Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1501.25 +/- 245.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86c285c3de75992fb2cc7572af2862865aac647467dc29468f1b842a521e19cb
|
3 |
+
size 129418
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff905e41b40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff905e41bd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff905e41c60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff905e41cf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff905e41d80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff905e41e10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff905e41ea0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff905e41f30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff905e41fc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff905e42050>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff905e420e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff905e42170>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff905e3e700>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1676896886585348692,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL3JvbG8vLnB5ZW52L3ZlcnNpb25zLzMuMTAuOC9lbnZzL2hmZGVlcHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvcm9sby8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvaGZkZWVwcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANfQij0luxk+eNQDPwbbCL2OQ+Q97+b5PtaLEr+GCHY9I9KiPgUiOT809xe/TwpKv2Vdz7465JY/+NSXPsW6RD6mb48/7RYzQF/CLb9vOgbAvfJwvuHc1j+oCyQ/fca0Podhk78zNAU/f3AMP/J6bD/WUmG/kLVPv0XrpD5wsAe/UCyFPtOboD+7tHI/PfAqP19pMz+adQ2+0FHrPUBh576DTZ+/vE+/Pl1NpT4yczjAw2YkPqbgPj8xzi8/kCVkv8QLMb+9HtY+Xxp3v0FSjz7aVV4/sP/1v39wDD/yemw/59vOvjSpNL3iAAc/QG+tPgbWQj56SSA9MVikPlO0p74teSk/evz2vlHekT7IFpq+kbKhv/aSrDzID90+BKeLvxhJ4rr6zC2/0+4iPxXZvL2swDG//wwhPefIN7/IVfk+2lVeP7D/9b9/cAw/w5CKvy4jBD/Rg7U/OmSTvocCtT7lZqw+h/9twGAULr55uWO9VZ7svgI7UL6Bgg0/E2mqP4Fbob/qJo87XnhDP4hmNjweys2/c9cWwKlStj2eD7FAoJ0Rv1x9Cb/pMcQ++P83wNpVXj+w//W/JFPpv8OQir+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACqyPc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4TX8vQAAAADu+uW/AAAAADWHDT0AAAAAIS/iPwAAAADpseY9AAAAAGXb7T8AAAAAW1lDvQAAAAD5fNq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAus4NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMSkEL0AAAAA3pH5vwAAAABATbI9AAAAAM6b8T8AAAAA171xPQAAAADrIvo/AAAAAAW9gT0AAAAAm8DsