Rodrigo1771 commited on
Commit
ad7d5c6
·
verified ·
1 Parent(s): 57ca99c

Training in progress, epoch 0

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: michiyasunaga/BioLinkBERT-base
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/drugtemist-en-fasttext-85-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/drugtemist-en-fasttext-85-ner
23
+ type: Rodrigo1771/drugtemist-en-fasttext-85-ner
24
+ config: DrugTEMIST English NER
25
+ split: validation
26
+ args: DrugTEMIST English NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.925
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.9310344827586207
34
+ - name: F1
35
+ type: f1
36
+ value: 0.9280074314909428
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.9986883598917199
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-85-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.0077
50
+ - Precision: 0.925
51
+ - Recall: 0.9310
52
+ - F1: 0.9280
53
+ - Accuracy: 0.9987
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | No log | 1.0 | 448 | 0.0054 | 0.9404 | 0.8975 | 0.9185 | 0.9986 |
87
+ | 0.016 | 2.0 | 896 | 0.0045 | 0.9162 | 0.9171 | 0.9166 | 0.9986 |
88
+ | 0.0039 | 3.0 | 1344 | 0.0058 | 0.9064 | 0.9385 | 0.9222 | 0.9985 |
89
+ | 0.0022 | 4.0 | 1792 | 0.0057 | 0.8963 | 0.9348 | 0.9151 | 0.9985 |
90
+ | 0.0017 | 5.0 | 2240 | 0.0060 | 0.9178 | 0.9366 | 0.9271 | 0.9987 |
91
+ | 0.0012 | 6.0 | 2688 | 0.0063 | 0.9254 | 0.9254 | 0.9254 | 0.9987 |
92
+ | 0.0008 | 7.0 | 3136 | 0.0069 | 0.9130 | 0.9394 | 0.9260 | 0.9986 |
93
+ | 0.0005 | 8.0 | 3584 | 0.0069 | 0.9214 | 0.9292 | 0.9253 | 0.9986 |
94
+ | 0.0004 | 9.0 | 4032 | 0.0077 | 0.9249 | 0.9292 | 0.9270 | 0.9987 |
95
+ | 0.0004 | 10.0 | 4480 | 0.0077 | 0.925 | 0.9310 | 0.9280 | 0.9987 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9986883598917199,
4
+ "eval_f1": 0.9280074314909428,
5
+ "eval_loss": 0.007708101533353329,
6
+ "eval_precision": 0.925,
7
+ "eval_recall": 0.9310344827586207,
8
+ "eval_runtime": 15.1013,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 459.961,
11
+ "eval_steps_per_second": 57.545,
12
+ "predict_accuracy": 0.9986842934577083,
13
+ "predict_f1": 0.9187817258883249,
14
+ "predict_loss": 0.007964327931404114,
15
+ "predict_precision": 0.8930921052631579,
16
+ "predict_recall": 0.945993031358885,
17
+ "predict_runtime": 28.3853,
18
+ "predict_samples_per_second": 518.402,
19
+ "predict_steps_per_second": 64.822,
20
+ "total_flos": 1.178126279062056e+16,
21
+ "train_loss": 0.0030171065125614406,
22
+ "train_runtime": 1889.6824,
23
+ "train_samples": 28668,
24
+ "train_samples_per_second": 151.708,
25
+ "train_steps_per_second": 2.371
26
+ }
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "michiyasunaga/BioLinkBERT-base",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "finetuning_task": "ner",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "O",
15
+ "1": "B-FARMACO",
16
+ "2": "I-FARMACO"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "B-FARMACO": 1,
22
+ "I-FARMACO": 2,
23
+ "O": 0
24
+ },
25
+ "layer_norm_eps": 1e-12,
26
+ "max_position_embeddings": 512,
27
+ "model_type": "bert",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pad_token_id": 0,
31
+ "position_embedding_type": "absolute",
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.44.2",
34
+ "type_vocab_size": 2,
35
+ "use_cache": true,
36
+ "vocab_size": 28895
37
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9986883598917199,
4
+ "eval_f1": 0.9280074314909428,
5
+ "eval_loss": 0.007708101533353329,
6
+ "eval_precision": 0.925,
7
+ "eval_recall": 0.9310344827586207,
8
+ "eval_runtime": 15.1013,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 459.961,
11
+ "eval_steps_per_second": 57.545
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40611e818e2049888ec8971082e2927ce2ade5b2fe28c152dda7ca60aee8e8c8
3
+ size 430601004
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9986842934577083,
3
+ "predict_f1": 0.9187817258883249,
4
+ "predict_loss": 0.007964327931404114,
5
+ "predict_precision": 0.8930921052631579,
6
+ "predict_recall": 0.945993031358885,
7
+ "predict_runtime": 28.3853,
8
+ "predict_samples_per_second": 518.402,
9
+ "predict_steps_per_second": 64.822
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tb/events.out.tfevents.1725881335.0a1c9bec2a53.3232.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593e737686a00ae0f64a94f2ef02389ad7dff30c0ba6a6f2b1c65ac31e873867
3
+ size 11302
tb/events.out.tfevents.1725882696.0a1c9bec2a53.3232.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05ecdc6d00855fb66deb25a7b5be160aa0ebb2ebe07a43beb7d88fb0430fb141
3
+ size 560
tb/events.out.tfevents.1725882852.0a1c9bec2a53.9893.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:543df15001da008ba822f9c1ebf4f77259f803cbf1c5758f2da70bdbf003d86f
3
+ size 11091
tb/events.out.tfevents.1725883955.0a1c9bec2a53.9893.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b842d84c89f0d88706e31e98b113fae6b45879220115930147db648f848a8c24
3
+ size 560
tb/events.out.tfevents.1725884095.0a1c9bec2a53.15221.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a5eb73def06ef281d6c5abe9cbb6a47c633f2d7191b334dbe5cbead1c284e80
3
+ size 10880
tb/events.out.tfevents.1725885059.0a1c9bec2a53.15221.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c793a2eec8072a81c25e2f78d3ef7bcf74abbe37e32354df7dcda008aa71eda
3
+ size 560
tb/events.out.tfevents.1725885168.0a1c9bec2a53.19825.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0f9a2adaf22b0a47090405af62255c59f8c395faf6fe62ec62fa970d9063713
3
+ size 10880
tb/events.out.tfevents.1725886061.0a1c9bec2a53.19825.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa09451db71ecc3a737f5726105cdc310a150c4cd36e427e1f2dad13956046fd
3
+ size 560
tb/events.out.tfevents.1725886210.0a1c9bec2a53.24273.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a173893ab6ea4bae83ba8f7d43d877ca16a06c53d30cb7f414ae20737d881888
3
+ size 12305
tb/events.out.tfevents.1725888457.0a1c9bec2a53.24273.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bb5583c37fdbd9ea659142a09fba0fae95a78d6f0eaac64a0292bc00e64215d
3
+ size 560
tb/events.out.tfevents.1725888716.0a1c9bec2a53.34821.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90e8e7961730149c6c235f6c85cd7c14fbfd2b133f0d765a77e4ff36d922e037
3
+ size 12094
tb/events.out.tfevents.1725890856.0a1c9bec2a53.34821.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e48c8b756097d535fb92e12d532058c15666eb7d5fe08ece1421f853f8616afe
3
+ size 560
tb/events.out.tfevents.1725891307.0a1c9bec2a53.45801.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b59ea71e16013960515c0ea3aec0462f8d6295f502eaf0ddccffb7136d4244c
3
+ size 11883
tb/events.out.tfevents.1725893247.0a1c9bec2a53.45801.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eb0ea5376593c677f9f45e198627a38538984ad7f53adc631503b0e4a5e2fee
3
+ size 560
tb/events.out.tfevents.1725893713.0a1c9bec2a53.55811.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65b143233c7e274fae4af7647d01071caef7613f9ad0ff20f0e66bf331518c3d
3
+ size 5593
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
train.log ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/4350 [00:00<?, ?it/s]
1
  0%| | 1/4350 [00:01<1:26:47, 1.20s/it]
2
  0%| | 2/4350 [00:01<48:19, 1.50it/s]
3
  0%| | 3/4350 [00:01<35:09, 2.06it/s]
4
  0%| | 4/4350 [00:02<34:11, 2.12it/s]
5
  0%| | 5/4350 [00:02<32:13, 2.25it/s]
6
  0%| | 6/4350 [00:03<31:07, 2.33it/s]
7
  0%| | 7/4350 [00:03<27:29, 2.63it/s]
8
  0%| | 8/4350 [00:03<29:39, 2.44it/s]
9
  0%| | 9/4350 [00:04<29:25, 2.46it/s]
10
  0%| | 10/4350 [00:04<28:28, 2.54it/s]
11
  0%| | 11/4350 [00:05<30:37, 2.36it/s]
12
  0%| | 12/4350 [00:05<29:55, 2.42it/s]
13
  0%| | 13/4350 [00:05<28:12, 2.56it/s]
14
  0%| | 14/4350 [00:06<25:29, 2.84it/s]
15
  0%| | 15/4350 [00:06<25:23, 2.84it/s]
16
  0%| | 16/4350 [00:06<26:41, 2.71it/s]
17
  0%| | 17/4350 [00:07<25:02, 2.88it/s]
18
  0%| | 18/4350 [00:07<27:48, 2.60it/s]
19
  0%| | 19/4350 [00:07<24:49, 2.91it/s]
20
  0%| | 20/4350 [00:08<24:27, 2.95it/s]
21
  0%| | 21/4350 [00:08<31:17, 2.31it/s]
22
  1%| | 22/4350 [00:09<28:58, 2.49it/s]
23
  1%| | 23/4350 [00:09<28:39, 2.52it/s]
24
  1%| | 24/4350 [00:09<27:03, 2.66it/s]
25
  1%| | 25/4350 [00:10<27:26, 2.63it/s]
26
  1%| | 26/4350 [00:10<27:22, 2.63it/s]
27
  1%| | 27/4350 [00:10<24:40, 2.92it/s]
28
  1%| | 28/4350 [00:11<24:44, 2.91it/s]
29
  1%| | 29/4350 [00:11<24:42, 2.92it/s]
30
  1%| | 30/4350 [00:11<24:17, 2.96it/s]
31
  1%| | 31/4350 [00:12<24:57, 2.88it/s]
32
  1%| | 32/4350 [00:12<24:02, 2.99it/s]
33
  1%| | 33/4350 [00:12<25:04, 2.87it/s]
34
  1%| | 34/4350 [00:13<24:17, 2.96it/s]
35
  1%| | 35/4350 [00:13<24:21, 2.95it/s]
36
  1%| | 36/4350 [00:13<25:29, 2.82it/s]
37
  1%| | 37/4350 [00:14<24:33, 2.93it/s]
38
  1%| | 38/4350 [00:14<23:11, 3.10it/s]
39
  1%| | 39/4350 [00:14<25:50, 2.78it/s]
40
  1%| | 40/4350 [00:15<29:44, 2.42it/s]
41
  1%| | 41/4350 [00:15<29:19, 2.45it/s]
42
  1%| | 42/4350 [00:16<28:55, 2.48it/s]
43
  1%| | 43/4350 [00:16<30:34, 2.35it/s]
44
  1%| | 44/4350 [00:17<28:24, 2.53it/s]
45
  1%| | 45/4350 [00:17<28:44, 2.50it/s]
46
  1%| | 46/4350 [00:17<28:03, 2.56it/s]
47
  1%| | 47/4350 [00:18<28:46, 2.49it/s]
48
  1%| | 48/4350 [00:18<27:34, 2.60it/s]
49
  1%| | 49/4350 [00:18<25:37, 2.80it/s]
50
  1%| | 50/4350 [00:19<25:17, 2.83it/s]
51
  1%| | 51/4350 [00:19<26:12, 2.73it/s]
52
  1%| | 52/4350 [00:20<25:24, 2.82it/s]
53
  1%| | 53/4350 [00:20<24:51, 2.88it/s]
54
  1%| | 54/4350 [00:20<28:45, 2.49it/s]
55
  1%|▏ | 55/4350 [00:21<26:33, 2.70it/s]
56
  1%|▏ | 56/4350 [00:21<23:51, 3.00it/s]
57
  1%|▏ | 57/4350 [00:21<26:54, 2.66it/s]
58
  1%|▏ | 58/4350 [00:22<28:44, 2.49it/s]
59
  1%|▏ | 59/4350 [00:22<30:49, 2.32it/s]
60
  1%|▏ | 60/4350 [00:23<29:21, 2.44it/s]
61
  1%|▏ | 61/4350 [00:23<27:50, 2.57it/s]
62
  1%|▏ | 62/4350 [00:23<26:32, 2.69it/s]
63
  1%|▏ | 63/4350 [00:24<27:12, 2.63it/s]
64
  1%|▏ | 64/4350 [00:24<29:29, 2.42it/s]
65
  1%|▏ | 65/4350 [00:25<26:34, 2.69it/s]
66
  2%|▏ | 66/4350 [00:25<25:51, 2.76it/s]
67
  2%|▏ | 67/4350 [00:25<25:44, 2.77it/s]
68
  2%|▏ | 68/4350 [00:26<28:14, 2.53it/s]
69
  2%|▏ | 69/4350 [00:26<26:22, 2.71it/s]
70
  2%|▏ | 70/4350 [00:26<25:55, 2.75it/s]
71
  2%|▏ | 71/4350 [00:27<25:53, 2.75it/s]
72
  2%|▏ | 72/4350 [00:27<24:28, 2.91it/s]
73
  2%|▏ | 73/4350 [00:27<23:34, 3.02it/s]
74
  2%|▏ | 74/4350 [00:28<28:47, 2.48it/s]
75
  2%|▏ | 75/4350 [00:28<27:12, 2.62it/s]
76
  2%|▏ | 76/4350 [00:29<26:36, 2.68it/s]
77
  2%|▏ | 77/4350 [00:29<25:00, 2.85it/s]
78
  2%|▏ | 78/4350 [00:29<25:03, 2.84it/s]
79
  2%|▏ | 79/4350 [00:30<24:07, 2.95it/s]
80
  2%|▏ | 80/4350 [00:30<28:37, 2.49it/s]
81
  2%|▏ | 81/4350 [00:31<28:27, 2.50it/s]
82
  2%|▏ | 82/4350 [00:31<26:29, 2.68it/s]
83
  2%|▏ | 83/4350 [00:31<25:48, 2.75it/s]
84
  2%|▏ | 84/4350 [00:32<29:21, 2.42it/s]
85
  2%|▏ | 85/4350 [00:32<28:18, 2.51it/s]
86
  2%|▏ | 86/4350 [00:32<27:17, 2.60it/s]
87
  2%|▏ | 87/4350 [00:33<24:25, 2.91it/s]
88
  2%|▏ | 88/4350 [00:33<23:17, 3.05it/s]
89
  2%|▏ | 89/4350 [00:33<22:39, 3.14it/s]
90
  2%|▏ | 90/4350 [00:34<23:57, 2.96it/s]
91
  2%|▏ | 91/4350 [00:34<24:14, 2.93it/s]
92
  2%|▏ | 92/4350 [00:34<25:34, 2.77it/s]
93
  2%|▏ | 93/4350 [00:35<25:50, 2.75it/s]
94
  2%|▏ | 94/4350 [00:35<25:12, 2.81it/s]
95
  2%|▏ | 95/4350 [00:35<25:13, 2.81it/s]
96
  2%|▏ | 96/4350 [00:36<26:06, 2.72it/s]
97
  2%|▏ | 97/4350 [00:36<26:14, 2.70it/s]
98
  2%|▏ | 98/4350 [00:37<25:29, 2.78it/s]
99
  2%|▏ | 99/4350 [00:37<23:56, 2.96it/s]
100
  2%|▏ | 100/4350 [00:37<25:47, 2.75it/s]
101
  2%|▏ | 101/4350 [00:38<25:40, 2.76it/s]
102
  2%|▏ | 102/4350 [00:38<26:57, 2.63it/s]
103
  2%|▏ | 103/4350 [00:38<25:28, 2.78it/s]
104
  2%|▏ | 104/4350 [00:39<25:48, 2.74it/s]
105
  2%|▏ | 105/4350 [00:39<24:48, 2.85it/s]
106
  2%|▏ | 106/4350 [00:39<23:25, 3.02it/s]
107
  2%|▏ | 107/4350 [00:40<21:57, 3.22it/s]
108
  2%|▏ | 108/4350 [00:40<22:23, 3.16it/s]
109
  3%|▎ | 109/4350 [00:40<21:53, 3.23it/s]
110
  3%|▎ | 110/4350 [00:41<22:42, 3.11it/s]
111
  3%|▎ | 111/4350 [00:41<23:09, 3.05it/s]
112
  3%|▎ | 112/4350 [00:41<22:32, 3.13it/s]
113
  3%|▎ | 113/4350 [00:42<24:23, 2.90it/s]
114
  3%|▎ | 114/4350 [00:42<27:08, 2.60it/s]
115
  3%|▎ | 115/4350 [00:42<25:08, 2.81it/s]
116
  3%|▎ | 116/4350 [00:43<23:52, 2.96it/s]
117
  3%|▎ | 117/4350 [00:43<23:58, 2.94it/s]
118
  3%|▎ | 118/4350 [00:43<23:30, 3.00it/s]
119
  3%|▎ | 119/4350 [00:44<24:10, 2.92it/s]
120
  3%|▎ | 120/4350 [00:44<22:06, 3.19it/s]
121
  3%|▎ | 121/4350 [00:44<23:01, 3.06it/s]
122
  3%|▎ | 122/4350 [00:45<24:28, 2.88it/s]
123
  3%|▎ | 123/4350 [00:45<23:25, 3.01it/s]
124
  3%|▎ | 124/4350 [00:45<24:26, 2.88it/s]
125
  3%|▎ | 125/4350 [00:46<23:50, 2.95it/s]
126
  3%|▎ | 126/4350 [00:46<23:31, 2.99it/s]
127
  3%|▎ | 127/4350 [00:46<25:08, 2.80it/s]
128
  3%|▎ | 128/4350 [00:47<28:37, 2.46it/s]
129
  3%|▎ | 129/4350 [00:47<27:30, 2.56it/s]
130
  3%|▎ | 130/4350 [00:48<28:05, 2.50it/s]
131
  3%|▎ | 131/4350 [00:48<26:05, 2.69it/s]
132
  3%|▎ | 132/4350 [00:48<26:28, 2.66it/s]
133
  3%|▎ | 133/4350 [00:49<30:00, 2.34it/s]
134
  3%|▎ | 134/4350 [00:49<30:42, 2.29it/s]
135
  3%|▎ | 135/4350 [00:50<32:31, 2.16it/s]
136
  3%|▎ | 136/4350 [00:50<31:18, 2.24it/s]
137
  3%|▎ | 137/4350 [00:51<28:02, 2.50it/s]
138
  3%|▎ | 138/4350 [00:51<26:29, 2.65it/s]
139
  3%|▎ | 139/4350 [00:51<26:52, 2.61it/s]
140
  3%|▎ | 140/4350 [00:52<24:46, 2.83it/s]
141
  3%|▎ | 141/4350 [00:52<24:21, 2.88it/s]
142
  3%|▎ | 142/4350 [00:52<22:53, 3.06it/s]
143
  3%|▎ | 143/4350 [00:53<22:50, 3.07it/s]
144
  3%|▎ | 144/4350 [00:53<22:02, 3.18it/s]
145
  3%|▎ | 145/4350 [00:53<24:49, 2.82it/s]
146
