Rodrigo1771 commited on
Commit
3887b64
1 Parent(s): c691ace

Model save

Browse files
README.md CHANGED
@@ -1,11 +1,9 @@
1
  ---
2
- license: apache-2.0
3
- base_model: michiyasunaga/BioLinkBERT-base
4
  tags:
5
- - token-classification
6
  - generated_from_trainer
7
  datasets:
8
- - Rodrigo1771/drugtemist-en-ner
9
  metrics:
10
  - precision
11
  - recall
@@ -18,24 +16,24 @@ model-index:
18
  name: Token Classification
19
  type: token-classification
20
  dataset:
21
- name: Rodrigo1771/drugtemist-en-ner
22
- type: Rodrigo1771/drugtemist-en-ner
23
- config: DrugTEMIST English NER
24
  split: validation
25
- args: DrugTEMIST English NER
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.9327102803738317
30
  - name: Recall
31
  type: recall
32
- value: 0.9301025163094129
33
  - name: F1
34
  type: f1
35
- value: 0.9314045730284647
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9986953367008066
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,13 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # output
45
 
46
- This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-ner dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0056
49
- - Precision: 0.9327
50
- - Recall: 0.9301
51
- - F1: 0.9314
52
- - Accuracy: 0.9987
53
 
54
  ## Model description
55
 
@@ -82,16 +80,16 @@ The following hyperparameters were used during training:
82
 
83
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
84
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
85
- | No log | 1.0 | 434 | 0.0057 | 0.8938 | 0.8938 | 0.8938 | 0.9981 |
86
- | 0.0182 | 2.0 | 868 | 0.0044 | 0.9024 | 0.9301 | 0.9160 | 0.9985 |
87
- | 0.0039 | 3.0 | 1302 | 0.0045 | 0.9129 | 0.9282 | 0.9205 | 0.9987 |
88
- | 0.0024 | 4.0 | 1736 | 0.0051 | 0.8821 | 0.9348 | 0.9077 | 0.9983 |
89
- | 0.0017 | 5.0 | 2170 | 0.0057 | 0.9251 | 0.9320 | 0.9285 | 0.9986 |
90
- | 0.0012 | 6.0 | 2604 | 0.0061 | 0.9001 | 0.9236 | 0.9117 | 0.9984 |
91
- | 0.0009 | 7.0 | 3038 | 0.0056 | 0.9327 | 0.9301 | 0.9314 | 0.9987 |
92
- | 0.0009 | 8.0 | 3472 | 0.0068 | 0.9118 | 0.9348 | 0.9231 | 0.9986 |
93
- | 0.0006 | 9.0 | 3906 | 0.0072 | 0.9267 | 0.9310 | 0.9289 | 0.9987 |
94
- | 0.0004 | 10.0 | 4340 | 0.0073 | 0.9192 | 0.9329 | 0.9260 | 0.9986 |
95
 
96
 
97
  ### Framework versions
 
1
  ---
2
+ base_model: IVN-RIN/bioBIT
 
3
  tags:
 
4
  - generated_from_trainer
5
  datasets:
6
+ - drugtemist-it-ner
7
  metrics:
8
  - precision
9
  - recall
 
16
  name: Token Classification
17
  type: token-classification
18
  dataset:
19
+ name: drugtemist-it-ner
20
+ type: drugtemist-it-ner
21
+ config: DrugTEMIST Italian NER
22
  split: validation
23
+ args: DrugTEMIST Italian NER
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9328214971209213
28
  - name: Recall
29
  type: recall
30
+ value: 0.9409486931268151
31
  - name: F1
32
  type: f1
33
+ value: 0.936867469879518
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9988184887042326
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  # output
43
 
44
+ This model is a fine-tuned version of [IVN-RIN/bioBIT](https://huggingface.co/IVN-RIN/bioBIT) on the drugtemist-it-ner dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0067
47
+ - Precision: 0.9328
48
+ - Recall: 0.9409
49
+ - F1: 0.9369
50
+ - Accuracy: 0.9988
51
 