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBTAbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB98oO9AAAAADhm+b8AAAAADf4APAAAAADmDvc/AAAAADoc+LwAAAAACZT8PwAAAACLqvU9AAAAAFH8/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb0SW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5n02PQAAAAB3q/W/AAAAALF16rwAAAAAutwAQAAAAAC/+6s9AAAAANLz3z8AAAAAh2zlPQAAAAA15Pe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJhMYVCXyAiMAWyUTegDjAF0lEdAntOWkvboKXV9lChoBkdAmvygAlv602gHTegDaAhHQJ7YA5S3sol1fZQoaAZHQJ4j8q+ajN9oB03oA2gIR0Ce2YwXZXdTdX2UKGgGR0Cb8UNNJvpAaAdN6ANoCEdAnuHzn7pFC3V9lChoBkdAm3pawhW5pmgHTegDaAhHQJ7jnk4m1IB1fZQoaAZHQJqtKDL8rI5oB03oA2gIR0Ce6AbayrxRdX2UKGgGR0CbSXEG7jDLaAdN6ANoCEdAnumO2AoXsXV9lChoBkdAedz/yXlbNmgHTQcBaAhHQJ7sOjpLVWl1fZQoaAZHQKBHNmozeoFoB03oA2gIR0Ce8e0wrUb2dX2UKGgGR0Cefl4LCvX9aAdN6ANoCEdAnvOUD2alUXV9lChoBkdAoA49Z7ojfWgHTegDaAhHQJ75iACnxax1fZQoaAZHQJpHF9lVcUxoB03oA2gIR0Ce/DYmLLpzdX2UKGgGR0CTNu+ZgG8maAdN6ANoCEdAnwH1wkxASnV9lChoBkdAmKM4mw7kn2gHTegDaAhHQJ8DomjTKDF1fZQoaAZHQJ/wmL74zrNoB03oA2gIR0CfCZdlum78dX2UKGgGR0CZsxh60IC2aAdN6ANoCEdAnwxGXC0ngHV9lChoBkdAoDer3TNMXmgHTegDaAhHQJ8R/+glF+d1fZQoaAZHQKBHPgv114hoB03oA2gIR0CfE6v7WNFSdX2UKGgGR0CWJYPxQSBcaAdN6ANoCEdAnxmhSk0rLHV9lChoBkdAmFoapPykK2gHTegDaAhHQJ8cUOskpqh1fZQoaAZHQJmv2Zb6guhoB03oA2gIR0CfIgdld1MedX2UKGgGR0CayLn7HhjwaAdN6ANoCEdAnyOwblzU7XV9lChoBkdAmaXw88s+V2gHTegDaAhHQJ8poawUxmF1fZQoaAZHQJ2zo8SwnploB03oA2gIR0CfLEryDqW1dX2UKGgGR0Ccu5TSsr/baAdN6ANoCEdAnzIC2phnanV9lChoBkdAn3YTpC8e0WgHTegDaAhHQJ8zq58Sf191fZQoaAZHQJ0AbR0EHMVoB03oA2gIR0CfOZ9L6DXfdX2UKGgGR0Calg5u63AmaAdN6ANoCEdAnzxLBwdbPnV9lChoBkdAmwAlUlzEJmgHTegDaAhHQJ9CCo60Y0l1fZQoaAZHQJf7Gois4kxoB03oA2gIR0CfQ7bayrxRdX2UKGgGR0CYhZux8lXzaAdN6ANoCEdAn0m4WcjJMnV9lChoBkdAkGXbW3BpH2gHTegDaAhHQJ9Mcq6OHWV1fZQoaAZHQIrWgZ4wAVBoB03oA2gIR0CfUj052hZhdX2UKGgGR0Cabt8KG+K1aAdN6ANoCEdAn1PlpTMq0HV9lChoBkdAmrDkPczqKWgHTegDaAhHQJ9Z1NlAeJZ1fZQoaAZHQJerpUS7GvRoB03oA2gIR0CfXICI1tO3dX2UKGgGR0CXUIHWjGkvaAdN6ANoCEdAn2Iwaef7JnV9lChoBkdAnNhZl4C6pmgHTegDaAhHQJ9j1z3h4t91fZQoaAZHQJh1dSGahHtoB03oA2gIR0Cfab/SpiqidX2UKGgGR0Cb4tzWwu/UaAdN6ANoCEdAn2xo55qubXV9lChoBkdAnx3JYPoV22gHTegDaAhHQJ9yJUgjhUB1fZQoaAZHQJdlTPgNwzdoB03oA2gIR0Cfc9IZqEeydX2UKGgGR0CbnmNayKNyaAdN6ANoCEdAn3m9rO7g9HV9lChoBkdAoFKoh4dIXmgHTegDaAhHQJ98ay6cy311fZQoaAZHQJ/v8TufEn9oB03oA2gIR0CfgiKfFrEcdX2UKGgGR0Cb7gH5rP+oaAdN6ANoCEdAn4PJCngpB3V9lChoBkdAncbzBuXNT2gHTegDaAhHQJ+JuzVtoBd1fZQoaAZHQJ/rCyD7IktoB03oA2gIR