  3%|▎ | 146/4350 [00:54<22:41, 3.09it/s]
147
  3%|▎ | 147/4350 [00:54<21:48, 3.21it/s]
148
  3%|▎ | 148/4350 [00:54<21:27, 3.26it/s]
149
  3%|▎ | 149/4350 [00:55<24:15, 2.89it/s]
150
  3%|▎ | 150/4350 [00:55<24:44, 2.83it/s]
151
  3%|▎ | 151/4350 [00:55<26:30, 2.64it/s]
152
  3%|▎ | 152/4350 [00:56<25:07, 2.78it/s]
153
  4%|▎ | 153/4350 [00:56<26:45, 2.61it/s]
154
  4%|▎ | 154/4350 [00:56<25:22, 2.76it/s]
155
  4%|▎ | 155/4350 [00:57<25:16, 2.77it/s]
156
  4%|▎ | 156/4350 [00:57<24:03, 2.91it/s]
157
  4%|▎ | 157/4350 [00:58<26:08, 2.67it/s]
158
  4%|▎ | 158/4350 [00:58<25:24, 2.75it/s]
159
  4%|▎ | 159/4350 [00:58<24:39, 2.83it/s]
160
  4%|▎ | 160/4350 [00:59<23:24, 2.98it/s]
161
  4%|▎ | 161/4350 [00:59<22:40, 3.08it/s]
162
  4%|▎ | 162/4350 [00:59<23:26, 2.98it/s]
163
  4%|▎ | 163/4350 [01:00<27:26, 2.54it/s]
164
  4%|▍ | 164/4350 [01:00<26:22, 2.65it/s]
165
  4%|▍ | 165/4350 [01:00<26:08, 2.67it/s]
166
  4%|▍ | 166/4350 [01:01<27:07, 2.57it/s]
167
  4%|▍ | 167/4350 [01:01<25:08, 2.77it/s]
168
  4%|▍ | 168/4350 [01:01<24:15, 2.87it/s]
169
  4%|▍ | 169/4350 [01:02<22:37, 3.08it/s]
170
  4%|▍ | 170/4350 [01:02<23:54, 2.91it/s]
171
  4%|▍ | 171/4350 [01:03<25:48, 2.70it/s]
172
  4%|▍ | 172/4350 [01:03<26:05, 2.67it/s]
173
  4%|▍ | 173/4350 [01:03<25:06, 2.77it/s]
174
  4%|▍ | 174/4350 [01:04<24:17, 2.86it/s]
175
  4%|▍ | 175/4350 [01:04<26:11, 2.66it/s]
176
  4%|▍ | 176/4350 [01:05<29:55, 2.32it/s]
177
  4%|▍ | 177/4350 [01:05<26:45, 2.60it/s]
178
  4%|▍ | 178/4350 [01:05<25:36, 2.72it/s]
179
  4%|▍ | 179/4350 [01:06<27:32, 2.52it/s]
180
  4%|▍ | 180/4350 [01:06<26:09, 2.66it/s]
181
  4%|▍ | 181/4350 [01:07<31:31, 2.20it/s]
182
  4%|▍ | 182/4350 [01:07<28:29, 2.44it/s]
183
  4%|▍ | 183/4350 [01:07<25:00, 2.78it/s]
184
  4%|▍ | 184/4350 [01:08<23:57, 2.90it/s]
185
  4%|▍ | 185/4350 [01:08<23:22, 2.97it/s]
186
  4%|▍ | 186/4350 [01:08<23:55, 2.90it/s]
187
  4%|▍ | 187/4350 [01:09<24:13, 2.86it/s]
188
  4%|▍ | 188/4350 [01:09<23:14, 2.98it/s]
189
  4%|▍ | 189/4350 [01:09<23:19, 2.97it/s]
190
  4%|▍ | 190/4350 [01:10<23:50, 2.91it/s]
191
  4%|▍ | 191/4350 [01:10<24:13, 2.86it/s]
192
  4%|▍ | 192/4350 [01:10<26:16, 2.64it/s]
193
  4%|▍ | 193/4350 [01:11<25:08, 2.76it/s]
194
  4%|▍ | 194/4350 [01:11<23:10, 2.99it/s]
195
  4%|▍ | 195/4350 [01:11<27:00, 2.56it/s]
196
  5%|▍ | 196/4350 [01:12<26:52, 2.58it/s]
197
  5%|▍ | 197/4350 [01:12<25:28, 2.72it/s]
198
  5%|▍ | 198/4350 [01:12<23:30, 2.94it/s]
199
  5%|▍ | 199/4350 [01:13<23:27, 2.95it/s]
200
  5%|▍ | 200/4350 [01:13<26:11, 2.64it/s]
201
  5%|▍ | 201/4350 [01:14<24:40, 2.80it/s]
202
  5%|▍ | 202/4350 [01:14<24:16, 2.85it/s]
203
  5%|▍ | 203/4350 [01:14<23:57, 2.88it/s]
204
  5%|▍ | 204/4350 [01:15<24:49, 2.78it/s]
205
  5%|▍ | 205/4350 [01:15<24:27, 2.82it/s]
206
  5%|▍ | 206/4350 [01:15<23:23, 2.95it/s]
207
  5%|▍ | 207/4350 [01:16<23:43, 2.91it/s]
208
  5%|▍ | 208/4350 [01:16<26:45, 2.58it/s]
209
  5%|▍ | 209/4350 [01:16<25:14, 2.73it/s]
210
  5%|▍ | 210/4350 [01:17<23:13, 2.97it/s]
211
  5%|▍ | 211/4350 [01:17<24:28, 2.82it/s]
212
  5%|▍ | 212/4350 [01:17<22:58, 3.00it/s]
213
  5%|▍ | 213/4350 [01:18<23:16, 2.96it/s]
214
  5%|▍ | 214/4350 [01:18<29:27, 2.34it/s]
215
  5%|▍ | 215/4350 [01:19<28:01, 2.46it/s]
216
  5%|▍ | 216/4350 [01:19<27:45, 2.48it/s]
217
  5%|▍ | 217/4350 [01:19<26:16, 2.62it/s]
218
  5%|▌ | 218/4350 [01:20<24:58, 2.76it/s]
219
  5%|▌ | 219/4350 [01:20<27:32, 2.50it/s]
220
  5%|▌ | 220/4350 [01:21<27:51, 2.47it/s]
221
  5%|▌ | 221/4350 [01:21<28:22, 2.43it/s]
222
  5%|▌ | 222/4350 [01:21<26:42, 2.58it/s]
223
  5%|▌ | 223/4350 [01:22<28:07, 2.45it/s]
224
  5%|▌ | 224/4350 [01:22<28:55, 2.38it/s]
225
  5%|▌ | 225/4350 [01:23<29:23, 2.34it/s]
226
  5%|▌ | 226/4350 [01:23<27:54, 2.46it/s]
227
  5%|▌ | 227/4350 [01:24<27:01, 2.54it/s]
228
  5%|▌ | 228/4350 [01:24<25:31, 2.69it/s]
229
  5%|▌ | 229/4350 [01:24<23:13, 2.96it/s]
230
  5%|▌ | 230/4350 [01:24<22:18, 3.08it/s]
231
  5%|▌ | 231/4350 [01:25<23:07, 2.97it/s]
232
  5%|▌ | 232/4350 [01:25<23:03, 2.98it/s]
233
  5%|▌ | 233/4350 [01:25<22:13, 3.09it/s]
234
  5%|▌ | 234/4350 [01:26<23:11, 2.96it/s]
235
  5%|▌ | 235/4350 [01:26<23:18, 2.94it/s]
236
  5%|▌ | 236/4350 [01:26<23:14, 2.95it/s]
237
  5%|▌ | 237/4350 [01:27<22:26, 3.05it/s]
238
  5%|▌ | 238/4350 [01:27<21:03, 3.25it/s]
239
  5%|▌ | 239/4350 [01:28<27:48, 2.46it/s]
240
  6%|▌ | 240/4350 [01:28<25:49, 2.65it/s]
241
  6%|▌ | 241/4350 [01:28<23:33, 2.91it/s]
242
  6%|▌ | 242/4350 [01:29<26:27, 2.59it/s]
243
  6%|▌ | 243/4350 [01:29<25:11, 2.72it/s]
244
  6%|▌ | 244/4350 [01:30<28:43, 2.38it/s]
245
  6%|▌ | 245/4350 [01:30<28:35, 2.39it/s]
246
  6%|▌ | 246/4350 [01:30<29:18, 2.33it/s]
247
  6%|▌ | 247/4350 [01:31<27:55, 2.45it/s]
248
  6%|▌ | 248/4350 [01:31<26:52, 2.54it/s]
249
  6%|▌ | 249/4350 [01:32<27:30, 2.48it/s]
250
  6%|▌ | 250/4350 [01:32<26:22, 2.59it/s]
251
  6%|▌ | 251/4350 [01:32<26:03, 2.62it/s]
252
  6%|▌ | 252/4350 [01:33<26:25, 2.59it/s]
253
  6%|▌ | 253/4350 [01:33<23:55, 2.85it/s]
254
  6%|▌ | 254/4350 [01:33<22:18, 3.06it/s]
255
  6%|▌ | 255/4350 [01:34<22:37, 3.02it/s]
256
  6%|▌ | 256/4350 [01:34<22:50, 2.99it/s]
257
  6%|▌ | 257/4350 [01:34<25:25, 2.68it/s]
258
  6%|▌ | 258/4350 [01:35<29:19, 2.33it/s]
259
  6%|▌ | 259/4350 [01:35<26:57, 2.53it/s]
260
  6%|▌ | 260/4350 [01:36<27:54, 2.44it/s]
261
  6%|▌ | 261/4350 [01:36<27:11, 2.51it/s]
262
  6%|▌ | 262/4350 [01:36<25:56, 2.63it/s]
263
  6%|▌ | 263/4350 [01:37<26:06, 2.61it/s]
264
  6%|▌ | 264/4350 [01:37<23:41, 2.87it/s]
265
  6%|▌ | 265/4350 [01:37<23:16, 2.93it/s]
266
  6%|▌ | 266/4350 [01:38<22:48, 2.98it/s]
267
  6%|▌ | 267/4350 [01:38<22:39, 3.00it/s]
268
  6%|▌ | 268/4350 [01:38<22:43, 2.99it/s]
269
  6%|▌ | 269/4350 [01:39<20:40, 3.29it/s]
270
  6%|▌ | 270/4350 [01:39<21:46, 3.12it/s]
271
  6%|▌ | 271/4350 [01:39<22:54, 2.97it/s]
272
  6%|▋ | 272/4350 [01:40<21:55, 3.10it/s]
273
  6%|▋ | 273/4350 [01:40<21:52, 3.11it/s]
274
  6%|▋ | 274/4350 [01:40<21:41, 3.13it/s]
275
  6%|▋ | 275/4350 [01:41<22:50, 2.97it/s]
276
  6%|▋ | 276/4350 [01:41<22:06, 3.07it/s]
277
  6%|▋ | 277/4350 [01:41<21:06, 3.22it/s]
278
  6%|▋ | 278/4350 [01:42<23:57, 2.83it/s]
279
  6%|▋ | 279/4350 [01:42<23:08, 2.93it/s]
280
  6%|▋ | 280/4350 [01:42<21:59, 3.09it/s]
281
  6%|▋ | 281/4350 [01:43<22:16, 3.04it/s]
282
  6%|▋ | 282/4350 [01:43<21:12, 3.20it/s]
283
  7%|▋ | 283/4350 [01:43<20:40, 3.28it/s]
284
  7%|▋ | 284/4350 [01:43<20:46, 3.26it/s]
285
  7%|▋ | 285/4350 [01:44<21:23, 3.17it/s]
286
  7%|▋ | 286/4350 [01:44<24:38, 2.75it/s]
287
  7%|▋ | 287/4350 [01:45<24:59, 2.71it/s]
288
  7%|▋ | 288/4350 [01:45<25:30, 2.65it/s]
289
  7%|▋ | 289/4350 [01:45<24:13, 2.79it/s]
290
  7%|▋ | 290/4350 [01:46<25:40, 2.64it/s]
291
  7%|▋ | 291/4350 [01:46<26:55, 2.51it/s]
292
  7%|▋ | 292/4350 [01:47<25:25, 2.66it/s]
293
  7%|▋ | 293/4350 [01:47<27:43, 2.44it/s]
294
  7%|▋ | 294/4350 [01:47<25:27, 2.66it/s]
295
  7%|▋ | 295/4350 [01:48<24:33, 2.75it/s]
296
  7%|▋ | 296/4350 [01:48<23:55, 2.82it/s]
297
  7%|▋ | 297/4350 [01:48<24:34, 2.75it/s]
298
  7%|▋ | 298/4350 [01:49<23:14, 2.91it/s]
299
  7%|▋ | 299/4350 [01:49<25:06, 2.69it/s]
300
  7%|▋ | 300/4350 [01:50<26:48, 2.52it/s]
301
  7%|▋ | 301/4350 [01:50<26:58, 2.50it/s]
302
  7%|▋ | 302/4350 [01:50<27:08, 2.49it/s]
303
  7%|▋ | 303/4350 [01:51<25:10, 2.68it/s]
304
  7%|▋ | 304/4350 [01:51<24:23, 2.76it/s]
305
  7%|▋ | 305/4350 [01:51<24:40, 2.73it/s]
306
  7%|▋ | 306/4350 [01:52<24:02, 2.80it/s]
307
  7%|▋ | 307/4350 [01:52<26:31, 2.54it/s]
308
  7%|▋ | 308/4350 [01:53<24:54, 2.70it/s]
309
  7%|▋ | 309/4350 [01:53<25:25, 2.65it/s]
310
  7%|▋ | 310/4350 [01:53<25:02, 2.69it/s]
311
  7%|▋ | 311/4350 [01:54<23:09, 2.91it/s]
312
  7%|▋ | 312/4350 [01:54<22:55, 2.94it/s]
313
  7%|▋ | 313/4350 [01:54<24:20, 2.76it/s]
314
  7%|▋ | 314/4350 [01:55<22:33, 2.98it/s]
315
  7%|▋ | 315/4350 [01:55<22:21, 3.01it/s]
316
  7%|▋ | 316/4350 [01:55<22:25, 3.00it/s]
317
  7%|▋ | 317/4350 [01:56<21:16, 3.16it/s]
318
  7%|▋ | 318/4350 [01:56<22:06, 3.04it/s]
319
  7%|▋ | 319/4350 [01:56<21:16, 3.16it/s]
320
  7%|▋ | 320/4350 [01:57<21:17, 3.15it/s]
321
  7%|▋ | 321/4350 [01:57<23:11, 2.89it/s]
322
  7%|▋ | 322/4350 [01:57<21:07, 3.18it/s]
323
  7%|▋ | 323/4350 [01:58<23:11, 2.89it/s]
324
  7%|▋ | 324/4350 [01:58<22:59, 2.92it/s]
325
  7%|▋ | 325/4350 [01:58<22:27, 2.99it/s]
326
  7%|▋ | 326/4350 [01:59<23:08, 2.90it/s]
327
  8%|▊ | 327/4350 [01:59<22:01, 3.04it/s]
328
  8%|▊ | 328/4350 [01:59<21:22, 3.14it/s]
329
  8%|▊ | 329/4350 [02:00<23:25, 2.86it/s]
330
  8%|▊ | 330/4350 [02:00<23:12, 2.89it/s]
331
  8%|▊ | 331/4350 [02:00<26:42, 2.51it/s]
332
  8%|▊ | 332/4350 [02:01<27:41, 2.42it/s]
333
  8%|▊ | 333/4350 [02:01<26:58, 2.48it/s]
334
  8%|▊ | 334/4350 [02:02<30:37, 2.19it/s]
335
  8%|▊ | 335/4350 [02:02<28:58, 2.31it/s]
336
  8%|▊ | 336/4350 [02:03<27:32, 2.43it/s]
337
  8%|▊ | 337/4350 [02:03<25:56, 2.58it/s]
338
  8%|▊ | 338/4350 [02:03<24:05, 2.77it/s]
339
  8%|▊ | 339/4350 [02:04<23:12, 2.88it/s]
340
  8%|▊ | 340/4350 [02:04<22:21, 2.99it/s]
341
  8%|▊ | 341/4350 [02:04<21:00, 3.18it/s]
342
  8%|▊ | 342/4350 [02:04<20:41, 3.23it/s]
343
  8%|▊ | 343/4350 [02:05<21:35, 3.09it/s]
344
  8%|▊ | 344/4350 [02:05<23:45, 2.81it/s]
345
  8%|▊ | 345/4350 [02:06<28:22, 2.35it/s]
346
  8%|▊ | 346/4350 [02:06<25:33, 2.61it/s]
347
  8%|▊ | 347/4350 [02:07<27:08, 2.46it/s]
348
  8%|▊ | 348/4350 [02:07<25:48, 2.58it/s]
349
  8%|▊ | 349/4350 [02:07<23:48, 2.80it/s]
350
  8%|▊ | 350/4350 [02:08<23:04, 2.89it/s]
351
  8%|▊ | 351/4350 [02:08<22:56, 2.91it/s]
352
  8%|▊ | 352/4350 [02:08<21:51, 3.05it/s]
353
  8%|▊ | 353/4350 [02:08<22:07, 3.01it/s]
354
  8%|▊ | 354/4350 [02:09<35:32, 1.87it/s]
355
  8%|▊ | 355/4350 [02:10<30:32, 2.18it/s]
356
  8%|▊ | 356/4350 [02:10<30:17, 2.20it/s]
357
  8%|▊ | 357/4350 [02:11<28:50, 2.31it/s]
358
  8%|▊ | 358/4350 [02:11<25:47, 2.58it/s]
359
  8%|▊ | 359/4350 [02:11<24:42, 2.69it/s]
360
  8%|▊ | 360/4350 [02:12<25:10, 2.64it/s]
361
  8%|▊ | 361/4350 [02:12<24:15, 2.74it/s]
362
  8%|▊ | 362/4350 [02:12<21:49, 3.04it/s]
363
  8%|▊ | 363/4350 [02:12<20:14, 3.28it/s]
364
  8%|▊ | 364/4350 [02:13<19:53, 3.34it/s]
365
  8%|▊ | 365/4350 [02:13<20:56, 3.17it/s]
366
  8%|▊ | 366/4350 [02:13<23:17, 2.85it/s]
367
  8%|▊ | 367/4350 [02:14<22:06, 3.00it/s]
368
  8%|▊ | 368/4350 [02:14<23:28, 2.83it/s]
369
  8%|▊ | 369/4350 [02:15<22:59, 2.89it/s]
370
  9%|▊ | 370/4350 [02:15<22:03, 3.01it/s]
371
  9%|▊ | 371/4350 [02:15<22:02, 3.01it/s]
372
  9%|▊ | 372/4350 [02:16<22:35, 2.94it/s]
373
  9%|▊ | 373/4350 [02:16<21:48, 3.04it/s]
374
  9%|▊ | 374/4350 [02:16<21:50, 3.03it/s]
375
  9%|▊ | 375/4350 [02:17<24:57, 2.65it/s]
376
  9%|▊ | 376/4350 [02:17<24:08, 2.74it/s]
377
  9%|▊ | 377/4350 [02:17<23:25, 2.83it/s]
378
  9%|▊ | 378/4350 [02:18<24:48, 2.67it/s]
379
  9%|▊ | 379/4350 [02:18<23:59, 2.76it/s]
380
  9%|▊ | 380/4350 [02:18<23:10, 2.86it/s]
381
  9%|▉ | 381/4350 [02:19<23:11, 2.85it/s]
382
  9%|▉ | 382/4350 [02:19<29:29, 2.24it/s]
383
  9%|▉ | 383/4350 [02:20<26:05, 2.53it/s]
384
  9%|▉ | 384/4350 [02:20<24:06, 2.74it/s]
385
  9%|▉ | 385/4350 [02:20<23:35, 2.80it/s]
386
  9%|▉ | 386/4350 [02:21<23:38, 2.79it/s]
387
  9%|▉ | 387/4350 [02:21<22:25, 2.95it/s]
388
  9%|▉ | 388/4350 [02:21<24:05, 2.74it/s]
389
  9%|▉ | 389/4350 [02:22<23:36, 2.80it/s]
390
  9%|▉ | 390/4350 [02:22<23:04, 2.86it/s]
391
  9%|▉ | 391/4350 [02:22<22:44, 2.90it/s]
392
  9%|▉ | 392/4350 [02:23<25:19, 2.60it/s]
393
  9%|▉ | 393/4350 [02:23<25:05, 2.63it/s]
394
  9%|▉ | 394/4350 [02:24<28:22, 2.32it/s]
395
  9%|▉ | 395/4350 [02:24<25:17, 2.61it/s]
396
  9%|▉ | 396/4350 [02:24<24:49, 2.65it/s]
397
  9%|▉ | 397/4350 [02:25<22:40, 2.91it/s]
398
  9%|▉ | 398/4350 [02:25<22:51, 2.88it/s]
399
  9%|▉ | 399/4350 [02:25<21:20, 3.08it/s]
400
  9%|▉ | 400/4350 [02:26<23:42, 2.78it/s]
401
  9%|▉ | 401/4350 [02:26<23:52, 2.76it/s]
402
  9%|▉ | 402/4350 [02:27<25:18, 2.60it/s]
403
  9%|▉ | 403/4350 [02:27<24:41, 2.66it/s]
404
  9%|▉ | 404/4350 [02:27<25:02, 2.63it/s]
405
  9%|▉ | 405/4350 [02:28<24:03, 2.73it/s]
406
  9%|▉ | 406/4350 [02:28<27:48, 2.36it/s]
407
  9%|▉ | 407/4350 [02:29<28:03, 2.34it/s]
408
  9%|▉ | 408/4350 [02:29<25:54, 2.54it/s]
409
  9%|▉ | 409/4350 [02:29<24:35, 2.67it/s]
410
  9%|▉ | 410/4350 [02:30<22:41, 2.89it/s]
411
  9%|▉ | 411/4350 [02:30<23:52, 2.75it/s]
412
  9%|▉ | 412/4350 [02:30<25:11, 2.60it/s]
413
  9%|▉ | 413/4350 [02:31<24:47, 2.65it/s]
414
  10%|▉ | 414/4350 [02:31<26:37, 2.46it/s]
415
  10%|▉ | 415/4350 [02:32<25:33, 2.57it/s]
416
  10%|▉ | 416/4350 [02:32<24:17, 2.70it/s]
417
  10%|▉ | 417/4350 [02:32<23:41, 2.77it/s]
418
  10%|▉ | 418/4350 [02:33<22:35, 2.90it/s]
419
  10%|▉ | 419/4350 [02:33<21:32, 3.04it/s]
420
  10%|▉ | 420/4350 [02:33<20:14, 3.24it/s]
421
  10%|▉ | 421/4350 [02:34<23:00, 2.85it/s]
422
  10%|▉ | 422/4350 [02:34<22:45, 2.88it/s]
423
  10%|▉ | 423/4350 [02:34<21:47, 3.00it/s]
424
  10%|▉ | 424/4350 [02:35<21:44, 3.01it/s]
425
  10%|▉ | 425/4350 [02:35<22:25, 2.92it/s]
426
  10%|▉ | 426/4350 [02:35<23:36, 2.77it/s]
427
  10%|▉ | 427/4350 [02:36<23:06, 2.83it/s]
428
  10%|▉ | 428/4350 [02:36<22:40, 2.88it/s]
429
  10%|▉ | 429/4350 [02:36<22:37, 2.89it/s]
430
  10%|▉ | 430/4350 [02:37<21:50, 2.99it/s]
431
  10%|▉ | 431/4350 [02:37<21:18, 3.07it/s]
432
  10%|▉ | 432/4350 [02:37<21:59, 2.97it/s]
433
  10%|▉ | 433/4350 [02:38<21:34, 3.03it/s]
434
  10%|▉ | 434/4350 [02:38<20:35, 3.17it/s]
435
  10%|█ | 435/4350 [02:38<23:44, 2.75it/s][INFO|trainer.py:811] 2024-09-09 14:57:52,268 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, ner_tags, tokens. If id, ner_tags, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
436
  0%| | 0/869 [00:00<?, ?it/s]
 
