Model save
Browse files- README.md +25 -26
- tb/events.out.tfevents.1725901915.0a1c9bec2a53.90165.0 +2 -2
- train.log +13 -0
README.md
CHANGED
@@ -2,10 +2,9 @@
|
|
2 |
library_name: transformers
|
3 |
base_model: IVN-RIN/bioBIT
|
4 |
tags:
|
5 |
-
- token-classification
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
-
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
@@ -18,24 +17,24 @@ model-index:
|
|
18 |
name: Token Classification
|
19 |
type: token-classification
|
20 |
dataset:
|
21 |
-
name:
|
22 |
-
type:
|
23 |
config: DrugTEMIST Italian NER
|
24 |
split: validation
|
25 |
args: DrugTEMIST Italian NER
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# output
|
45 |
|
46 |
-
This model is a fine-tuned version of [IVN-RIN/bioBIT](https://huggingface.co/IVN-RIN/bioBIT) on the
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -80,18 +79,18 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
### Training results
|
82 |
|
83 |
-
| Training Loss | Epoch
|
84 |
-
|
85 |
-
| No log |
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.0011 |
|
90 |
-
| 0.0007 | 6.0
|
91 |
-
| 0.0005 |
|
92 |
-
| 0.
|
93 |
-
| 0.0002 |
|
94 |
-
| 0.0001 |
|
95 |
|
96 |
|
97 |
### Framework versions
|
|
|
2 |
library_name: transformers
|
3 |
base_model: IVN-RIN/bioBIT
|
4 |
tags:
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
+
- drugtemist-it-fasttext-85-ner
|
8 |
metrics:
|
9 |
- precision
|
10 |
- recall
|
|
|
17 |
name: Token Classification
|
18 |
type: token-classification
|
19 |
dataset:
|
20 |
+
name: drugtemist-it-fasttext-85-ner
|
21 |
+
type: drugtemist-it-fasttext-85-ner
|
22 |
config: DrugTEMIST Italian NER
|
23 |
split: validation
|
24 |
args: DrugTEMIST Italian NER
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9211538461538461
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9273959341723137
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9242643511818619
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9986302259153467
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# output
|
44 |
|
45 |
+
This model is a fine-tuned version of [IVN-RIN/bioBIT](https://huggingface.co/IVN-RIN/bioBIT) on the drugtemist-it-fasttext-85-ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0080
|
48 |
+
- Precision: 0.9212
|
49 |
+
- Recall: 0.9274
|
50 |
+
- F1: 0.9243
|
51 |
+
- Accuracy: 0.9986
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
+
| No log | 0.9989 | 451 | 0.0051 | 0.9326 | 0.8703 | 0.9004 | 0.9984 |
|
85 |
+
| 0.0116 | 2.0 | 903 | 0.0049 | 0.9066 | 0.9206 | 0.9135 | 0.9985 |
|
86 |
+
| 0.0034 | 2.9989 | 1354 | 0.0056 | 0.8990 | 0.9216 | 0.9101 | 0.9984 |
|
87 |
+
| 0.0018 | 4.0 | 1806 | 0.0066 | 0.9094 | 0.9235 | 0.9164 | 0.9985 |
|
88 |
+
| 0.0011 | 4.9989 | 2257 | 0.0056 | 0.9082 | 0.9293 | 0.9187 | 0.9986 |
|
89 |
+
| 0.0007 | 6.0 | 2709 | 0.0068 | 0.9145 | 0.9109 | 0.9127 | 0.9985 |
|
90 |
+
| 0.0005 | 6.9989 | 3160 | 0.0076 | 0.8880 | 0.9284 | 0.9077 | 0.9984 |
|
91 |
+
| 0.0003 | 8.0 | 3612 | 0.0080 | 0.9094 | 0.9235 | 0.9164 | 0.9986 |
|
92 |
+
| 0.0002 | 8.9989 | 4063 | 0.0078 | 0.9162 | 0.9206 | 0.9184 | 0.9986 |
|
93 |
+
| 0.0001 | 9.9889 | 4510 | 0.0080 | 0.9212 | 0.9274 | 0.9243 | 0.9986 |
|
94 |
|
95 |
|
96 |
### Framework versions
|
tb/events.out.tfevents.1725901915.0a1c9bec2a53.90165.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d63946caf4f9ca0b3280d0fc5eccabd9aef94a286d7d6ea1cc1928df93ec63c
|
3 |
+
size 12077
|
train.log
CHANGED
@@ -1566,3 +1566,16 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1566 |
[INFO|trainer.py:2632] 2024-09-09 17:53:06,832 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4510 (score: 0.9242643511818619).
|
1567 |
|
1568 |
|
1569 |
[INFO|trainer.py:4283] 2024-09-09 17:53:07,002 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1566 |
[INFO|trainer.py:2632] 2024-09-09 17:53:06,832 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4510 (score: 0.9242643511818619).
|
1567 |
|
1568 |
|
1569 |
[INFO|trainer.py:4283] 2024-09-09 17:53:07,002 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
|
1570 |
+
[INFO|trainer.py:3503] 2024-09-09 17:53:10,989 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1571 |
+
[INFO|configuration_utils.py:472] 2024-09-09 17:53:10,991 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1572 |
+
[INFO|modeling_utils.py:2799] 2024-09-09 17:53:12,201 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1573 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 17:53:12,202 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1574 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 17:53:12,203 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1575 |
+
[INFO|trainer.py:3503] 2024-09-09 17:53:12,216 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1576 |
+
[INFO|configuration_utils.py:472] 2024-09-09 17:53:12,218 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1577 |
+
[INFO|modeling_utils.py:2799] 2024-09-09 17:53:13,356 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1578 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 17:53:13,357 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1579 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 17:53:13,357 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1580 |
+
{'eval_loss': 0.007998762652277946, 'eval_precision': 0.9211538461538461, 'eval_recall': 0.9273959341723137, 'eval_f1': 0.9242643511818619, 'eval_accuracy': 0.9986302259153467, 'eval_runtime': 17.8292, 'eval_samples_per_second': 381.284, 'eval_steps_per_second': 47.675, 'epoch': 9.99}
|
1581 |
+
{'train_runtime': 2471.8222, 'train_samples_per_second': 116.817, 'train_steps_per_second': 1.825, 'train_loss': 0.002201940788383577, 'epoch': 9.99}
|
1582 |
+
|