0CfjGcriEQHdX2UKGgGR0CgR9bYTTOPaAdN6ANoCEdAn5IbpJPIn3V9lChoBkdAn0q0j1PFemgHTegDaAhHQJ+TxuejEeh1fZQoaAZHQJizGiO/+KloB03oA2gIR0CfmcDtw71adX2UKGgGR0CfqUV1fVqfaAdN6ANoCEdAn5xteUpuuXV9lChoBkdAm+gzjNpudmgHTegDaAhHQJ+iJiSaEzx1fZQoaAZHQJ9DaW6bvw5oB03oA2gIR0Cfo85tFa0QdX2UKGgGR0Ce8OAaNuLraAdN6ANoCEdAn6nAE2YOUnV9lChoBkdAn0qSlrM1TGgHTegDaAhHQJ+sbp+tr9F1fZQoaAZHQJ2vPAuZkTZoB03oA2gIR0CfsinHvMKUdX2UKGgGR0CdyA48lolEaAdN6ANoCEdAn7PSGBWge3V9lChoBkdAlzP5w4sEq2gHTegDaAhHQJ+5x+w1R+B1fZQoaAZHQJ1mWpZOi35oB03oA2gIR0CfvHKL876pdX2UKGgGR0CaDPTYukDZaAdN6ANoCEdAn8InizcAR3V9lChoBkdAmvuvaxoqTmgHTegDaAhHQJ/D0Ajps411fZQoaAZHQJmF7HDJlrdoB03oA2gIR0Cfyb7LdN34dX2UKGgGR0CaajZydWhiaAdN6ANoCEdAn8xmG/N7jXV9lChoBkdAnj10w35vcmgHTegDaAhHQJ/SFnTRYzV1fZQoaAZHQJv2JoXbdrRoB03oA2gIR0Cf07/ag261dX2UKGgGR0Cfd6D+R5kcaAdN6ANoCEdAn9mqZhKDkHV9lChoBkdAni+Ya99MK2gHTegDaAhHQJ/cU+3Ytg91fZQoaAZHQJ1VlxtHhCNoB03oA2gIR0Cf4gfEXLvDdX2UKGgGR0CfYe+TeO4oaAdN6ANoCEdAn+OvXwsoUnV9lChoBkdAmfSv3BYV7GgHTegDaAhHQJ/pqCZnctZ1fZQoaAZHQJRbLPQfIS1oB03oA2gIR0Cf7Fm4y44IdX2UKGgGR0CaRnVYISlFaAdN6ANoCEdAn/IbKRuCPXV9lChoBkdAncT+rQw9JWgHTegDaAhHQJ/zxZq20At1fZQoaAZHQJryd3aBZp1oB03oA2gIR0Cf+bsoUi6hdX2UKGgGR0CfVLMB6rvLaAdN6ANoCEdAn/xn9JjDsXV9lChoBkdAng2/sqril2gHTegDaAhHQKABEljVhCt1fZQoaAZHQJ0hBD5TIeZoB03oA2gIR0CgAefQjUutdX2UKGgGR0CdnsbSJCSiaAdN6ANoCEdAoATnggow23V9lChoBkdAkUHORDCxeWgHTegDaAhHQKAGP2ys0YV1fZQoaAZHQJmHyBI4EOloB03oA2gIR0CgCR5dnkDIdX2UKGgGR0CW5nCv5gw5aAdN6ANoCEdAoAn2ki2UjnV9lChoBkdAkLSt2X9it2gHTegDaAhHQKAM+Hpr1ul1fZQoaAZHQJl3Zkd3jdZoB03oA2gIR0CgDlCzsyBTdX2UKGgGR0CWq3/KhcqwaAdN6ANoCEdAoBE1twaR6nV9lChoBkdAmd/xzNliB2gHTegDaAhHQKASC7wKBup1fZQoaAZHQIllcFwDNhVoB03oA2gIR0CgFQ6uOjqOdX2UKGgGR0CXJygEEC/5aAdN6ANoCEdAoBZmr2g3+HV9lChoBkdAmIew4wRGt2gHTegDaAhHQKAZRjhDPWx1fZQoaAZHQJxOPgGbCrNoB03oA2gIR0CgGhr5qM3qdX2UKGgGR0Cb/4otL+PzaAdN6ANoCEdAoB0WGGmDUXV9lChoBkdAnd6vEjxCpmgHTegDaAhHQKAebG+9Jz11fZQoaAZHQJwdo/zJ6ppoB03oA2gIR0CgIUtxVAAydX2UKGgGR0Cd+Ft+1Bt2aAdN6ANoCEdAoCIiDXe3yHV9lChoBkdAiH8GIbfgrGgHTegDaAhHQKAlJG5tm+V1fZQoaAZHQJl4fOY6XBxoB03oA2gIR0CgJns/pt78dX2UKGgGR0CadIr7fpEAaAdN6ANoCEdAoClaZ2IO6XV9lChoBkdAmFFRLwnYx2gHTegDaAhHQKAqMiSq2jR1fZQoaAZHQJW+qZw4sEtoB03oA2gIR0CgLTEDQqqfdX2UKGgGR0CXv1ce8wpOaAdN6ANoCEdAoC6HnSv1UXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d165d5ea0ebfc31f059f98f1df8fda39f6ada3f3fd88dd3e270b9623e226d51b
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0db00d8c3edbed023f79793248116f057d4b82c3689a8b900eff97128a359f0