437
  1%| | 10/869 [00:00<00:09, 94.38it/s]
 
438
  2%|▏ | 20/869 [00:00<00:10, 80.53it/s]
 
439
  3%|▎ | 29/869 [00:00<00:10, 78.84it/s]
 
440
  4%|▍ | 37/869 [00:00<00:10, 75.92it/s]
 
441
  5%|▌ | 46/869 [00:00<00:10, 79.35it/s]
 
442
  6%|▋ | 55/869 [00:00<00:09, 81.86it/s]
 
443
  7%|▋ | 64/869 [00:00<00:10, 77.60it/s]
 
444
  8%|▊ | 72/869 [00:00<00:10, 76.90it/s]
 
445
  9%|▉ | 82/869 [00:01<00:09, 81.12it/s]
 
446
  10%|█ | 91/869 [00:01<00:09, 83.34it/s]
 
447
  12%|█▏ | 101/869 [00:01<00:08, 86.18it/s]
 
448
  13%|█▎ | 110/869 [00:01<00:09, 82.44it/s]
 
449
  14%|█▎ | 119/869 [00:01<00:09, 81.44it/s]
 
450
  15%|█▍ | 128/869 [00:01<00:09, 79.58it/s]
 
451
  16%|█▌ | 137/869 [00:01<00:09, 80.83it/s]
 
452
  17%|█▋ | 146/869 [00:01<00:09, 76.19it/s]
 
453
  18%|█▊ | 155/869 [00:01<00:09, 78.46it/s]
 
454
  19%|█▉ | 163/869 [00:02<00:08, 78.50it/s]
 
455
  20%|█▉ | 171/869 [00:02<00:09, 76.56it/s]
 
456
  21%|██ | 179/869 [00:02<00:09, 75.51it/s]
 
457
  22%|██▏ | 188/869 [00:02<00:08, 77.69it/s]
 
458
  23%|██▎ | 196/869 [00:02<00:08, 75.43it/s]
 
459
  24%|██▎ | 205/869 [00:02<00:08, 78.09it/s]
 
460
  25%|██▍ | 214/869 [00:02<00:08, 79.78it/s]
 
461
  26%|██▌ | 223/869 [00:02<00:07, 81.12it/s]
 
462
  27%|██▋ | 232/869 [00:02<00:08, 77.58it/s]
 
463
  28%|██▊ | 240/869 [00:03<00:08, 77.81it/s]
 
464
  29%|██▊ | 248/869 [00:03<00:08, 72.44it/s]
 
465
  30%|██▉ | 257/869 [00:03<00:08, 75.03it/s]
 
466
  30%|███ | 265/869 [00:03<00:08, 74.16it/s]
 
467
  31%|███▏ | 273/869 [00:03<00:08, 74.49it/s]
 
468
  32%|███▏ | 281/869 [00:03<00:07, 73.94it/s]
 
469
  33%|███▎ | 289/869 [00:03<00:07, 73.45it/s]
 
470
  34%|███▍ | 297/869 [00:03<00:07, 74.28it/s]
 
471
  35%|███▌ | 305/869 [00:03<00:07, 71.04it/s]
 
472
  36%|███▌ | 313/869 [00:04<00:07, 72.51it/s]
 
473
  37%|███▋ | 321/869 [00:04<00:07, 72.04it/s]
 
474
  38%|███▊ | 330/869 [00:04<00:07, 76.27it/s]
 
475
  39%|███▉ | 339/869 [00:04<00:06, 77.90it/s]
 
476
  40%|███▉ | 347/869 [00:04<00:07, 72.34it/s]
 
477
  41%|████ | 355/869 [00:04<00:07, 73.40it/s]
 
478
  42%|████▏ | 364/869 [00:04<00:06, 77.35it/s]
 
479
  43%|████▎ | 373/869 [00:04<00:06, 75.47it/s]
 
480
  44%|████▍ | 381/869 [00:04<00:06, 76.61it/s]
 
481
  45%|████▍ | 389/869 [00:05<00:06, 71.19it/s]
 
482
  46%|████▌ | 398/869 [00:05<00:06, 73.53it/s]
 
483
  47%|████▋ | 407/869 [00:05<00:06, 75.94it/s]
 
484
  48%|████▊ | 416/869 [00:05<00:05, 78.73it/s]
 
485
  49%|████▉ | 425/869 [00:05<00:05, 79.97it/s]
 
486
  50%|████▉ | 434/869 [00:05<00:05, 79.87it/s]
 
487
  51%|█████ | 443/869 [00:05<00:05, 75.05it/s]
 
488
  52%|█████▏ | 452/869 [00:05<00:05, 78.30it/s]
 
489
  53%|█████▎ | 460/869 [00:05<00:05, 77.46it/s]
 
490
  54%|█████▍ | 468/869 [00:06<00:05, 77.51it/s]
 
491
  55%|█████▌ | 478/869 [00:06<00:04, 82.12it/s]
 
492
  56%|█████▌ | 487/869 [00:06<00:04, 82.39it/s]
 
493
  57%|█████▋ | 496/869 [00:06<00:04, 77.76it/s]
 
494
  58%|█████▊ | 504/869 [00:06<00:04, 75.48it/s]
 
495
  59%|█████▉ | 513/869 [00:06<00:04, 77.10it/s]
 
496
  60%|██████ | 522/869 [00:06<00:04, 72.55it/s]
 
497
  61%|██████ | 531/869 [00:06<00:04, 74.98it/s]
 
498
  62%|██████▏ | 539/869 [00:07<00:04, 73.62it/s]
 
499
  63%|██████▎ | 547/869 [00:07<00:04, 72.80it/s]
 
500
  64%|██████▍ | 556/869 [00:07<00:04, 75.57it/s]
 
501
  65%|██████▍ | 564/869 [00:07<00:04, 76.14it/s]
 
502
  66%|██████▌ | 572/869 [00:07<00:03, 75.16it/s]
 
503
  67%|██████▋ | 580/869 [00:07<00:03, 75.56it/s]
 
504
  68%|██████▊ | 588/869 [00:07<00:03, 74.55it/s]
 
505
  69%|██████▊ | 597/869 [00:07<00:03, 76.58it/s]
 
506
  70%|██████▉ | 606/869 [00:07<00:03, 78.76it/s]
 
507
  71%|███████ | 614/869 [00:07<00:03, 77.83it/s]
 
508
  72%|███████▏ | 622/869 [00:08<00:03, 76.62it/s]
 
509
  72%|███████▏ | 630/869 [00:08<00:03, 75.57it/s]
 
510
  73%|███████▎ | 638/869 [00:08<00:03, 74.86it/s]
 
511
  74%|███████▍ | 647/869 [00:08<00:02, 78.56it/s]
 
512
  75%|███████▌ | 656/869 [00:08<00:02, 80.46it/s]
 
513
  77%|███████▋ | 665/869 [00:08<00:02, 78.96it/s]
 
