskpqh1fZQoaAZHQJmv2Zb6guhoB03oA2gIR0CfIgdld1MedX2UKGgGR0CayLn7HhjwaAdN6ANoCEdAnyOwblzU7XV9lChoBkdAmaXw88s+V2gHTegDaAhHQJ8poawUxmF1fZQoaAZHQJ2zo8SwnploB03oA2gIR0CfLEryDqW1dX2UKGgGR0Ccu5TSsr/baAdN6ANoCEdAnzIC2phnanV9lChoBkdAn3YTpC8e0WgHTegDaAhHQJ8zq58Sf191fZQoaAZHQJ0AbR0EHMVoB03oA2gIR0CfOZ9L6DXfdX2UKGgGR0Calg5u63AmaAdN6ANoCEdAnzxLBwdbPnV9lChoBkdAmwAlUlzEJmgHTegDaAhHQJ9CCo60Y0l1fZQoaAZHQJf7Gois4kxoB03oA2gIR0CfQ7bayrxRdX2UKGgGR0CYhZux8lXzaAdN6ANoCEdAn0m4WcjJMnV9lChoBkdAkGXbW3BpH2gHTegDaAhHQJ9Mcq6OHWV1fZQoaAZHQIrWgZ4wAVBoB03oA2gIR0CfUj052hZhdX2UKGgGR0Cabt8KG+K1aAdN6ANoCEdAn1PlpTMq0HV9lChoBkdAmrDkPczqKWgHTegDaAhHQJ9Z1NlAeJZ1fZQoaAZHQJerpUS7GvRoB03oA2gIR0CfXICI1tO3dX2UKGgGR0CXUIHWjGkvaAdN6ANoCEdAn2Iwaef7JnV9lChoBkdAnNhZl4C6pmgHTegDaAhHQJ9j1z3h4t91fZQoaAZHQJh1dSGahHtoB03oA2gIR0Cfab/SpiqidX2UKGgGR0Cb4tzWwu/UaAdN6ANoCEdAn2xo55qubXV9lChoBkdAnx3JYPoV22gHTegDaAhHQJ9yJUgjhUB1fZQoaAZHQJdlTPgNwzdoB03oA2gIR0Cfc9IZqEeydX2UKGgGR0CbnmNayKNyaAdN6ANoCEdAn3m9rO7g9HV9lChoBkdAoFKoh4dIXmgHTegDaAhHQJ98ay6cy311fZQoaAZHQJ/v8TufEn9oB03oA2gIR0CfgiKfFrEcdX2UKGgGR0Cb7gH5rP+oaAdN6ANoCEdAn4PJCngpB3V9lChoBkdAncbzBuXNT2gHTegDaAhHQJ+JuzVtoBd1fZQoaAZHQJ/rCyD7IktoB03oA2gIR0CfjGcriEQHdX2UKGgGR0CgR9bYTTOPaAdN6ANoCEdAn5IbpJPIn3V9lChoBkdAn0q0j1PFemgHTegDaAhHQJ+TxuejEeh1fZQoaAZHQJizGiO/+KloB03oA2gIR0CfmcDtw71adX2UKGgGR0CfqUV1fVqfaAdN6ANoCEdAn5xteUpuuXV9lChoBkdAm+gzjNpudmgHTegDaAhHQJ+iJiSaEzx1fZQoaAZHQJ9DaW6bvw5oB03oA2gIR0Cfo85tFa0QdX2UKGgGR0Ce8OAaNuLraAdN6ANoCEdAn6nAE2YOUnV9lChoBkdAn0qSlrM1TGgHTegDaAhHQJ+sbp+tr9F1fZQoaAZHQJ2vPAuZkTZoB03oA2gIR0CfsinHvMKUdX2UKGgGR0CdyA48lolEaAdN6ANoCEdAn7PSGBWge3V9lChoBkdAlzP5w4sEq2gHTegDaAhHQJ+5x+w1R+B1fZQoaAZHQJ1mWpZOi35oB03oA2gIR0CfvHKL876pdX2UKGgGR0CaDPTYukDZaAdN6ANoCEdAn8InizcAR3V9lChoBkdAmvuvaxoqTmgHTegDaAhHQJ/D0Ajps411fZQoaAZHQJmF7HDJlrdoB03oA2gIR0Cfyb7LdN34dX2UKGgGR0CaajZydWhiaAdN6ANoCEdAn8xmG/N7jXV9lChoBkdAnj10