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.10.8
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff905e41b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff905e41bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff905e41c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff905e41cf0>", "_build": "<function ActorCriticPolicy._build at 0x7ff905e41d80>", "forward": "<function ActorCriticPolicy.forward at 0x7ff905e41e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff905e41ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff905e41f30>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff905e41fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff905e42050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff905e420e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff905e42170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff905e3e700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676896886585348692, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL3JvbG8vLnB5ZW52L3ZlcnNpb25zLzMuMTAuOC9lbnZzL2hmZGVlcHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvcm9sby8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvaGZkZWVwcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANfQij0luxk+eNQDPwbbCL2OQ+Q97+b5PtaLEr+GCHY9I9KiPgUiOT809xe/TwpKv2Vdz7465JY/+NSXPsW6RD6mb48/7RYzQF/CLb9vOgbAvfJwvuHc1j+oCyQ/fca0Podhk78zNAU/f3AMP/J6bD/WUmG/kLVPv0XrpD5wsAe/UCyFPtOboD+7tHI/PfAqP19pMz+adQ2+0FHrPUBh576DTZ+/vE+/Pl1NpT4yczjAw2YkPqbgPj8xzi8/kCVkv8QLMb+9HtY+Xxp3v0FSjz7aVV4/sP/1v39wDD/yemw/59vOvjSpNL3iAAc/QG+tPgbWQj56SSA9MVikPlO0p74teSk/evz2vlHekT7IFpq+kbKhv/aSrDzID90+BKeLvxhJ4rr6zC2/0+4iPxXZvL2swDG//wwhPefIN7/IVfk+2lVeP7D/9b9/cAw/w5CKvy4jBD/Rg7U/OmSTvocCtT7lZqw+h/9twGAULr55uWO9VZ7svgI7UL6Bgg0/E2mqP4Fbob/qJo87XnhDP4hmNjweys2/c9cWwKlStj2eD7FAoJ0Rv1x9Cb/pMcQ++P83wNpVXj+w//W/JFPpv8OQir+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACqyPc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4TX8vQAAAADu+uW/AAAAADWHDT0AAAAAIS/iPwAAAADpseY9AAAAAGXb7T8AAAAAW1lDvQAAAAD5fNq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAus4NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMSkEL0AAAAA3pH5vwAAAABATbI9AAAAAM6b8T8AAAAA171xPQAAAADrIvo/AAAAAAW9gT0AAAAAm8DsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBTAbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB98oO9AAAAADhm+b8AAAAADf4APAAAAADmDvc/AAAAADoc+