514
  78%|███████▊ | 674/869 [00:08<00:02, 81.43it/s]
 
515
  79%|███████▊ | 683/869 [00:08<00:02, 71.20it/s]
 
516
  80%|███████▉ | 692/869 [00:09<00:02, 74.89it/s]
 
517
  81%|████████ | 700/869 [00:09<00:02, 74.84it/s]
 
518
  81%|████████▏ | 708/869 [00:09<00:02, 74.65it/s]
 
519
  83%|████████▎ | 717/869 [00:09<00:01, 76.79it/s]
 
520
  84%|████████▎ | 726/869 [00:09<00:01, 78.45it/s]
 
521
  84%|████████▍ | 734/869 [00:09<00:01, 78.58it/s]
 
522
  86%|████████▌ | 743/869 [00:09<00:01, 79.37it/s]
 
523
  86%|████████▋ | 751/869 [00:09<00:01, 76.29it/s]
 
524
  87%|████████▋ | 759/869 [00:09<00:01, 77.08it/s]
 
525
  88%|████████▊ | 767/869 [00:09<00:01, 73.70it/s]
 
526
  89%|████████▉ | 776/869 [00:10<00:01, 70.08it/s]
 
527
  90%|█████████ | 784/869 [00:10<00:01, 66.90it/s]
 
528
  91%|█████████▏| 793/869 [00:10<00:01, 71.36it/s]
 
529
  92%|█████████▏| 801/869 [00:10<00:00, 73.31it/s]
 
530
  93%|█████████▎| 809/869 [00:10<00:00, 75.05it/s]
 
531
  94%|█████████▍| 817/869 [00:10<00:00, 75.70it/s]
 
532
  95%|█████████▍| 825/869 [00:10<00:00, 76.54it/s]
 
533
  96%|█████████▌| 833/869 [00:10<00:00, 76.46it/s]
 
534
  97%|█████████▋| 842/869 [00:10<00:00, 79.79it/s]
 
535
  98%|█████████▊| 851/869 [00:11<00:00, 80.97it/s]
 
536
  99%|█████████▉| 860/869 [00:11<00:00, 76.49it/s]
 
537
 
 
538
 
539
  10%|█ | 435/4350 [02:53<23:44, 2.75it/s]
 
 
540
  [INFO|trainer.py:3503] 2024-09-09 14:58:07,323 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-435
 
 
 
 
 
 
 
541
  10%|█ | 436/4350 [03:02<7:54:02, 7.27s/it]
542
  10%|█ | 437/4350 [03:02<5:38:17, 5.19s/it]
543
  10%|█ | 438/4350 [03:02<4:03:46, 3.74s/it]
544
  10%|█ | 439/4350 [03:03<2:58:39, 2.74s/it]
545
  10%|█ | 440/4350 [03:03<2:10:48, 2.01s/it]
546
  10%|█ | 441/4350 [03:04<1:39:18, 1.52s/it]
547
  10%|█ | 442/4350 [03:04<1:19:11, 1.22s/it]
548
  10%|█ | 443/4350 [03:04<1:01:40, 1.06it/s]
549
  10%|█ | 444/4350 [03:05<50:27, 1.29it/s]
550
  10%|█ | 445/4350 [03:05<41:06, 1.58it/s]
551
  10%|█ | 446/4350 [03:05<35:42, 1.82it/s]
552
  10%|█ | 447/4350 [03:06<33:41, 1.93it/s]
553
  10%|█ | 448/4350 [03:06<29:20, 2.22it/s]
554
  10%|█ | 449/4350 [03:07<28:09, 2.31it/s]
555
  10%|█ | 450/4350 [03:07<27:36, 2.35it/s]
556
  10%|█ | 451/4350 [03:07<24:39, 2.64it/s]
557
  10%|█ | 452/4350 [03:08<25:44, 2.52it/s]
558
  10%|█ | 453/4350 [03:08<24:33, 2.64it/s]
559
  10%|█ | 454/4350 [03:08<23:33, 2.76it/s]
560
  10%|█ | 455/4350 [03:09<22:58, 2.83it/s]
561
  10%|█ | 456/4350 [03:09<22:12, 2.92it/s]
562
  11%|█ | 457/4350 [03:09<22:10, 2.93it/s]
563
  11%|█ | 458/4350 [03:10<24:28, 2.65it/s]
564
  11%|█ | 459/4350 [03:10<23:59, 2.70it/s]
565
  11%|█ | 460/4350 [03:10<21:44, 2.98it/s]
566
  11%|█ | 461/4350 [03:11<21:22, 3.03it/s]
567
  11%|█ | 462/4350 [03:11<19:33, 3.31it/s]
568
  11%|█ | 463/4350 [03:11<23:42, 2.73it/s]
569
  11%|█ | 464/4350 [03:12<23:46, 2.72it/s]
570
  11%|█ | 465/4350 [03:12<21:40, 2.99it/s]
571
  11%|█ | 466/4350 [03:12<24:07, 2.68it/s]
572
  11%|█ | 467/4350 [03:13<24:06, 2.69it/s]
573
  11%|█ | 468/4350 [03:14<31:52, 2.03it/s]
574
  11%|█ | 469/4350 [03:14<28:11, 2.29it/s]
575
  11%|█ | 470/4350 [03:14<27:41, 2.33it/s]
576
  11%|█ | 471/4350 [03:15<27:16, 2.37it/s]
577
  11%|█ | 472/4350 [03:15<25:24, 2.54it/s]
578
  11%|█ | 473/4350 [03:15<24:43, 2.61it/s]
579
  11%|█ | 474/4350 [03:16<24:10, 2.67it/s]
580
  11%|█ | 475/4350 [03:16<24:12, 2.67it/s]
581
  11%|█ | 476/4350 [03:17<23:17, 2.77it/s]
582
  11%|█ | 477/4350 [03:17<24:06, 2.68it/s]
583
  11%|█ | 478/4350 [03:17<22:57, 2.81it/s]
584
  11%|█ | 479/4350 [03:18<24:02, 2.68it/s]
585
  11%|█ | 480/4350 [03:18<24:15, 2.66it/s]
586
  11%|█ | 481/4350 [03:18<23:12, 2.78it/s]
587
  11%|█ | 482/4350 [03:19<23:58, 2.69it/s]
588
  11%|█ | 483/4350 [03:19<23:27, 2.75it/s]
589
  11%|█ | 484/4350 [03:19<21:37, 2.98it/s]
590
  11%|█ | 485/4350 [03:20<21:17, 3.03it/s]
591
  11%|█ | 486/4350 [03:20<24:09, 2.67it/s]
592
  11%|█ | 487/4350 [03:20<23:24, 2.75it/s]
593
  11%|█ | 488/4350 [03:21<24:25, 2.63it/s]
594
  11%|█ | 489/4350 [03:21<24:16, 2.65it/s]
595
  11%|█▏ | 490/4350 [03:22<24:30, 2.62it/s]
596
  11%|█▏ | 491/4350 [03:22<22:52, 2.81it/s]
597
  11%|█▏ | 492/4350 [03:22<22:31, 2.85it/s]
598
  11%|█▏ | 493/4350 [03:23<22:25, 2.87it/s]
599
  11%|█▏ | 494/4350 [03:23<22:51, 2.81it/s]
600
  11%|█▏ | 495/4350 [03:23<20:55, 3.07it/s]
601
  11%|█▏ | 496/4350 [03:24<22:34, 2.84it/s]
602
  11%|█▏ | 497/4350 [03:24<22:38, 2.84it/s]
603
  11%|█▏ | 498/4350 [03:24<22:48, 2.81it/s]
604
  11%|█▏ | 499/4350 [03:25<22:06, 2.90it/s]
605
  11%|█▏ | 500/4350 [03:25<22:27, 2.86it/s]
606
 
607
  11%|█▏ | 500/4350 [03:25<22:27, 2.86it/s]
608
  12%|█▏ | 501/4350 [03:26<23:40, 2.71it/s]
609
  12%|█▏ | 502/4350 [03:26<22:58, 2.79it/s]
610
  12%|█▏ | 503/4350 [03:26<23:33, 2.72it/s]
611
  12%|█▏ | 504/4350 [03:27<23:08, 2.77it/s]
612
  12%|█▏ | 505/4350 [03:27<20:31, 3.12it/s]
613
  12%|█▏ | 506/4350 [03:27<20:39, 3.10it/s]
614
  12%|█▏ | 507/4350 [03:27<19:56, 3.21it/s]
615
  12%|█▏ | 508/4350 [03:28<21:15, 3.01it/s]
616
  12%|█▏ | 509/4350 [03:28<23:12, 2.76it/s]
617
  12%|█▏ | 510/4350 [03:29<21:47, 2.94it/s]
618
  12%|█▏ | 511/4350 [03:29<21:15, 3.01it/s]
619
  12%|█▏ | 512/4350 [03:29<23:18, 2.75it/s]
620
  12%|█▏ | 513/4350 [03:30<22:50, 2.80it/s]
621
  12%|█▏ | 514/4350 [03:30<22:21, 2.86it/s]
622
  12%|█▏ | 515/4350 [03:30<21:47, 2.93it/s]
623
  12%|█▏ | 516/4350 [03:31<22:27, 2.84it/s]
624
  12%|█▏ | 517/4350 [03:31<24:53, 2.57it/s]
625
  12%|█▏ | 518/4350 [03:31<22:41, 2.82it/s]
626
  12%|█▏ | 519/4350 [03:32<21:59, 2.90it/s]
627
  12%|█▏ | 520/4350 [03:32<23:16, 2.74it/s]
628
  12%|█▏ | 521/4350 [03:32<22:21, 2.85it/s]
629
  12%|█▏ | 522/4350 [03:33<21:01, 3.03it/s]
630
  12%|█▏ | 523/4350 [03:33<22:59, 2.77it/s]
631
  12%|█▏ | 524/4350 [03:33<22:42, 2.81it/s]
632
  12%|█▏ | 525/4350 [03:34<24:14, 2.63it/s]
633
  12%|█▏ | 526/4350 [03:34<24:17, 2.62it/s]
634
  12%|█▏ | 527/4350 [03:35<23:08, 2.75it/s]
635
  12%|█▏ | 528/4350 [03:35<23:07, 2.75it/s]
636
  12%|█▏ | 529/4350 [03:35<25:05, 2.54it/s]
637
  12%|█▏ | 530/4350 [03:36<31:57, 1.99it/s]
638
  12%|█▏ | 531/4350 [03:37<28:16, 2.25it/s]
639
  12%|█▏ | 532/4350 [03:37<25:28, 2.50it/s]
640
  12%|█▏ | 533/4350 [03:37<22:38, 2.81it/s]
641
  12%|█▏ | 534/4350 [03:37<23:49, 2.67it/s]
642
  12%|█▏ | 535/4350 [03:38<24:28, 2.60it/s]
643
  12%|█▏ | 536/4350 [03:38<23:41, 2.68it/s]
644
  12%|█▏ | 537/4350 [03:39<25:30, 2.49it/s]
645
  12%|█▏ | 538/4350 [03:39<24:18, 2.61it/s]
646
  12%|█▏ | 539/4350 [03:40<28:25, 2.23it/s]
647
  12%|█▏ | 540/4350 [03:40<26:16, 2.42it/s]
648
  12%|█▏ | 541/4350 [03:40<25:23, 2.50it/s]
649
  12%|█▏ | 542/4350 [03:41<23:06, 2.75it/s]
650
  12%|█▏ | 543/4350 [03:41<24:11, 2.62it/s]
651
  13%|█▎ | 544/4350 [03:41<22:10, 2.86it/s]
652
  13%|█▎ | 545/4350 [03:42<22:36, 2.80it/s]
653
  13%|█▎ | 546/4350 [03:42<23:00, 2.76it/s]
654
  13%|█▎ | 547/4350 [03:43<24:28, 2.59it/s]
655
  13%|█▎ | 548/4350 [03:43<24:01, 2.64it/s]
656
  13%|█▎ | 549/4350 [03:43<24:11, 2.62it/s]
657
  13%|█▎ | 550/4350 [03:44<23:04, 2.74it/s]
658
  13%|█▎ | 551/4350 [03:44<22:02, 2.87it/s]
659
  13%|█▎ | 552/4350 [03:44<21:14, 2.98it/s]
660
  13%|█▎ | 553/4350 [03:45<24:03, 2.63it/s]
661
  13%|█▎ | 554/4350 [03:45<22:22, 2.83it/s]
662
  13%|█▎ | 555/4350 [03:45<21:26, 2.95it/s]
663
  13%|█▎ | 556/4350 [03:46<19:42, 3.21it/s]
664
  13%|█▎ | 557/4350 [03:46<20:31, 3.08it/s]
665
  13%|█▎ | 558/4350 [03:46<21:34, 2.93it/s]
666
  13%|█▎ | 559/4350 [03:47<21:25, 2.95it/s]
667
  13%|█▎ | 560/4350 [03:47<21:19, 2.96it/s]
668
  13%|█▎ | 561/4350 [03:47<22:03, 2.86it/s]
669
  13%|█▎ | 562/4350 [03:48<23:13, 2.72it/s]
670
  13%|█▎ | 563/4350 [03:48<24:07, 2.62it/s]
671
  13%|█▎ | 564/4350 [03:48<21:46, 2.90it/s]
672
  13%|█▎ | 565/4350 [03:49<22:41, 2.78it/s]
673
  13%|█▎ | 566/4350 [03:49<24:25, 2.58it/s]
674
  13%|█▎ | 567/4350 [03:50<29:30, 2.14it/s]
675
  13%|█▎ | 568/4350 [03:50<29:34, 2.13it/s]
676
  13%|█▎ | 569/4350 [03:51<27:34, 2.28it/s]
677
  13%|█▎ | 570/4350 [03:51<25:34, 2.46it/s]
678
  13%|█▎ | 571/4350 [03:52<26:52, 2.34it/s]
679
  13%|█▎ | 572/4350 [03:52<24:30, 2.57it/s]
680
  13%|█▎ | 573/4350 [03:52<25:08, 2.50it/s]
 