52
  ## Model description
53
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 425 | 0.0056 | 0.8672 | 0.9226 | 0.8940 | 0.9981 |
84
+ | 0.0104 | 2.0 | 850 | 0.0042 | 0.9151 | 0.9284 | 0.9217 | 0.9986 |
85
+ | 0.0034 | 3.0 | 1275 | 0.0043 | 0.9182 | 0.9129 | 0.9155 | 0.9985 |
86
+ | 0.0022 | 4.0 | 1700 | 0.0044 | 0.9365 | 0.9138 | 0.9250 | 0.9986 |
87
+ | 0.0012 | 5.0 | 2125 | 0.0061 | 0.9107 | 0.9284 | 0.9195 | 0.9985 |
88
+ | 0.0009 | 6.0 | 2550 | 0.0060 | 0.9104 | 0.9342 | 0.9221 | 0.9987 |
89
+ | 0.0009 | 7.0 | 2975 | 0.0065 | 0.9230 | 0.9400 | 0.9314 | 0.9987 |
90
+ | 0.0005 | 8.0 | 3400 | 0.0059 | 0.9258 | 0.9303 | 0.9281 | 0.9987 |
91
+ | 0.0004 | 9.0 | 3825 | 0.0066 | 0.9255 | 0.9380 | 0.9317 | 0.9987 |
92
+ | 0.0001 | 10.0 | 4250 | 0.0067 | 0.9328 | 0.9409 | 0.9369 | 0.9988 |
93
 
94
 
95
  ### Framework versions
tb/events.out.tfevents.1725054888.6b97e535edda.43233.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0778b98e7a0b67111af5f3b6bd3dfdfd81d762456b8f6045a2b33aa9ec6416b1
3
- size 10970
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:220dbeee6287faaf62206a0c9a0609807fa6e7c7aaed1492d44e9eed981b8117
3
+ size 11796
train.log CHANGED
@@ -1323,3 +1323,16 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1323
  [INFO|trainer.py:2621] 2024-08-30 22:15:49,390 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4250 (score: 0.936867469879518).
1324
 
1325
 
1326
  [INFO|trainer.py:4239] 2024-08-30 22:15:49,547 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323
  [INFO|trainer.py:2621] 2024-08-30 22:15:49,390 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4250 (score: 0.936867469879518).
1324
 
1325
 
1326
  [INFO|trainer.py:4239] 2024-08-30 22:15:49,547 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
1327
+ [INFO|trainer.py:3478] 2024-08-30 22:15:55,114 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1328
+ [INFO|configuration_utils.py:472] 2024-08-30 22:15:55,165 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1329
+ [INFO|modeling_utils.py:2690] 2024-08-30 22:15:56,339 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1330
+ [INFO|tokenization_utils_base.py:2574] 2024-08-30 22:15:56,340 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1331
+ [INFO|tokenization_utils_base.py:2583] 2024-08-30 22:15:56,340 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1332
+ [INFO|trainer.py:3478] 2024-08-30 22:15:56,353 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1333
+ [INFO|configuration_utils.py:472] 2024-08-30 22:15:56,355 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1334
+ [INFO|modeling_utils.py:2690] 2024-08-30 22:15:57,511 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1335
+ [INFO|tokenization_utils_base.py:2574] 2024-08-30 22:15:57,512 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1336
+ [INFO|tokenization_utils_base.py:2583] 2024-08-30 22:15:57,513 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1337
+ {'eval_loss': 0.006724909413605928, 'eval_precision': 0.9328214971209213, 'eval_recall': 0.9409486931268151, 'eval_f1': 0.936867469879518, 'eval_accuracy': 0.9988184887042326, 'eval_runtime': 14.3451, 'eval_samples_per_second': 473.891, 'eval_steps_per_second': 59.254, 'epoch': 10.0}
1338
+ {'train_runtime': 1261.5031, 'train_samples_per_second': 215.6, 'train_steps_per_second': 3.369, 'train_loss': 0.0022696754537961062, 'epoch': 10.0}
1339
+