LwAAAAACZT8PwAAAACLqvU9AAAAAFH8/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb0SW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5n02PQAAAAB3q/W/AAAAALF16rwAAAAAutwAQAAAAAC/+6s9AAAAANLz3z8AAAAAh2zlPQAAAAA15Pe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJhMYVCXyAiMAWyUTegDjAF0lEdAntOWkvboKXV9lChoBkdAmvygAlv602gHTegDaAhHQJ7YA5S3sol1fZQoaAZHQJ4j8q+ajN9oB03oA2gIR0Ce2YwXZXdTdX2UKGgGR0Cb8UNNJvpAaAdN6ANoCEdAnuHzn7pFC3V9lChoBkdAm3pawhW5pmgHTegDaAhHQJ7jnk4m1IB1fZQoaAZHQJqtKDL8rI5oB03oA2gIR0Ce6AbayrxRdX2UKGgGR0CbSXEG7jDLaAdN6ANoCEdAnumO2AoXsXV9lChoBkdAedz/yXlbNmgHTQcBaAhHQJ7sOjpLVWl1fZQoaAZHQKBHNmozeoFoB03oA2gIR0Ce8e0wrUb2dX2UKGgGR0Cefl4LCvX9aAdN6ANoCEdAnvOUD2alUXV9lChoBkdAoA49Z7ojfWgHTegDaAhHQJ75iACnxax1fZQoaAZHQJpHF9lVcUxoB03oA2gIR0Ce/DYmLLpzdX2UKGgGR0CTNu+ZgG8maAdN6ANoCEdAnwH1wkxASnV9lChoBkdAmKM4mw7kn2gHTegDaAhHQJ8DomjTKDF1fZQoaAZHQJ/wmL74zrNoB03oA2gIR0CfCZdlum78dX2UKGgGR0CZsxh60IC2aAdN6ANoCEdAnwxGXC0ngHV9lChoBkdAoDer3TNMXmgHTegDaAhHQJ8R/+glF+d1fZQoaAZHQKBHPgv114hoB03oA2gIR0CfE6v7WNFSdX2UKGgGR0CWJYPxQSBcaAdN6ANoCEdAnxmhSk0rLHV9lChoBkdAmFoapPykK2gHTegDaAhHQJ8cUOskpqh1fZQoaAZHQJmv2Zb6guhoB03oA2gIR0CfIgdld1MedX2UKGgGR0CayLn7HhjwaAdN6ANoCEdAnyOwblzU7XV9lChoBkdAmaXw88s+V2gHTegDaAhHQJ8poawUxmF1fZQoaAZHQJ2zo8SwnploB03oA2gIR0CfLEryDqW1dX2UKGgGR0Ccu5TSsr/baAdN6ANoCEdAnzIC2phnanV9lChoBkdAn3YTpC8e0WgHTegDaAhHQJ8zq58Sf191fZQoaAZHQJ0AbR0EHMVoB03oA2gIR0CfOZ9L6DXfdX2UKGgGR0Calg5u63AmaAdN6ANoCEdAnzxLBwdbPnV9lChoBkdAmwAlUlzEJmgHTegDaAhHQJ9CCo60Y0l1fZQoaAZHQJf7Gois4kxoB03oA2gIR0CfQ7bayrxRdX2UKGgGR0CYhZux8lXzaAdN6ANoCEdAn0m4WcjJMnV9lChoBkdAkGXbW3BpH2gHTegDaAhHQJ9Mcq6OHWV1fZQoaAZHQIrWgZ4wAVBoB03oA2gIR0CfUj052hZhdX2UKGgGR0Cabt8KG+K1aAdN6ANoCEdAn1PlpTMq0HV9lChoBkdAmrDkPczqKWgHTegDaAhHQJ9Z1NlAeJZ1fZQoaAZHQJerpUS7GvRoB03oA2gIR0CfXICI1tO3dX2UKGgGR0CXUIHWjGkvaAdN6ANoCEdAn2Iwaef7JnV9lChoBkdAnNhZl4C6pmgHTegDaAhHQJ9j1z3h4t91fZQoaAZHQJh1dSGahHtoB03oA2gIR0Cfab/SpiqidX2UKGgGR0Cb4tzWwu/UaAdN6ANoCEdAn2xo55qubXV9lChoBkdAnx3JYPoV22gHTegDaAhHQJ9yJUgjhUB1fZQoaAZHQJdlTPgNwzdoB03oA2gIR0Cfc9IZqEeydX2UKGgGR0CbnmNayKNyaAdN6ANoCEdAn3m9rO7g9HV9lChoBkdAoFKoh4dIXmgHTegDaAhHQJ98ay6cy311fZQoaAZHQJ/v8TufEn9oB03oA2gIR0CfgiKfFrEcdX2UKGgGR0Cb7gH5rP+oaAdN6ANoCEdAn4PJCngpB3V9lChoBkdAncbzBuXNT2gHTegDaAhHQJ+JuzVtoBd1fZQoaAZHQJ/rCyD7IktoB03oA2gIR0CfjGcriEQHdX2UKGgGR0CgR9bYTTOPaAdN6ANoCEdAn5IbpJPIn3V9lChoBkdAn0q0j1PFemgHTegDaAhHQJ+TxuejEeh1fZQoaAZHQJizGiO/+KloB03oA2gIR0CfmcDtw71adX2UKGgGR0