1
+ 2024-09-09 14:54:26.533883: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-09 14:54:26.551972: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-09 14:54:26.573854: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-09 14:54:26.580465: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-09 14:54:26.595903: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-09 14:54:27.853402: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/09/2024 14:54:29 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/09/2024 14:54:29 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-09 14:55:04,800 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-09 14:55:04,803 >> Model config BertConfig {
149
+ "_name_or_path": "michiyasunaga/BioLinkBERT-base",
150
+ "architectures": [
151
+ "BertModel"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "classifier_dropout": null,
155
+ "finetuning_task": "ner",
156
+ "gradient_checkpointing": false,
157
+ "hidden_act": "gelu",
158
+ "hidden_dropout_prob": 0.1,
159
+ "hidden_size": 768,
160
+ "id2label": {
161
+ "0": "O",
162
+ "1": "B-FARMACO",
163
+ "2": "I-FARMACO"
164
+ },
165
+ "initializer_range": 0.02,
166
+ "intermediate_size": 3072,
167
+ "label2id": {
168
+ "B-FARMACO": 1,
169
+ "I-FARMACO": 2,
170
+ "O": 0
171
+ },
172
+ "layer_norm_eps": 1e-12,
173
+ "max_position_embeddings": 512,
174
+ "model_type": "bert",
175
+ "num_attention_heads": 12,
176
+ "num_hidden_layers": 12,
177
+ "pad_token_id": 0,
178
+ "position_embedding_type": "absolute",
179
+ "transformers_version": "4.44.2",
180
+ "type_vocab_size": 2,
181
+ "use_cache": true,
182
+ "vocab_size": 28895
183
+ }
184
+
185
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 14:55:05,041 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/vocab.txt
186
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 14:55:05,041 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer.json
187
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 14:55:05,041 >> loading file added_tokens.json from cache at None
188
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 14:55:05,041 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/special_tokens_map.json
189
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 14:55:05,041 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer_config.json
190
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
191
+ warnings.warn(
192
+ [INFO|modeling_utils.py:3678] 2024-09-09 14:55:05,351 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/pytorch_model.bin
193
+ [INFO|modeling_utils.py:4497] 2024-09-09 14:55:05,431 >> Some weights of the model checkpoint at michiyasunaga/BioLinkBERT-base were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']
194
+ - This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
195
+ - This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
196
+ [WARNING|modeling_utils.py:4509] 2024-09-09 14:55:05,431 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at michiyasunaga/BioLinkBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight']
197
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
198
+
199
+
200
+
201
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
202
+ metric = load_metric("seqeval", trust_remote_code=True)
203
+ [INFO|trainer.py:811] 2024-09-09 14:55:12,756 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, ner_tags, tokens. If id, ner_tags, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
204
+ [INFO|trainer.py:2134] 2024-09-09 14:55:13,341 >> ***** Running training *****
205
+ [INFO|trainer.py:2135] 2024-09-09 14:55:13,341 >> Num examples = 27,841
206
+ [INFO|trainer.py:2136] 2024-09-09 14:55:13,341 >> Num Epochs = 10
207
+ [INFO|trainer.py:2137] 2024-09-09 14:55:13,341 >> Instantaneous batch size per device = 32
208
+ [INFO|trainer.py:2140] 2024-09-09 14:55:13,341 >> Total train batch size (w. parallel, distributed & accumulation) = 64
209
+ [INFO|trainer.py:2141] 2024-09-09 14:55:13,341 >> Gradient Accumulation steps = 2
210
+ [INFO|trainer.py:2142] 2024-09-09 14:55:13,341 >> Total optimization steps = 4,350
211
+ [INFO|trainer.py:2143] 2024-09-09 14:55:13,342 >> Number of trainable parameters = 107,644,419
212
+
213
  0%| | 0/4350 [00:00<?, ?it/s]
214
  0%| | 1/4350 [00:01<1:26:47, 1.20s/it]
215
  0%| | 2/4350 [00:01<48:19, 1.50it/s]
216
  0%| | 3/4350 [00:01<35:09, 2.06it/s]
217
  0%| | 4/4350 [00:02<34:11, 2.12it/s]
218
  0%| | 5/4350 [00:02<32:13, 2.25it/s]
219
  0%| | 6/4350 [00:03<31:07, 2.33it/s]
220
  0%| | 7/4350 [00:03<27:29, 2.63it/s]
221
  0%| | 8/4350 [00:03<29:39, 2.44it/s]
222
  0%| | 9/4350 [00:04<29:25, 2.46it/s]
223
  0%| | 10/4350 [00:04<28:28, 2.54it/s]
224
  0%| | 11/4350 [00:05<30:37, 2.36it/s]
225
  0%| | 12/4350 [00:05<29:55, 2.42it/s]
226
  0%| | 13/4350 [00:05<28:12, 2.56it/s]
227
  0%| | 14/4350 [00:06<25:29, 2.84it/s]
228
  0%| | 15/4350 [00:06<25:23, 2.84it/s]
229
  0%| | 16/4350 [00:06<26:41, 2.71it/s]
230
  0%| | 17/4350 [00:07<25:02, 2.88it/s]
231
  0%| | 18/4350 [00:07<27:48, 2.60it/s]
232
  0%| | 19/4350 [00:07<24:49, 2.91it/s]
233
  0%| | 20/4350 [00:08<24:27, 2.95it/s]
234
  0%| | 21/4350 [00:08<31:17, 2.31it/s]
235
  1%| | 22/4350 [00:09<28:58, 2.49it/s]
236
  1%| | 23/4350 [00:09<28:39, 2.52it/s]
237
  1%| | 24/4350 [00:09<27:03, 2.66it/s]
238
  1%| | 25/4350 [00:10<27:26, 2.63it/s]
239
  1%| | 26/4350 [00:10<27:22, 2.63it/s]
240
  1%| | 27/4350 [00:10<24:40, 2.92it/s]
241
  1%| | 28/4350 [00:11<24:44, 2.91it/s]
242
  1%| | 29/4350 [00:11<24:42, 2.92it/s]
243
  1%| | 30/4350 [00:11<24:17, 2.96it/s]
244
  1%| | 31/4350 [00:12<24:57, 2.88it/s]
245
  1%| | 32/4350 [00:12<24:02, 2.99it/s]
246
  1%| | 33/4350 [00:12<25:04, 2.87it/s]
247
  1%| | 34/4350 [00:13<24:17, 2.96it/s]
248
  1%| | 35/4350 [00:13<24:21, 2.95it/s]
249
  1%| | 36/4350 [00:13<25:29, 2.82it/s]
250
  1%| | 37/4350 [00:14<24:33, 2.93it/s]
251
  1%| | 38/4350 [00:14<23:11, 3.10it/s]
252
  1%| | 39/4350 [00:14<25:50, 2.78it/s]
253
  1%| | 40/4350 [00:15<29:44, 2.42it/s]
254
  1%| | 41/4350 [00:15<29:19, 2.45it/s]
255
  1%| | 42/4350 [00:16<28:55, 2.48it/s]
256
  1%| | 43/4350 [00:16<30:34, 2.35it/s]
257
  1%| | 44/4350 [00:17<28:24, 2.53it/s]
258
  1%| | 45/4350 [00:17<28:44, 2.50it/s]
259
  1%| | 46/4350 [00:17<28:03, 2.56it/s]
260
  1%| | 47/4350 [00:18<28:46, 2.49it/s]
261
  1%| | 48/4350 [00:18<27:34, 2.60it/s]
262
  1%| | 49/4350 [00:18<25:37, 2.80it/s]
263
  1%| | 50/4350 [00:19<25:17, 2.83it/s]
264
  1%| | 51/4350 [00:19<26:12, 2.73it/s]
265
  1%| | 52/4350 [00:20<25:24, 2.82it/s]
266
  1%| | 53/4350 [00:20<24:51, 2.88it/s]
267
  1%| | 54/4350 [00:20<28:45, 2.49it/s]
268
  1%|▏ | 55/4350 [00:21<26:33, 2.70it/s]
269
  1%|▏ | 56/4350 [00:21<23:51, 3.00it/s]
270
  1%|▏ | 57/4350 [00:21<26:54, 2.66it/s]
271
  1%|▏ | 58/4350 [00:22<28:44, 2.49it/s]
272
  1%|▏ | 59/4350 [00:22<30:49, 2.32it/s]
273
  1%|▏ | 60/4350 [00:23<29:21, 2.44it/s]
274
  1%|▏ | 61/4350 [00:23<27:50, 2.57it/s]
275
  1%|▏ | 62/4350 [00:23<26:32, 2.69it/s]
276
  1%|▏ | 63/4350 [00:24<27:12, 2.63it/s]
277
  1%|▏ | 64/4350 [00:24<29:29, 2.42it/s]
278
  1%|▏ | 65/4350 [00:25<26:34, 2.69it/s]
279
  2%|▏ | 66/4350 [00:25<25:51, 2.76it/s]
280
  2%|▏ | 67/4350 [00:25<25:44, 2.77it/s]
281
  2%|▏ | 68/4350 [00:26<28:14, 2.53it/s]
282
  2%|▏ | 69/4350 [00:26<26:22, 2.71it/s]
283
  2%|▏ | 70/4350 [00:26<25:55, 2.75it/s]
284
  2%|▏ | 71/4350 [00:27<25:53, 2.75it/s]
285
  2%|▏ | 72/4350 [00:27<24:28, 2.91it/s]
286
  2%|▏ | 73/4350 [00:27<23:34, 3.02it/s]
287
  2%|▏ | 74/4350 [00:28<28:47, 2.48it/s]
288
  2%|▏ | 75/4350 [00:28<27:12, 2.62it/s]
289
  2%|▏ | 76/4350 [00:29<26:36, 2.68it/s]
290
  2%|▏ | 77/4350 [00:29<25:00, 2.85it/s]
291
  2%|▏ | 78/4350 [00:29<25:03, 2.84it/s]
292
  2%|▏ | 79/4350 [00:30<24:07, 2.95it/s]
293
  2%|▏ | 80/4350 [00:30<28:37, 2.49it/s]
294
  2%|▏ | 81/4350 [00:31<28:27, 2.50it/s]
295
  2%|▏ | 82/4350 [00:31<26:29, 2.68it/s]
296
  2%|▏ | 83/4350 [00:31<25:48, 2.75it/s]
297
  2%|▏ | 84/4350 [00:32<29:21, 2.42it/s]
298
  2%|▏ | 85/4350 [00:32<28:18, 2.51it/s]
299
  2%|▏ | 86/4350 [00:32<27:17, 2.60it/s]
300
  2%|▏ | 87/4350 [00:33<24:25, 2.91it/s]
301
  2%|▏ | 88/4350 [00:33<23:17, 3.05it/s]
302
  2%|▏ | 89/4350 [00:33<22:39, 3.14it/s]
303
  2%|▏ | 90/4350 [00:34<23:57, 2.96it/s]
304
  2%|▏ | 91/4350 [00:34<24:14, 2.93it/s]
305
  2%|▏ | 92/4350 [00:34<25:34, 2.77it/s]
306
  2%|▏ | 93/4350 [00:35<25:50, 2.75it/s]
307
  2%|▏ | 94/4350 [00:35<25:12, 2.81it/s]
308
  2%|▏ | 95/4350 [00:35<25:13, 2.81it/s]
309
  2%|▏ | 96/4350 [00:36<26:06, 2.72it/s]
310
  2%|▏ | 97/4350 [00:36<26:14, 2.70it/s]
311
  2%|▏ | 98/4350 [00:37<25:29, 2.78it/s]
312
  2%|▏ | 99/4350 [00:37<23:56, 2.96it/s]
313
  2%|▏ | 100/4350 [00:37<25:47, 2.75it/s]
314
  2%|▏ | 101/4350 [00:38<25:40, 2.76it/s]
315
  2%|▏ | 102/4350 [00:38<26:57, 2.63it/s]
316
  2%|▏ | 103/4350 [00:38<25:28, 2.78it/s]
317
  2%|▏ | 104/4350 [00:39<25:48, 2.74it/s]
318
  2%|▏ | 105/4350 [00:39<24:48, 2.85it/s]
319
  2%|▏ | 106/4350 [00:39<23:25, 3.02it/s]
320
  2%|▏ | 107/4350 [00:40<21:57, 3.22it/s]
321
  2%|▏ | 108/4350 [00:40<22:23, 3.16it/s]
322
  3%|▎ | 109/4350 [00:40<21:53, 3.23it/s]
323
  3%|▎ | 110/4350 [00:41<22:42, 3.11it/s]
324
  3%|▎ | 111/4350 [00:41<23:09, 3.05it/s]
325
  3%|▎ | 112/4350 [00:41<22:32, 3.13it/s]
326
  3%|▎ | 113/4350 [00:42<24:23, 2.90it/s]
327
  3%|▎ | 114/4350 [00:42<27:08, 2.60it/s]
328
  3%|▎ | 115/4350 [00:42<25:08, 2.81it/s]
329
  3%|▎ | 116/4350 [00:43<23:52, 2.96it/s]
330
  3%|▎ | 117/4350 [00:43<23:58, 2.94it/s]
331
  3%|▎ | 118/4350 [00:43<23:30, 3.00it/s]
332
  3%|▎ | 119/4350 [00:44<24:10, 2.92it/s]
333
  3%|▎ | 120/4350 [00:44<22:06, 3.19it/s]
334
  3%|▎ | 121/4350 [00:44<23:01, 3.06it/s]
335
  3%|▎ | 122/4350 [00:45<24:28, 2.88it/s]
336
  3%|▎ | 123/4350 [00:45<23:25, 3.01it/s]
337
  3%|▎ | 124/4350 [00:45<24:26, 2.88it/s]
338
  3%|▎ | 125/4350 [00:46<23:50, 2.95it/s]
339
  3%|▎ | 126/4350 [00:46<23:31, 2.99it/s]
340
  3%|▎ | 127/4350 [00:46<25:08, 2.80it/s]
341
  3%|▎ | 128/4350 [00:47<28:37, 2.46it/s]
342
  3%|▎ | 129/4350 [00:47<27:30, 2.56it/s]
343
  3%|▎ | 130/4350 [00:48<28:05, 2.50it/s]
344
  3%|▎ | 131/4350 [00:48<26:05, 2.69it/s]
345
  3%|▎ | 132/4350 [00:48<26:28, 2.66it/s]
346
  3%|▎ | 133/4350 [00:49<30:00, 2.34it/s]
347
  3%|▎ | 134/4350 [00:49<30:42, 2.29it/s]
348
  3%|▎ | 135/4350 [00:50<32:31, 2.16it/s]
349
  3%|▎ | 136/4350 [00:50<31:18, 2.24it/s]
350
  3%|▎ | 137/4350 [00:51<28:02, 2.50it/s]
351
  3%|▎ | 138/4350 [00:51<26:29, 2.65it/s]
352
  3%|▎ | 139/4350 [00:51<26:52, 2.61it/s]
353
  3%|▎ | 140/4350 [00:52<24:46, 2.83it/s]
354
  3%|▎ | 141/4350 [00:52<24:21, 2.88it/s]
355
  3%|▎ | 142/4350 [00:52<22:53, 3.06it/s]
356
  3%|▎ | 143/4350 [00:53<22:50, 3.07it/s]
357
  3%|▎ | 144/4350 [00:53<22:02, 3.18it/s]
358
  3%|▎ | 145/4350 [00:53<24:49, 2.82it/s]
359
  3%|▎ | 146/4350 [00:54<22:41, 3.09it/s]
360
  3%|▎ | 147/4350 [00:54<21:48, 3.21it/s]
361
  3%|▎ | 148/4350 [00:54<21:27, 3.26it/s]
362
  3%|▎ | 149/4350 [00:55<24:15, 2.89it/s]
363
  3%|▎ | 150/4350 [00:55<24:44, 2.83it/s]
364
  3%|▎ | 151/4350 [00:55<26:30, 2.64it/s]
365
  3%|▎ | 152/4350 [00:56<25:07, 2.78it/s]
366
  4%|▎ | 153/4350 [00:56<26:45, 2.61it/s]
367
  4%|▎ | 154/4350 [00:56<25:22, 2.76it/s]
368
  4%|▎ | 155/4350 [00:57<25:16, 2.77it/s]
369
  4%|▎ | 156/4350 [00:57<24:03, 2.91it/s]
370
  4%|▎ | 157/4350 [00:58<26:08, 2.67it/s]
371
  4%|▎ | 158/4350 [00:58<25:24, 2.75it/s]
372
  4%|▎ | 159/4350 [00:58<24:39, 2.83it/s]
373
  4%|▎ | 160/4350 [00:59<23:24, 2.98it/s]
374
  4%|▎ | 161/4350 [00:59<22:40, 3.08it/s]
375
  4%|▎ | 162/4350 [00:59<23:26, 2.98it/s]
376
  4%|▎ | 163/4350 [01:00<27:26, 2.54it/s]
377
  4%|▍ | 164/4350 [01:00<26:22, 2.65it/s]
378
  4%|▍ | 165/4350 [01:00<26:08, 2.67it/s]
379
  4%|▍ | 166/4350 [01:01<27:07, 2.57it/s]
380
  4%|▍ | 167/4350 [01:01<25:08, 2.77it/s]
381
  4%|▍ | 168/4350 [01:01<24:15, 2.87it/s]
382
  4%|▍ | 169/4350 [01:02<22:37, 3.08it/s]
383
  4%|▍ | 170/4350 [01:02<23:54, 2.91it/s]
384
  4%|▍ | 171/4350 [01:03<25:48, 2.70it/s]
385
  4%|▍ | 172/4350 [01:03<26:05, 2.67it/s]
386
  4%|▍ | 173/4350 [01:03<25:06, 2.77it/s]
387
  4%|▍ | 174/4350 [01:04<24:17, 2.86it/s]
388
  4%|▍ | 175/4350 [01:04<26:11, 2.66it/s]
389
  4%|▍ | 176/4350 [01:05<29:55, 2.32it/s]
390
  4%|▍ | 177/4350 [01:05<26:45, 2.60it/s]
391
  4%|▍ | 178/4350 [01:05<25:36, 2.72it/s]
392
  4%|▍ | 179/4350 [01:06<27:32, 2.52it/s]
393
  4%|▍ | 180/4350 [01:06<26:09, 2.66it/s]
394
  4%|▍ | 181/4350 [01:07<31:31, 2.20it/s]
395
  4%|▍ | 182/4350 [01:07<28:29, 2.44it/s]
396
  4%|▍ | 183/4350 [01:07<25:00, 2.78it/s]
397
  4%|▍ | 184/4350 [01:08<23:57, 2.90it/s]
398
  4%|▍ | 185/4350 [01:08<23:22, 2.97it/s]
399
  4%|▍ | 186/4350 [01:08<23:55, 2.90it/s]
400
  4%|▍ | 187/4350 [01:09<24:13, 2.86it/s]
401
  4%|▍ | 188/4350 [01:09<23:14, 2.98it/s]
402
  4%|▍ | 189/4350 [01:09<23:19, 2.97it/s]
403
  4%|▍ | 190/4350 [01:10<23:50, 2.91it/s]
404
  4%|▍ | 191/4350 [01:10<24:13, 2.86it/s]
405
  4%|▍ | 192/4350 [01:10<26:16, 2.64it/s]
406
  4%|▍ | 193/4350 [01:11<25:08, 2.76it/s]
407
  4%|▍ | 194/4350 [01:11<23:10, 2.99it/s]
408
  4%|▍ | 195/4350 [01:11<27:00, 2.56it/s]
409
  5%|▍ | 196/4350 [01:12<26:52, 2.58it/s]
410
  5%|▍ | 197/4350 [01:12<25:28, 2.72it/s]
411
  5%|▍ | 198/4350 [01:12<23:30, 2.94it/s]
412
  5%|▍ | 199/4350 [01:13<23:27, 2.95it/s]
413
  5%|▍ | 200/4350 [01:13<26:11, 2.64it/s]
414
  5%|▍ | 201/4350 [01:14<24:40, 2.80it/s]
415
  5%|▍ | 202/4350 [01:14<24:16, 2.85it/s]
416
  5%|▍ | 203/4350 [01:14<23:57, 2.88it/s]
417
  5%|▍ | 204/4350 [01:15<24:49, 2.78it/s]
418
  5%|▍ | 205/4350 [01:15<24:27, 2.82it/s]
419
  5%|▍ | 206/4350 [01:15<23:23, 2.95it/s]
420
  5%|▍ | 207/4350 [01:16<23:43, 2.91it/s]
421
  5%|▍ | 208/4350 [01:16<26:45, 2.58it/s]
422
  5%|▍ | 209/4350 [01:16<25:14, 2.73it/s]
423
  5%|▍ | 210/4350 [01:17<23:13, 2.97it/s]
424
  5%|▍ | 211/4350 [01:17<24:28, 2.82it/s]
425
  5%|▍ | 212/4350 [01:17<22:58, 3.00it/s]
426
  5%|▍ | 213/4350 [01:18<23:16, 2.96it/s]
427
  5%|▍ | 214/4350 [01:18<29:27, 2.34it/s]
428
  5%|▍ | 215/4350 [01:19<28:01, 2.46it/s]
429
  5%|▍ | 216/4350 [01:19<27:45, 2.48it/s]
430
  5%|▍ | 217/4350 [01:19<26:16, 2.62it/s]
431
  5%|▌ | 218/4350 [01:20<24:58, 2.76it/s]
432
  5%|▌ | 219/4350 [01:20<27:32, 2.50it/s]
433
  5%|▌ | 220/4350 [01:21<27:51, 2.47it/s]
434
  5%|▌ | 221/4350 [01:21<28:22, 2.43it/s]
435
  5%|▌ | 222/4350 [01:21<26:42, 2.58it/s]
436
  5%|▌ | 223/4350 [01:22<28:07, 2.45it/s]
437
  5%|▌ | 224/4350 [01:22<28:55, 2.38it/s]
438
  5%|▌ | 225/4350 [01:23<29:23, 2.34it/s]
439
  5%|▌ | 226/4350 [01:23<27:54, 2.46it/s]
440
  5%|▌ | 227/4350 [01:24<27:01, 2.54it/s]
441
  5%|▌ | 228/4350 [01:24<25:31, 2.69it/s]
442
  5%|▌ | 229/4350 [01:24<23:13, 2.96it/s]
443
  5%|▌ | 230/4350 [01:24<22:18, 3.08it/s]
444
  5%|▌ | 231/4350 [01:25<23:07, 2.97it/s]
445
  5%|▌ | 232/4350 [01:25<23:03, 2.98it/s]
446
  5%|▌ | 233/4350 [01:25<22:13, 3.09it/s]
447
  5%|▌ | 234/4350 [01:26<23:11, 2.96it/s]
448
  5%|▌ | 235/4350 [01:26<23:18, 2.94it/s]
449
  5%|▌ | 236/4350 [01:26<23:14, 2.95it/s]
450
  5%|▌ | 237/4350 [01:27<22:26, 3.05it/s]
451
  5%|▌ | 238/4350 [01:27<21:03, 3.25it/s]
452
  5%|▌ | 239/4350 [01:28<27:48, 2.46it/s]
453
  6%|▌ | 240/4350 [01:28<25:49, 2.65it/s]
454
  6%|▌ | 241/4350 [01:28<23:33, 2.91it/s]