w35vcmgHTegDaAhHQJ/SFnTRYzV1fZQoaAZHQJv2JoXbdrRoB03oA2gIR0Cf07/ag261dX2UKGgGR0Cfd6D+R5kcaAdN6ANoCEdAn9mqZhKDkHV9lChoBkdAni+Ya99MK2gHTegDaAhHQJ/cU+3Ytg91fZQoaAZHQJ1VlxtHhCNoB03oA2gIR0Cf4gfEXLvDdX2UKGgGR0CfYe+TeO4oaAdN6ANoCEdAn+OvXwsoUnV9lChoBkdAmfSv3BYV7GgHTegDaAhHQJ/pqCZnctZ1fZQoaAZHQJRbLPQfIS1oB03oA2gIR0Cf7Fm4y44IdX2UKGgGR0CaRnVYISlFaAdN6ANoCEdAn/IbKRuCPXV9lChoBkdAncT+rQw9JWgHTegDaAhHQJ/zxZq20At1fZQoaAZHQJryd3aBZp1oB03oA2gIR0Cf+bsoUi6hdX2UKGgGR0CfVLMB6rvLaAdN6ANoCEdAn/xn9JjDsXV9lChoBkdAng2/sqril2gHTegDaAhHQKABEljVhCt1fZQoaAZHQJ0hBD5TIeZoB03oA2gIR0CgAefQjUutdX2UKGgGR0CdnsbSJCSiaAdN6ANoCEdAoATnggow23V9lChoBkdAkUHORDCxeWgHTegDaAhHQKAGP2ys0YV1fZQoaAZHQJmHyBI4EOloB03oA2gIR0CgCR5dnkDIdX2UKGgGR0CW5nCv5gw5aAdN6ANoCEdAoAn2ki2UjnV9lChoBkdAkLSt2X9it2gHTegDaAhHQKAM+Hpr1ul1fZQoaAZHQJl3Zkd3jdZoB03oA2gIR0CgDlCzsyBTdX2UKGgGR0CWq3/KhcqwaAdN6ANoCEdAoBE1twaR6nV9lChoBkdAmd/xzNliB2gHTegDaAhHQKASC7wKBup1fZQoaAZHQIllcFwDNhVoB03oA2gIR0CgFQ6uOjqOdX2UKGgGR0CXJygEEC/5aAdN6ANoCEdAoBZmr2g3+HV9lChoBkdAmIew4wRGt2gHTegDaAhHQKAZRjhDPWx1fZQoaAZHQJxOPgGbCrNoB03oA2gIR0CgGhr5qM3qdX2UKGgGR0Cb/4otL+PzaAdN6ANoCEdAoB0WGGmDUXV9lChoBkdAnd6vEjxCpmgHTegDaAhHQKAebG+9Jz11fZQoaAZHQJwdo/zJ6ppoB03oA2gIR0CgIUtxVAAydX2UKGgGR0Cd+Ft+1Bt2aAdN6ANoCEdAoCIiDXe3yHV9lChoBkdAiH8GIbfgrGgHTegDaAhHQKAlJG5tm+V1fZQoaAZHQJl4fOY6XBxoB03oA2gIR0CgJns/pt78dX2UKGgGR0CadIr7fpEAaAdN6ANoCEdAoClaZ2IO6XV9lChoBkdAmFFRLwnYx2gHTegDaAhHQKAqMiSq2jR1fZQoaAZHQJW+qZw4sEtoB03oA2gIR0CgLTEDQqqfdX2UKGgGR0CXv1ce8wpOaAdN6ANoCEdAoC6HnSv1UXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (829 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1501.2545348396875, "std_reward": 245.64971482628053, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T13:15:54.545283"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e96304dbf8f141ae2627c2930536cb293af3733ccccf125fa11297b9987b9a0e
3
+ size 2136