CfqUV1fVqfaAdN6ANoCEdAn5xteUpuuXV9lChoBkdAm+gzjNpudmgHTegDaAhHQJ+iJiSaEzx1fZQoaAZHQJ9DaW6bvw5oB03oA2gIR0Cfo85tFa0QdX2UKGgGR0Ce8OAaNuLraAdN6ANoCEdAn6nAE2YOUnV9lChoBkdAn0qSlrM1TGgHTegDaAhHQJ+sbp+tr9F1fZQoaAZHQJ2vPAuZkTZoB03oA2gIR0CfsinHvMKUdX2UKGgGR0CdyA48lolEaAdN6ANoCEdAn7PSGBWge3V9lChoBkdAlzP5w4sEq2gHTegDaAhHQJ+5x+w1R+B1fZQoaAZHQJ1mWpZOi35oB03oA2gIR0CfvHKL876pdX2UKGgGR0CaDPTYukDZaAdN6ANoCEdAn8InizcAR3V9lChoBkdAmvuvaxoqTmgHTegDaAhHQJ/D0Ajps411fZQoaAZHQJmF7HDJlrdoB03oA2gIR0Cfyb7LdN34dX2UKGgGR0CaajZydWhiaAdN6ANoCEdAn8xmG/N7jXV9lChoBkdAnj10w35vcmgHTegDaAhHQJ/SFnTRYzV1fZQoaAZHQJv2JoXbdrRoB03oA2gIR0Cf07/ag261dX2UKGgGR0Cfd6D+R5kcaAdN6ANoCEdAn9mqZhKDkHV9lChoBkdAni+Ya99MK2gHTegDaAhHQJ/cU+3Ytg91fZQoaAZHQJ1VlxtHhCNoB03oA2gIR0Cf4gfEXLvDdX2UKGgGR0CfYe+TeO4oaAdN6ANoCEdAn+OvXwsoUnV9lChoBkdAmfSv3BYV7GgHTegDaAhHQJ/pqCZnctZ1fZQoaAZHQJRbLPQfIS1oB03oA2gIR0Cf7Fm4y44IdX2UKGgGR0CaRnVYISlFaAdN6ANoCEdAn/IbKRuCPXV9lChoBkdAncT+rQw9JWgHTegDaAhHQJ/zxZq20At1fZQoaAZHQJryd3aBZp1oB03oA2gIR0Cf+bsoUi6hdX2UKGgGR0CfVLMB6rvLaAdN6ANoCEdAn/xn9JjDsXV9lChoBkdAng2/sqril2gHTegDaAhHQKABEljVhCt1fZQoaAZHQJ0hBD5TIeZoB03oA2gIR0CgAefQjUutdX2UKGgGR0CdnsbSJCSiaAdN6ANoCEdAoATnggow23V9lChoBkdAkUHORDCxeWgHTegDaAhHQKAGP2ys0YV1fZQoaAZHQJmHyBI4EOloB03oA2gIR0CgCR5dnkDIdX2UKGgGR0CW5nCv5gw5aAdN6ANoCEdAoAn2ki2UjnV9lChoBkdAkLSt2X9it2gHTegDaAhHQKAM+Hpr1ul1fZQoaAZHQJl3Zkd3jdZoB03oA2gIR0CgDlCzsyBTdX2UKGgGR0CWq3/KhcqwaAdN6ANoCEdAoBE1twaR6nV9lChoBkdAmd/xzNliB2gHTegDaAhHQKASC7wKBup1fZQoaAZHQIllcFwDNhVoB03oA2gIR0CgFQ6uOjqOdX2UKGgGR0CXJygEEC/5aAdN6ANoCEdAoBZmr2g3+HV9lChoBkdAmIew4wRGt2gHTegDaAhHQKAZRjhDPWx1fZQoaAZHQJxOPgGbCrNoB03oA2gIR0CgGhr5qM3qdX2UKGgGR0Cb/4otL+PzaAdN6ANoCEdAoB0WGGmDUXV9lChoBkdAnd6vEjxCpmgHTegDaAhHQKAebG+9Jz11fZQoaAZHQJwdo/zJ6ppoB03oA2gIR0CgIUtxVAAydX2UKGgGR0Cd+Ft+1Bt2aAdN6ANoCEdAoCIiDXe3yHV9lChoBkdAiH8GIbfgrGgHTegDaAhHQKAlJG5tm+V1fZQoaAZHQJl4fOY6XBxoB03oA2gIR0CgJns/pt78dX2UKGgGR0CadIr7fpEAaAdN6ANoCEdAoClaZ2IO6XV9lChoBkdAmFFRLwnYx2gHTegDaAhHQKAqMiSq2jR1fZQoaAZHQJW+qZw4sEtoB03oA2gIR0CgLTEDQqqfdX2UKGgGR0CXv1ce8wpOaAdN6ANoCEdAoC6HnSv1UXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (829 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1501.2545348396875, "std_reward": 245.64971482628053, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T13:15:54.545283"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e96304dbf8f141ae2627c2930536cb293af3733ccccf125fa11297b9987b9a0e
|
3 |
+
size 2136
|