455
  6%|▌ | 242/4350 [01:29<26:27, 2.59it/s]
456
  6%|▌ | 243/4350 [01:29<25:11, 2.72it/s]
457
  6%|▌ | 244/4350 [01:30<28:43, 2.38it/s]
458
  6%|▌ | 245/4350 [01:30<28:35, 2.39it/s]
459
  6%|▌ | 246/4350 [01:30<29:18, 2.33it/s]
460
  6%|▌ | 247/4350 [01:31<27:55, 2.45it/s]
461
  6%|▌ | 248/4350 [01:31<26:52, 2.54it/s]
462
  6%|▌ | 249/4350 [01:32<27:30, 2.48it/s]
463
  6%|▌ | 250/4350 [01:32<26:22, 2.59it/s]
464
  6%|▌ | 251/4350 [01:32<26:03, 2.62it/s]
465
  6%|▌ | 252/4350 [01:33<26:25, 2.59it/s]
466
  6%|▌ | 253/4350 [01:33<23:55, 2.85it/s]
467
  6%|▌ | 254/4350 [01:33<22:18, 3.06it/s]
468
  6%|▌ | 255/4350 [01:34<22:37, 3.02it/s]
469
  6%|▌ | 256/4350 [01:34<22:50, 2.99it/s]
470
  6%|▌ | 257/4350 [01:34<25:25, 2.68it/s]
471
  6%|▌ | 258/4350 [01:35<29:19, 2.33it/s]
472
  6%|▌ | 259/4350 [01:35<26:57, 2.53it/s]
473
  6%|▌ | 260/4350 [01:36<27:54, 2.44it/s]
474
  6%|▌ | 261/4350 [01:36<27:11, 2.51it/s]
475
  6%|▌ | 262/4350 [01:36<25:56, 2.63it/s]
476
  6%|▌ | 263/4350 [01:37<26:06, 2.61it/s]
477
  6%|▌ | 264/4350 [01:37<23:41, 2.87it/s]
478
  6%|▌ | 265/4350 [01:37<23:16, 2.93it/s]
479
  6%|▌ | 266/4350 [01:38<22:48, 2.98it/s]
480
  6%|▌ | 267/4350 [01:38<22:39, 3.00it/s]
481
  6%|▌ | 268/4350 [01:38<22:43, 2.99it/s]
482
  6%|▌ | 269/4350 [01:39<20:40, 3.29it/s]
483
  6%|▌ | 270/4350 [01:39<21:46, 3.12it/s]
484
  6%|▌ | 271/4350 [01:39<22:54, 2.97it/s]
485
  6%|▋ | 272/4350 [01:40<21:55, 3.10it/s]
486
  6%|▋ | 273/4350 [01:40<21:52, 3.11it/s]
487
  6%|▋ | 274/4350 [01:40<21:41, 3.13it/s]
488
  6%|▋ | 275/4350 [01:41<22:50, 2.97it/s]
489
  6%|▋ | 276/4350 [01:41<22:06, 3.07it/s]
490
  6%|▋ | 277/4350 [01:41<21:06, 3.22it/s]
491
  6%|▋ | 278/4350 [01:42<23:57, 2.83it/s]
492
  6%|▋ | 279/4350 [01:42<23:08, 2.93it/s]
493
  6%|▋ | 280/4350 [01:42<21:59, 3.09it/s]
494
  6%|▋ | 281/4350 [01:43<22:16, 3.04it/s]
495
  6%|▋ | 282/4350 [01:43<21:12, 3.20it/s]
496
  7%|▋ | 283/4350 [01:43<20:40, 3.28it/s]
497
  7%|▋ | 284/4350 [01:43<20:46, 3.26it/s]
498
  7%|▋ | 285/4350 [01:44<21:23, 3.17it/s]
499
  7%|▋ | 286/4350 [01:44<24:38, 2.75it/s]
500
  7%|▋ | 287/4350 [01:45<24:59, 2.71it/s]
501
  7%|▋ | 288/4350 [01:45<25:30, 2.65it/s]
502
  7%|▋ | 289/4350 [01:45<24:13, 2.79it/s]
503
  7%|▋ | 290/4350 [01:46<25:40, 2.64it/s]
504
  7%|▋ | 291/4350 [01:46<26:55, 2.51it/s]
505
  7%|▋ | 292/4350 [01:47<25:25, 2.66it/s]
506
  7%|▋ | 293/4350 [01:47<27:43, 2.44it/s]
507
  7%|▋ | 294/4350 [01:47<25:27, 2.66it/s]
508
  7%|▋ | 295/4350 [01:48<24:33, 2.75it/s]
509
  7%|▋ | 296/4350 [01:48<23:55, 2.82it/s]
510
  7%|▋ | 297/4350 [01:48<24:34, 2.75it/s]
511
  7%|▋ | 298/4350 [01:49<23:14, 2.91it/s]
512
  7%|▋ | 299/4350 [01:49<25:06, 2.69it/s]
513
  7%|▋ | 300/4350 [01:50<26:48, 2.52it/s]
514
  7%|▋ | 301/4350 [01:50<26:58, 2.50it/s]
515
  7%|▋ | 302/4350 [01:50<27:08, 2.49it/s]
516
  7%|▋ | 303/4350 [01:51<25:10, 2.68it/s]
517
  7%|▋ | 304/4350 [01:51<24:23, 2.76it/s]
518
  7%|▋ | 305/4350 [01:51<24:40, 2.73it/s]
519
  7%|▋ | 306/4350 [01:52<24:02, 2.80it/s]
520
  7%|▋ | 307/4350 [01:52<26:31, 2.54it/s]
521
  7%|▋ | 308/4350 [01:53<24:54, 2.70it/s]
522
  7%|▋ | 309/4350 [01:53<25:25, 2.65it/s]
523
  7%|▋ | 310/4350 [01:53<25:02, 2.69it/s]
524
  7%|▋ | 311/4350 [01:54<23:09, 2.91it/s]
525
  7%|▋ | 312/4350 [01:54<22:55, 2.94it/s]
526
  7%|▋ | 313/4350 [01:54<24:20, 2.76it/s]
527
  7%|▋ | 314/4350 [01:55<22:33, 2.98it/s]
528
  7%|▋ | 315/4350 [01:55<22:21, 3.01it/s]
529
  7%|▋ | 316/4350 [01:55<22:25, 3.00it/s]
530
  7%|▋ | 317/4350 [01:56<21:16, 3.16it/s]
531
  7%|▋ | 318/4350 [01:56<22:06, 3.04it/s]
532
  7%|▋ | 319/4350 [01:56<21:16, 3.16it/s]
533
  7%|▋ | 320/4350 [01:57<21:17, 3.15it/s]
534
  7%|▋ | 321/4350 [01:57<23:11, 2.89it/s]
535
  7%|▋ | 322/4350 [01:57<21:07, 3.18it/s]
536
  7%|▋ | 323/4350 [01:58<23:11, 2.89it/s]
537
  7%|▋ | 324/4350 [01:58<22:59, 2.92it/s]
538
  7%|▋ | 325/4350 [01:58<22:27, 2.99it/s]
539
  7%|▋ | 326/4350 [01:59<23:08, 2.90it/s]
540
  8%|▊ | 327/4350 [01:59<22:01, 3.04it/s]
541
  8%|▊ | 328/4350 [01:59<21:22, 3.14it/s]
542
  8%|▊ | 329/4350 [02:00<23:25, 2.86it/s]
543
  8%|▊ | 330/4350 [02:00<23:12, 2.89it/s]
544
  8%|▊ | 331/4350 [02:00<26:42, 2.51it/s]
545
  8%|▊ | 332/4350 [02:01<27:41, 2.42it/s]
546
  8%|▊ | 333/4350 [02:01<26:58, 2.48it/s]
547
  8%|▊ | 334/4350 [02:02<30:37, 2.19it/s]
548
  8%|▊ | 335/4350 [02:02<28:58, 2.31it/s]
549
  8%|▊ | 336/4350 [02:03<27:32, 2.43it/s]
550
  8%|▊ | 337/4350 [02:03<25:56, 2.58it/s]
551
  8%|▊ | 338/4350 [02:03<24:05, 2.77it/s]
552
  8%|▊ | 339/4350 [02:04<23:12, 2.88it/s]
553
  8%|▊ | 340/4350 [02:04<22:21, 2.99it/s]
554
  8%|▊ | 341/4350 [02:04<21:00, 3.18it/s]
555
  8%|▊ | 342/4350 [02:04<20:41, 3.23it/s]
556
  8%|▊ | 343/4350 [02:05<21:35, 3.09it/s]
557
  8%|▊ | 344/4350 [02:05<23:45, 2.81it/s]
558
  8%|▊ | 345/4350 [02:06<28:22, 2.35it/s]
559
  8%|▊ | 346/4350 [02:06<25:33, 2.61it/s]
560
  8%|▊ | 347/4350 [02:07<27:08, 2.46it/s]
561
  8%|▊ | 348/4350 [02:07<25:48, 2.58it/s]
562
  8%|▊ | 349/4350 [02:07<23:48, 2.80it/s]
563
  8%|▊ | 350/4350 [02:08<23:04, 2.89it/s]
564
  8%|▊ | 351/4350 [02:08<22:56, 2.91it/s]
565
  8%|▊ | 352/4350 [02:08<21:51, 3.05it/s]
566
  8%|▊ | 353/4350 [02:08<22:07, 3.01it/s]
567
  8%|▊ | 354/4350 [02:09<35:32, 1.87it/s]
568
  8%|▊ | 355/4350 [02:10<30:32, 2.18it/s]
569
  8%|▊ | 356/4350 [02:10<30:17, 2.20it/s]
570
  8%|▊ | 357/4350 [02:11<28:50, 2.31it/s]
571
  8%|▊ | 358/4350 [02:11<25:47, 2.58it/s]
572
  8%|▊ | 359/4350 [02:11<24:42, 2.69it/s]
573
  8%|▊ | 360/4350 [02:12<25:10, 2.64it/s]
574
  8%|▊ | 361/4350 [02:12<24:15, 2.74it/s]
575
  8%|▊ | 362/4350 [02:12<21:49, 3.04it/s]
576
  8%|▊ | 363/4350 [02:12<20:14, 3.28it/s]
577
  8%|▊ | 364/4350 [02:13<19:53, 3.34it/s]
578
  8%|▊ | 365/4350 [02:13<20:56, 3.17it/s]
579
  8%|▊ | 366/4350 [02:13<23:17, 2.85it/s]
580
  8%|▊ | 367/4350 [02:14<22:06, 3.00it/s]
581
  8%|▊ | 368/4350 [02:14<23:28, 2.83it/s]
582
  8%|▊ | 369/4350 [02:15<22:59, 2.89it/s]
583
  9%|▊ | 370/4350 [02:15<22:03, 3.01it/s]
584
  9%|▊ | 371/4350 [02:15<22:02, 3.01it/s]
585
  9%|▊ | 372/4350 [02:16<22:35, 2.94it/s]
586
  9%|▊ | 373/4350 [02:16<21:48, 3.04it/s]
587
  9%|▊ | 374/4350 [02:16<21:50, 3.03it/s]
588
  9%|▊ | 375/4350 [02:17<24:57, 2.65it/s]
589
  9%|▊ | 376/4350 [02:17<24:08, 2.74it/s]
590
  9%|▊ | 377/4350 [02:17<23:25, 2.83it/s]
591
  9%|▊ | 378/4350 [02:18<24:48, 2.67it/s]
592
  9%|▊ | 379/4350 [02:18<23:59, 2.76it/s]
593
  9%|▊ | 380/4350 [02:18<23:10, 2.86it/s]
594
  9%|▉ | 381/4350 [02:19<23:11, 2.85it/s]
595
  9%|▉ | 382/4350 [02:19<29:29, 2.24it/s]
596
  9%|▉ | 383/4350 [02:20<26:05, 2.53it/s]
597
  9%|▉ | 384/4350 [02:20<24:06, 2.74it/s]
598
  9%|▉ | 385/4350 [02:20<23:35, 2.80it/s]
599
  9%|▉ | 386/4350 [02:21<23:38, 2.79it/s]
600
  9%|▉ | 387/4350 [02:21<22:25, 2.95it/s]
601
  9%|▉ | 388/4350 [02:21<24:05, 2.74it/s]
602
  9%|▉ | 389/4350 [02:22<23:36, 2.80it/s]
603
  9%|▉ | 390/4350 [02:22<23:04, 2.86it/s]
604
  9%|▉ | 391/4350 [02:22<22:44, 2.90it/s]
605
  9%|▉ | 392/4350 [02:23<25:19, 2.60it/s]
606
  9%|▉ | 393/4350 [02:23<25:05, 2.63it/s]
607
  9%|▉ | 394/4350 [02:24<28:22, 2.32it/s]
608
  9%|▉ | 395/4350 [02:24<25:17, 2.61it/s]
609
  9%|▉ | 396/4350 [02:24<24:49, 2.65it/s]
610
  9%|▉ | 397/4350 [02:25<22:40, 2.91it/s]
611
  9%|▉ | 398/4350 [02:25<22:51, 2.88it/s]
612
  9%|▉ | 399/4350 [02:25<21:20, 3.08it/s]
613
  9%|▉ | 400/4350 [02:26<23:42, 2.78it/s]
614
  9%|▉ | 401/4350 [02:26<23:52, 2.76it/s]
615
  9%|▉ | 402/4350 [02:27<25:18, 2.60it/s]
616
  9%|▉ | 403/4350 [02:27<24:41, 2.66it/s]
617
  9%|▉ | 404/4350 [02:27<25:02, 2.63it/s]
618
  9%|▉ | 405/4350 [02:28<24:03, 2.73it/s]
619
  9%|▉ | 406/4350 [02:28<27:48, 2.36it/s]
620
  9%|▉ | 407/4350 [02:29<28:03, 2.34it/s]
621
  9%|▉ | 408/4350 [02:29<25:54, 2.54it/s]
622
  9%|▉ | 409/4350 [02:29<24:35, 2.67it/s]
623
  9%|▉ | 410/4350 [02:30<22:41, 2.89it/s]
624
  9%|▉ | 411/4350 [02:30<23:52, 2.75it/s]
625
  9%|▉ | 412/4350 [02:30<25:11, 2.60it/s]
626
  9%|▉ | 413/4350 [02:31<24:47, 2.65it/s]
627
  10%|▉ | 414/4350 [02:31<26:37, 2.46it/s]
628
  10%|▉ | 415/4350 [02:32<25:33, 2.57it/s]
629
  10%|▉ | 416/4350 [02:32<24:17, 2.70it/s]
630
  10%|▉ | 417/4350 [02:32<23:41, 2.77it/s]
631
  10%|▉ | 418/4350 [02:33<22:35, 2.90it/s]
632
  10%|▉ | 419/4350 [02:33<21:32, 3.04it/s]
633
  10%|▉ | 420/4350 [02:33<20:14, 3.24it/s]
634
  10%|▉ | 421/4350 [02:34<23:00, 2.85it/s]
635
  10%|▉ | 422/4350 [02:34<22:45, 2.88it/s]
636
  10%|▉ | 423/4350 [02:34<21:47, 3.00it/s]
637
  10%|▉ | 424/4350 [02:35<21:44, 3.01it/s]
638
  10%|▉ | 425/4350 [02:35<22:25, 2.92it/s]
639
  10%|▉ | 426/4350 [02:35<23:36, 2.77it/s]
640
  10%|▉ | 427/4350 [02:36<23:06, 2.83it/s]
641
  10%|▉ | 428/4350 [02:36<22:40, 2.88it/s]
642
  10%|▉ | 429/4350 [02:36<22:37, 2.89it/s]
643
  10%|▉ | 430/4350 [02:37<21:50, 2.99it/s]
644
  10%|▉ | 431/4350 [02:37<21:18, 3.07it/s]
645
  10%|▉ | 432/4350 [02:37<21:59, 2.97it/s]
646
  10%|▉ | 433/4350 [02:38<21:34, 3.03it/s]
647
  10%|▉ | 434/4350 [02:38<20:35, 3.17it/s]
648
  10%|█ | 435/4350 [02:38<23:44, 2.75it/s][INFO|trainer.py:811] 2024-09-09 14:57:52,268 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, ner_tags, tokens. If id, ner_tags, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
649
+ [INFO|trainer.py:3819] 2024-09-09 14:57:52,271 >>
650
+ ***** Running Evaluation *****
651
+ [INFO|trainer.py:3821] 2024-09-09 14:57:52,271 >> Num examples = 6946
652
+ [INFO|trainer.py:3824] 2024-09-09 14:57:52,271 >> Batch size = 8
653
+
654
+
655
  0%| | 0/869 [00:00<?, ?it/s]
656
+
657
  1%| | 10/869 [00:00<00:09, 94.38it/s]
658
+
659
  2%|▏ | 20/869 [00:00<00:10, 80.53it/s]
660
+
661
  3%|▎ | 29/869 [00:00<00:10, 78.84it/s]
662
+
663
  4%|▍ | 37/869 [00:00<00:10, 75.92it/s]
664
+
665
  5%|▌ | 46/869 [00:00<00:10, 79.35it/s]
666
+
667
  6%|▋ | 55/869 [00:00<00:09, 81.86it/s]
668
+
669
  7%|▋ | 64/869 [00:00<00:10, 77.60it/s]
670
+
671
  8%|▊ | 72/869 [00:00<00:10, 76.90it/s]
672
+
673
  9%|▉ | 82/869 [00:01<00:09, 81.12it/s]
674
+
675
  10%|█ | 91/869 [00:01<00:09, 83.34it/s]
676
+
677
  12%|█▏ | 101/869 [00:01<00:08, 86.18it/s]
678
+
679
  13%|█▎ | 110/869 [00:01<00:09, 82.44it/s]
680
+
681
  14%|█▎ | 119/869 [00:01<00:09, 81.44it/s]
682
+
683
  15%|█▍ | 128/869 [00:01<00:09, 79.58it/s]
684
+
685
  16%|█▌ | 137/869 [00:01<00:09, 80.83it/s]
686
+
687
  17%|█▋ | 146/869 [00:01<00:09, 76.19it/s]
688
+
689
  18%|█▊ | 155/869 [00:01<00:09, 78.46it/s]
690
+
691
  19%|█▉ | 163/869 [00:02<00:08, 78.50it/s]
692
+
693
  20%|█▉ | 171/869 [00:02<00:09, 76.56it/s]
694
+
695
  21%|██ | 179/869 [00:02<00:09, 75.51it/s]
696
+
697
  22%|██▏ | 188/869 [00:02<00:08, 77.69it/s]
698
+
699
  23%|██▎ | 196/869 [00:02<00:08, 75.43it/s]
700
+
701
  24%|██▎ | 205/869 [00:02<00:08, 78.09it/s]
702
+
703
  25%|██▍ | 214/869 [00:02<00:08, 79.78it/s]
704
+
705
  26%|██▌ | 223/869 [00:02<00:07, 81.12it/s]
706
+
707
  27%|██▋ | 232/869 [00:02<00:08, 77.58it/s]
708
+
709
  28%|██▊ | 240/869 [00:03<00:08, 77.81it/s]
710
+
711
  29%|██▊ | 248/869 [00:03<00:08, 72.44it/s]
712
+
713
  30%|██▉ | 257/869 [00:03<00:08, 75.03it/s]
714
+
715
  30%|███ | 265/869 [00:03<00:08, 74.16it/s]
716
+
717
  31%|███▏ | 273/869 [00:03<00:08, 74.49it/s]
718
+
719
  32%|███▏ | 281/869 [00:03<00:07, 73.94it/s]
720
+
721
  33%|███▎ | 289/869 [00:03<00:07, 73.45it/s]
722
+
723
  34%|███▍ | 297/869 [00:03<00:07, 74.28it/s]
724
+
725
  35%|███▌ | 305/869 [00:03<00:07, 71.04it/s]
726
+
727
  36%|███▌ | 313/869 [00:04<00:07, 72.51it/s]
728
+
729
  37%|███▋ | 321/869 [00:04<00:07, 72.04it/s]
730
+
731
  38%|███▊ | 330/869 [00:04<00:07, 76.27it/s]
732
+
733
  39%|███▉ | 339/869 [00:04<00:06, 77.90it/s]
734
+
735
  40%|███▉ | 347/869 [00:04<00:07, 72.34it/s]
736
+
737
  41%|████ | 355/869 [00:04<00:07, 73.40it/s]
738
+
739
  42%|████▏ | 364/869 [00:04<00:06, 77.35it/s]
740
+
741
  43%|████▎ | 373/869 [00:04<00:06, 75.47it/s]
742
+
743
  44%|████▍ | 381/869 [00:04<00:06, 76.61it/s]
744
+
745
  45%|████▍ | 389/869 [00:05<00:06, 71.19it/s]
746
+
747
  46%|████▌ | 398/869 [00:05<00:06, 73.53it/s]
748
+
749
  47%|████▋ | 407/869 [00:05<00:06, 75.94it/s]
750
+
751
  48%|████▊ | 416/869 [00:05<00:05, 78.73it/s]
752
+
753
  49%|████▉ | 425/869 [00:05<00:05, 79.97it/s]
754
+
755
  50%|████▉ | 434/869 [00:05<00:05, 79.87it/s]
756
+
757
  51%|█████ | 443/869 [00:05<00:05, 75.05it/s]
758
+
759
  52%|█████▏ | 452/869 [00:05<00:05, 78.30it/s]
760
+
761
  53%|█████▎ | 460/869 [00:05<00:05, 77.46it/s]
762
+
763
  54%|█████▍ | 468/869 [00:06<00:05, 77.51it/s]
764
+
765
  55%|█████▌ | 478/869 [00:06<00:04, 82.12it/s]
766
+
767
  56%|█████▌ | 487/869 [00:06<00:04, 82.39it/s]
768
+
769
  57%|█████▋ | 496/869 [00:06<00:04, 77.76it/s]
770
+
771
  58%|█████▊ | 504/869 [00:06<00:04, 75.48it/s]
772
+
773
  59%|█████▉ | 513/869 [00:06<00:04, 77.10it/s]
774
+
775
  60%|██████ | 522/869 [00:06<00:04, 72.55it/s]
776
+
777
  61%|██████ | 531/869 [00:06<00:04, 74.98it/s]
778
+
779
  62%|██████▏ | 539/869 [00:07<00:04, 73.62it/s]
780
+
781
  63%|██████▎ | 547/869 [00:07<00:04, 72.80it/s]
782
+
783
  64%|██████▍ | 556/869 [00:07<00:04, 75.57it/s]
784
+
785
  65%|██████▍ | 564/869 [00:07<00:04, 76.14it/s]
786
+
787
  66%|██████▌ | 572/869 [00:07<00:03, 75.16it/s]
788
+
789
  67%|██████▋ | 580/869 [00:07<00:03, 75.56it/s]
790
+
791
  68%|██████▊ | 588/869 [00:07<00:03, 74.55it/s]
792
+
793
  69%|██████▊ | 597/869 [00:07<00:03, 76.58it/s]
794
+
795
  70%|██████▉ | 606/869 [00:07<00:03, 78.76it/s]
796
+
797
  71%|███████ | 614/869 [00:07<00:03, 77.83it/s]
798
+
799
  72%|███████▏ | 622/869 [00:08<00:03, 76.62it/s]
800
+
801
  72%|███████▏ | 630/869 [00:08<00:03, 75.57it/s]
802
+
803
  73%|███████▎ | 638/869 [00:08<00:03, 74.86it/s]
804
+
805
  74%|███████▍ | 647/869 [00:08<00:02, 78.56it/s]
806
+
807
  75%|███████▌ | 656/869 [00:08<00:02, 80.46it/s]
808
+
809
  77%|███████▋ | 665/869 [00:08<00:02, 78.96it/s]
810
+
811
  78%|███████▊ | 674/869 [00:08<00:02, 81.43it/s]
812
+
813
  79%|███████▊ | 683/869 [00:08<00:02, 71.20it/s]
814
+
815
  80%|███████▉ | 692/869 [00:09<00:02, 74.89it/s]
816
+
817
  81%|████████ | 700/869 [00:09<00:02, 74.84it/s]
818
+
819
  81%|████████▏ | 708/869 [00:09<00:02, 74.65it/s]
820
+
821
  83%|████████▎ | 717/869 [00:09<00:01, 76.79it/s]
822
+
823
  84%|████████▎ | 726/869 [00:09<00:01, 78.45it/s]
824
+
825
  84%|████████▍ | 734/869 [00:09<00:01, 78.58it/s]
826
+
827
  86%|████████▌ | 743/869 [00:09<00:01, 79.37it/s]
828
+
829
  86%|████████▋ | 751/869 [00:09<00:01, 76.29it/s]
830
+
831
  87%|████████▋ | 759/869 [00:09<00:01, 77.08it/s]
832
+
833
  88%|████████▊ | 767/869 [00:09<00:01, 73.70it/s]
834
+
835
  89%|████████▉ | 776/869 [00:10<00:01, 70.08it/s]
836
+
837
  90%|█████████ | 784/869 [00:10<00:01, 66.90it/s]
838
+
839
  91%|█████████▏| 793/869 [00:10<00:01, 71.36it/s]
840
+
841
  92%|█████████▏| 801/869 [00:10<00:00, 73.31it/s]
842
+
843
  93%|█████████▎| 809/869 [00:10<00:00, 75.05it/s]
844
+
845
  94%|█████████▍| 817/869 [00:10<00:00, 75.70it/s]
846
+
847
  95%|█████████▍| 825/869 [00:10<00:00, 76.54it/s]
848
+
849
  96%|█████████▌| 833/869 [00:10<00:00, 76.46it/s]
850
+
851
  97%|█████████▋| 842/869 [00:10<00:00, 79.79it/s]
852
+
853
  98%|█████████▊| 851/869 [00:11<00:00, 80.97it/s]
854
+
855
  99%|█████████▉| 860/869 [00:11<00:00, 76.49it/s]
856
+
857
 
858
+
859
 
860
  10%|█ | 435/4350 [02:53<23:44, 2.75it/s]
861
+
862
+
863
  [INFO|trainer.py:3503] 2024-09-09 14:58:07,323 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-435
864
+ [INFO|configuration_utils.py:472] 2024-09-09 14:58:07,324 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-435/config.json
865
+ [INFO|modeling_utils.py:2799] 2024-09-09 14:58:08,210 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-435/model.safetensors
866
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 14:58:08,211 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-435/tokenizer_config.json
867
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 14:58:08,211 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-435/special_tokens_map.json
868
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 14:58:15,350 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
869
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 14:58:15,350 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
870
+
871
  10%|█ | 436/4350 [03:02<7:54:02, 7.27s/it]
872
  10%|█ | 437/4350 [03:02<5:38:17, 5.19s/it]
873
  10%|█ | 438/4350 [03:02<4:03:46, 3.74s/it]
874
  10%|█ | 439/4350 [03:03<2:58:39, 2.74s/it]
875
  10%|█ | 440/4350 [03:03<2:10:48, 2.01s/it]
876
  10%|█ | 441/4350 [03:04<1:39:18, 1.52s/it]
877
  10%|█ | 442/4350 [03:04<1:19:11, 1.22s/it]
878
  10%|█ | 443/4350 [03:04<1:01:40, 1.06it/s]
879
  10%|█ | 444/4350 [03:05<50:27, 1.29it/s]
880
  10%|█ | 445/4350 [03:05<41:06, 1.58it/s]
881
  10%|█ | 446/4350 [03:05<35:42, 1.82it/s]
882
  10%|█ | 447/4350 [03:06<33:41, 1.93it/s]
883
  10%|█ | 448/4350 [03:06<29:20, 2.22it/s]
884
  10%|█ | 449/4350 [03:07<28:09, 2.31it/s]
885
  10%|█ | 450/4350 [03:07<27:36, 2.35it/s]
886
  10%|█ | 451/4350 [03:07<24:39, 2.64it/s]
887
  10%|█ | 452/4350 [03:08<25:44, 2.52it/s]
888
  10%|█ | 453/4350 [03:08<24:33, 2.64it/s]
889
  10%|█ | 454/4350 [03:08<23:33, 2.76it/s]
890
  10%|█ | 455/4350 [03:09<22:58, 2.83it/s]
891
  10%|█ | 456/4350 [03:09<22:12, 2.92it/s]
892
  11%|█ | 457/4350 [03:09<22:10, 2.93it/s]
893
  11%|█ | 458/4350 [03:10<24:28, 2.65it/s]
894
  11%|█ | 459/4350 [03:10<23:59, 2.70it/s]
895
  11%|█ | 460/4350 [03:10<21:44, 2.98it/s]
896
  11%|█ | 461/4350 [03:11<21:22, 3.03it/s]
897
  11%|█ | 462/4350 [03:11<19:33, 3.31it/s]
898
  11%|█ | 463/4350 [03:11<23:42, 2.73it/s]
899
  11%|█ | 464/4350 [03:12<23:46, 2.72it/s]
900
  11%|█ | 465/4350 [03:12<21:40, 2.99it/s]
901
  11%|█ | 466/4350 [03:12<24:07, 2.68it/s]
902
  11%|█ | 467/4350 [03:13<24:06, 2.69it/s]
903
  11%|█ | 468/4350 [03:14<31:52, 2.03it/s]
904
  11%|█ | 469/4350 [03:14<28:11, 2.29it/s]
905
  11%|█ | 470/4350 [03:14<27:41, 2.33it/s]
906
  11%|█ | 471/4350 [03:15<27:16, 2.37it/s]
907
  11%|█ | 472/4350 [03:15<25:24, 2.54it/s]
908
  11%|█ | 473/4350 [03:15<24:43, 2.61it/s]
909
  11%|█ | 474/4350 [03:16<24:10, 2.67it/s]
910
  11%|█ | 475/4350 [03:16<24:12, 2.67it/s]
911
  11%|█ | 476/4350 [03:17<23:17, 2.77it/s]
912
  11%|█ | 477/4350 [03:17<24:06, 2.68it/s]
913
  11%|█ | 478/4350 [03:17<22:57, 2.81it/s]
914
  11%|█ | 479/4350 [03:18<24:02, 2.68it/s]
915
  11%|█ | 480/4350 [03:18<24:15, 2.66it/s]
916
  11%|█ | 481/4350 [03:18<23:12, 2.78it/s]
917
  11%|█ | 482/4350 [03:19<23:58, 2.69it/s]
918
  11%|█ | 483/4350 [03:19<23:27, 2.75it/s]
919
  11%|█ | 484/4350 [03:19<21:37, 2.98it/s]
920
  11%|█ | 485/4350 [03:20<21:17, 3.03it/s]
921
  11%|█ | 486/4350 [03:20<24:09, 2.67it/s]
922
  11%|█ | 487/4350 [03:20<23:24, 2.75it/s]
923
  11%|█ | 488/4350 [03:21<24:25, 2.63it/s]
924
  11%|█ | 489/4350 [03:21<24:16, 2.65it/s]
925
  11%|█▏ | 490/4350 [03:22<24:30, 2.62it/s]
926
  11%|█▏ | 491/4350 [03:22<22:52, 2.81it/s]
927
  11%|█▏ | 492/4350 [03:22<22:31, 2.85it/s]
928
  11%|█▏ | 493/4350 [03:23<22:25, 2.87it/s]
929
  11%|█▏ | 494/4350 [03:23<22:51, 2.81it/s]
930
  11%|█▏ | 495/4350 [03:23<20:55, 3.07it/s]
931
  11%|█▏ | 496/4350 [03:24<22:34, 2.84it/s]
932
  11%|█▏ | 497/4350 [03:24<22:38, 2.84it/s]
933
  11%|█▏ | 498/4350 [03:24<22:48, 2.81it/s]
934
  11%|█▏ | 499/4350 [03:25<22:06, 2.90it/s]
935
  11%|█▏ | 500/4350 [03:25<22:27, 2.86it/s]
936
 
937
  11%|█▏ | 500/4350 [03:25<22:27, 2.86it/s]
938
  12%|█▏ | 501/4350 [03:26<23:40, 2.71it/s]
939
  12%|█▏ | 502/4350 [03:26<22:58, 2.79it/s]
940
  12%|█▏ | 503/4350 [03:26<23:33, 2.72it/s]
941
  12%|█▏ | 504/4350 [03:27<23:08, 2.77it/s]
942
  12%|█▏ | 505/4350 [03:27<20:31, 3.12it/s]
943
  12%|█▏ | 506/4350 [03:27<20:39, 3.10it/s]
944
  12%|█▏ | 507/4350 [03:27<19:56, 3.21it/s]
945
  12%|█▏ | 508/4350 [03:28<21:15, 3.01it/s]
946
  12%|█▏ | 509/4350 [03:28<23:12, 2.76it/s]
947
  12%|█▏ | 510/4350 [03:29<21:47, 2.94it/s]
948
  12%|█▏ | 511/4350 [03:29<21:15, 3.01it/s]
949
  12%|█▏ | 512/4350 [03:29<23:18, 2.75it/s]
950
  12%|█▏ | 513/4350 [03:30<22:50, 2.80it/s]
951
  12%|█▏ | 514/4350 [03:30<22:21, 2.86it/s]
952
  12%|█▏ | 515/4350 [03:30<21:47, 2.93it/s]
953
  12%|█▏ | 516/4350 [03:31<22:27, 2.84it/s]
954
  12%|█▏ | 517/4350 [03:31<24:53, 2.57it/s]
955
  12%|█▏ | 518/4350 [03:31<22:41, 2.82it/s]
956
  12%|█▏ | 519/4350 [03:32<21:59, 2.90it/s]
957
  12%|█▏ | 520/4350 [03:32<23:16, 2.74it/s]
958
  12%|█▏ | 521/4350 [03:32<22:21, 2.85it/s]
959
  12%|█▏ | 522/4350 [03:33<21:01, 3.03it/s]
960
  12%|█▏ | 523/4350 [03:33<22:59, 2.77it/s]
961
  12%|█▏ | 524/4350 [03:33<22:42, 2.81it/s]
962
  12%|█▏ | 525/4350 [03:34<24:14, 2.63it/s]
963
  12%|█▏ | 526/4350 [03:34<24:17, 2.62it/s]
964
  12%|█▏ | 527/4350 [03:35<23:08, 2.75it/s]
965
  12%|█▏ | 528/4350 [03:35<23:07, 2.75it/s]
966
  12%|█▏ | 529/4350 [03:35<25:05, 2.54it/s]
967
  12%|█▏ | 530/4350 [03:36<31:57, 1.99it/s]
968
  12%|█▏ | 531/4350 [03:37<28:16, 2.25it/s]
969
  12%|█▏ | 532/4350 [03:37<25:28, 2.50it/s]
970
  12%|█▏ | 533/4350 [03:37<22:38, 2.81it/s]
971
  12%|█▏ | 534/4350 [03:37<23:49, 2.67it/s]
972
  12%|█▏ | 535/4350 [03:38<24:28, 2.60it/s]
973
  12%|█▏ | 536/4350 [03:38<23:41, 2.68it/s]
974
  12%|█▏ | 537/4350 [03:39<25:30, 2.49it/s]
975
  12%|█▏ | 538/4350 [03:39<24:18, 2.61it/s]
976
  12%|█▏ | 539/4350 [03:40<28:25, 2.23it/s]
977
  12%|█▏ | 540/4350 [03:40<26:16, 2.42it/s]
978
  12%|█▏ | 541/4350 [03:40<25:23, 2.50it/s]
979
  12%|█▏ | 542/4350 [03:41<23:06, 2.75it/s]
980
  12%|█▏ | 543/4350 [03:41<24:11, 2.62it/s]
981
  13%|█▎ | 544/4350 [03:41<22:10, 2.86it/s]
982
  13%|█▎ | 545/4350 [03:42<22:36, 2.80it/s]
983
  13%|█▎ | 546/4350 [03:42<23:00, 2.76it/s]
984
  13%|█▎ | 547/4350 [03:43<24:28, 2.59it/s]
985
  13%|█▎ | 548/4350 [03:43<24:01, 2.64it/s]
986
  13%|█▎ | 549/4350 [03:43<24:11, 2.62it/s]
987
  13%|█▎ | 550/4350 [03:44<23:04, 2.74it/s]
988
  13%|█▎ | 551/4350 [03:44<22:02, 2.87it/s]
989
  13%|█▎ | 552/4350 [03:44<21:14, 2.98it/s]
990
  13%|█▎ | 553/4350 [03:45<24:03, 2.63it/s]
991
  13%|█▎ | 554/4350 [03:45<22:22, 2.83it/s]
992
  13%|█▎ | 555/4350 [03:45<21:26, 2.95it/s]
993
  13%|█▎ | 556/4350 [03:46<19:42, 3.21it/s]
994
  13%|█▎ | 557/4350 [03:46<20:31, 3.08it/s]
995
  13%|█▎ | 558/4350 [03:46<21:34, 2.93it/s]
996
  13%|█▎ | 559/4350 [03:47<21:25, 2.95it/s]
997
  13%|█▎ | 560/4350 [03:47<21:19, 2.96it/s]
998
  13%|█▎ | 561/4350 [03:47<22:03, 2.86it/s]
999
  13%|█▎ | 562/4350 [03:48<23:13, 2.72it/s]
1000
  13%|█▎ | 563/4350 [03:48<24:07, 2.62it/s]
1001
  13%|█▎ | 564/4350 [03:48<21:46, 2.90it/s]
1002
  13%|█▎ | 565/4350 [03:49<22:41, 2.78it/s]
1003
  13%|█▎ | 566/4350 [03:49<24:25, 2.58it/s]
1004
  13%|█▎ | 567/4350 [03:50<29:30, 2.14it/s]
1005
  13%|█▎ | 568/4350 [03:50<29:34, 2.13it/s]
1006
  13%|█▎ | 569/4350 [03:51<27:34, 2.28it/s]
1007
  13%|█▎ | 570/4350 [03:51<25:34, 2.46it/s]
1008
  13%|█▎ | 571/4350 [03:52<26:52, 2.34it/s]
1009
  13%|█▎ | 572/4350 [03:52<24:30, 2.57it/s]
1010
  13%|█▎ | 573/4350 [03:52<25:08, 2.50it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 1.178126279062056e+16,
4
+ "train_loss": 0.0030171065125614406,
5
+ "train_runtime": 1889.6824,
6
+ "train_samples": 28668,
7
+ "train_samples_per_second": 151.708,
8
+ "train_steps_per_second": 2.371
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9280074314909428,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-4480",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 4480,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.9985976613735942,
14
+ "eval_f1": 0.9184549356223176,
15
+ "eval_loss": 0.005405870731920004,
16
+ "eval_precision": 0.9404296875,
17
+ "eval_recall": 0.8974836905871388,
18
+ "eval_runtime": 15.084,
19
+ "eval_samples_per_second": 460.487,
20
+ "eval_steps_per_second": 57.611,
21
+ "step": 448
22
+ },
23
+ {
24
+ "epoch": 1.1160714285714286,
25
+ "grad_norm": 0.0893813744187355,
26
+ "learning_rate": 4.4419642857142854e-05,
27
+ "loss": 0.016,
28
+ "step": 500
29
+ },
30
+ {
31
+ "epoch": 2.0,
32
+ "eval_accuracy": 0.9985627773281612,
33
+ "eval_f1": 0.9166278528178854,
34
+ "eval_loss": 0.004539168905466795,
35
+ "eval_precision": 0.9162011173184358,
36
+ "eval_recall": 0.9170549860205033,
37
+ "eval_runtime": 15.2132,
38
+ "eval_samples_per_second": 456.577,
39
+ "eval_steps_per_second": 57.121,
40
+ "step": 896
41
+ },
42
+ {
43
+ "epoch": 2.232142857142857,
44
+ "grad_norm": 0.01820996217429638,
45
+ "learning_rate": 3.883928571428572e-05,
46
+ "loss": 0.0039,
47
+ "step": 1000
48
+ },
49
+ {
50
+ "epoch": 3.0,
51
+ "eval_accuracy": 0.998548823709988,
52
+ "eval_f1": 0.9221611721611722,
53
+ "eval_loss": 0.005798548460006714,
54
+ "eval_precision": 0.9063906390639064,
55
+ "eval_recall": 0.9384902143522833,
56
+ "eval_runtime": 15.0713,
57
+ "eval_samples_per_second": 460.875,
58
+ "eval_steps_per_second": 57.659,
59
+ "step": 1344
60
+ },
61
+ {
62
+ "epoch": 3.3482142857142856,
63
+ "grad_norm": 0.09450385719537735,
64
+ "learning_rate": 3.325892857142857e-05,
65
+ "loss": 0.0022,
66
+ "step": 1500
67
+ },
68
+ {
69
+ "epoch": 4.0,
70
+ "eval_accuracy": 0.998513939664555,
71
+ "eval_f1": 0.9151459854014599,
72
+ "eval_loss": 0.005682563409209251,
73
+ "eval_precision": 0.8963360142984808,
74
+ "eval_recall": 0.934762348555452,
75
+ "eval_runtime": 15.3704,
76
+ "eval_samples_per_second": 451.907,
77
+ "eval_steps_per_second": 56.537,
78
+ "step": 1792
79
+ },
80
+ {
81
+ "epoch": 4.464285714285714,
82
+ "grad_norm": 0.08753237873315811,
83
+ "learning_rate": 2.767857142857143e-05,
84
+ "loss": 0.0017,
85
+ "step": 2000
86
+ },
87
+ {
88
+ "epoch": 5.0,
89
+ "eval_accuracy": 0.9987023135098931,
90
+ "eval_f1": 0.9271217712177122,
91
+ "eval_loss": 0.005979395937174559,
92
+ "eval_precision": 0.9178082191780822,
93
+ "eval_recall": 0.9366262814538676,
94
+ "eval_runtime": 15.1424,
95
+ "eval_samples_per_second": 458.713,
96
+ "eval_steps_per_second": 57.389,
97
+ "step": 2240
98
+ },
99
+ {
100
+ "epoch": 5.580357142857143,
101
+ "grad_norm": 0.010990791022777557,
102
+ "learning_rate": 2.2098214285714286e-05,
103
+ "loss": 0.0012,
104
+ "step": 2500
105
+ },
106
+ {
107
+ "epoch": 6.0,
108
+ "eval_accuracy": 0.9987092903189797,
109
+ "eval_f1": 0.9254426840633737,
110
+ "eval_loss": 0.006339639890938997,
111
+ "eval_precision": 0.9254426840633737,
112
+ "eval_recall": 0.9254426840633737,
113
+ "eval_runtime": 15.1172,
114
+ "eval_samples_per_second": 459.478,
115
+ "eval_steps_per_second": 57.484,
116
+ "step": 2688
117
+ },
118
+ {
119
+ "epoch": 6.696428571428571,
120
+ "grad_norm": 0.0010647091548889875,
121
+ "learning_rate": 1.6517857142857144e-05,
122
+ "loss": 0.0008,
123
+ "step": 3000
124
+ },
125
+ {
126
+ "epoch": 7.0,
127
+ "eval_accuracy": 0.9986116149917673,
128
+ "eval_f1": 0.9260450160771704,
129
+ "eval_loss": 0.0069307987578213215,
130
+ "eval_precision": 0.9130434782608695,
131
+ "eval_recall": 0.9394221808014911,
132
+ "eval_runtime": 15.1162,
133
+ "eval_samples_per_second": 459.508,
134
+ "eval_steps_per_second": 57.488,
135
+ "step": 3136
136
+ },
137
+ {
138
+ "epoch": 7.8125,
139
+ "grad_norm": 0.0007633898057974875,
140
+ "learning_rate": 1.09375e-05,
141
+ "loss": 0.0005,
142
+ "step": 3500
143
+ },
144
+ {
145
+ "epoch": 8.0,
146
+ "eval_accuracy": 0.9986395222281137,
147
+ "eval_f1": 0.9252900232018563,
148
+ "eval_loss": 0.006891186349093914,
149
+ "eval_precision": 0.9214417744916821,
150
+ "eval_recall": 0.9291705498602051,
151
+ "eval_runtime": 15.1611,
152
+ "eval_samples_per_second": 458.146,
153
+ "eval_steps_per_second": 57.318,
154
+ "step": 3584
155
+ },
156
+ {
157
+ "epoch": 8.928571428571429,
158
+ "grad_norm": 0.0015532037941738963,
159
+ "learning_rate": 5.357142857142857e-06,
160
+ "loss": 0.0004,
161
+ "step": 4000
162
+ },
163
+ {
164
+ "epoch": 9.0,
165
+ "eval_accuracy": 0.9986534758462869,
166
+ "eval_f1": 0.9270106927010694,
167
+ "eval_loss": 0.0076610674150288105,
168
+ "eval_precision": 0.924860853432282,
169
+ "eval_recall": 0.9291705498602051,
170
+ "eval_runtime": 15.344,
171
+ "eval_samples_per_second": 452.684,
172
+ "eval_steps_per_second": 56.634,
173
+ "step": 4032
174
+ },
175
+ {
176
+ "epoch": 10.0,
177
+ "eval_accuracy": 0.9986883598917199,
178
+ "eval_f1": 0.9280074314909428,
179
+ "eval_loss": 0.007708101533353329,
180
+ "eval_precision": 0.925,
181
+ "eval_recall": 0.9310344827586207,
182
+ "eval_runtime": 15.1825,
183
+ "eval_samples_per_second": 457.501,
184
+ "eval_steps_per_second": 57.237,
185
+ "step": 4480
186
+ },
187
+ {
188
+ "epoch": 10.0,
189
+ "step": 4480,
190
+ "total_flos": 1.178126279062056e+16,
191
+ "train_loss": 0.0030171065125614406,
192
+ "train_runtime": 1889.6824,
193
+ "train_samples_per_second": 151.708,
194
+ "train_steps_per_second": 2.371
195
+ }
196
+ ],
197
+ "logging_steps": 500,
198
+ "max_steps": 4480,
199
+ "num_input_tokens_seen": 0,
200
+ "num_train_epochs": 10,
201
+ "save_steps": 500,
202
+ "stateful_callbacks": {
203
+ "TrainerControl": {
204
+ "args": {
205
+ "should_epoch_stop": false,
206
+ "should_evaluate": false,
207
+ "should_log": false,
208
+ "should_save": true,
209
+ "should_training_stop": true
210
+ },
211
+ "attributes": {}
212
+ }
213
+ },
214
+ "total_flos": 1.178126279062056e+16,
215
+ "train_batch_size": 32,
216
+ "trial_name": null,
217
+ "trial_params": null
218
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.txt ADDED
The diff for this file is too large to render. See raw diff