Rodrigo1771 commited on
Commit
9a69d1e
1 Parent(s): 57d3af9

Model save

Browse files
README.md CHANGED
@@ -3,10 +3,9 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: michiyasunaga/BioLinkBERT-base
5
  tags:
6
- - token-classification
7
  - generated_from_trainer
8
  datasets:
9
- - Rodrigo1771/drugtemist-en-fasttext-75-ner
10
  metrics:
11
  - precision
12
  - recall
@@ -19,24 +18,24 @@ model-index:
19
  name: Token Classification
20
  type: token-classification
21
  dataset:
22
- name: Rodrigo1771/drugtemist-en-fasttext-75-ner
23
- type: Rodrigo1771/drugtemist-en-fasttext-75-ner
24
  config: DrugTEMIST English NER
25
  split: validation
26
  args: DrugTEMIST English NER
27
  metrics:
28
  - name: Precision
29
  type: precision
30
- value: 0.9249771271729186
31
  - name: Recall
32
  type: recall
33
- value: 0.9422180801491147
34
  - name: F1
35
  type: f1
36
- value: 0.9335180055401663
37
  - name: Accuracy
38
  type: accuracy
39
- value: 0.998772081600759
40
  ---
41
 
42
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,13 +43,13 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  # output
46
 
47
- This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-75-ner dataset.
48
  It achieves the following results on the evaluation set:
49
- - Loss: 0.0076
50
- - Precision: 0.9250
51
- - Recall: 0.9422
52
- - F1: 0.9335
53
- - Accuracy: 0.9988
54
 
55
  ## Model description
56
 
@@ -81,18 +80,18 @@ The following hyperparameters were used during training:
81
 
82
  ### Training results
83
 
84
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
- | 0.0183 | 1.0 | 507 | 0.0055 | 0.8974 | 0.9376 | 0.9170 | 0.9985 |
87
- | 0.0043 | 2.0 | 1014 | 0.0059 | 0.9099 | 0.9320 | 0.9208 | 0.9986 |
88
- | 0.0022 | 3.0 | 1521 | 0.0057 | 0.9015 | 0.9301 | 0.9156 | 0.9985 |
89
- | 0.0018 | 4.0 | 2028 | 0.0072 | 0.9275 | 0.9180 | 0.9227 | 0.9986 |
90
- | 0.0009 | 5.0 | 2535 | 0.0064 | 0.9078 | 0.9357 | 0.9215 | 0.9987 |
91
- | 0.0007 | 6.0 | 3042 | 0.0064 | 0.9194 | 0.9357 | 0.9275 | 0.9987 |
92
- | 0.0004 | 7.0 | 3549 | 0.0072 | 0.9289 | 0.9376 | 0.9332 | 0.9988 |
93
- | 0.0004 | 8.0 | 4056 | 0.0076 | 0.9250 | 0.9422 | 0.9335 | 0.9988 |
94
- | 0.0003 | 9.0 | 4563 | 0.0077 | 0.9161 | 0.9366 | 0.9263 | 0.9987 |
95
- | 0.0002 | 10.0 | 5070 | 0.0077 | 0.9195 | 0.9366 | 0.9280 | 0.9988 |
96
 
97
 
98
  ### Framework versions
 
3
  license: apache-2.0
4
  base_model: michiyasunaga/BioLinkBERT-base
5
  tags:
 
6
  - generated_from_trainer
7
  datasets:
8
+ - drugtemist-en-fasttext-8-ner
9
  metrics:
10
  - precision
11
  - recall
 
18
  name: Token Classification
19
  type: token-classification
20
  dataset:
21
+ name: drugtemist-en-fasttext-8-ner
22
+ type: drugtemist-en-fasttext-8-ner
23
  config: DrugTEMIST English NER
24
  split: validation
25
  args: DrugTEMIST English NER
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.9247015610651974
30
  - name: Recall
31
  type: recall
32
+ value: 0.9384902143522833
33
  - name: F1
34
  type: f1
35
+ value: 0.9315448658649399
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9987092903189797
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  # output
45
 
46
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-fasttext-8-ner dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0079
49
+ - Precision: 0.9247
50
+ - Recall: 0.9385
51
+ - F1: 0.9315
52
+ - Accuracy: 0.9987
53
 
54
  ## Model description
55
 
 
80
 
81
  ### Training results
82
 
83
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
84
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
85
+ | No log | 0.9990 | 481 | 0.0042 | 0.9173 | 0.9413 | 0.9292 | 0.9987 |
86
+ | 0.0156 | 2.0 | 963 | 0.0049 | 0.9134 | 0.9245 | 0.9189 | 0.9986 |
87
+ | 0.0039 | 2.9990 | 1444 | 0.0053 | 0.8914 | 0.9487 | 0.9192 | 0.9986 |
88
+ | 0.0024 | 4.0 | 1926 | 0.0061 | 0.8820 | 0.9543 | 0.9167 | 0.9985 |
89
+ | 0.0017 | 4.9990 | 2407 | 0.0074 | 0.9199 | 0.9310 | 0.9254 | 0.9986 |
90
+ | 0.0011 | 6.0 | 2889 | 0.0079 | 0.9170 | 0.9366 | 0.9267 | 0.9986 |
91
+ | 0.0007 | 6.9990 | 3370 | 0.0067 | 0.9092 | 0.9422 | 0.9254 | 0.9987 |
92
+ | 0.0005 | 8.0 | 3852 | 0.0073 | 0.9249 | 0.9301 | 0.9275 | 0.9987 |
93
+ | 0.0004 | 8.9990 | 4333 | 0.0080 | 0.9272 | 0.9376 | 0.9323 | 0.9987 |
94
+ | 0.0002 | 9.9896 | 4810 | 0.0079 | 0.9247 | 0.9385 | 0.9315 | 0.9987 |
95
 
96
 
97
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:11ef9ef0b3ffe448b5d336cfe84f29a6a9a854b52a6e238ebd9389de82be1947
3
  size 430601004
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9da95e97df509d5e58adf7ec957e86d1d95cf632581ad3f251e6daa7df49c2a
3
  size 430601004
tb/events.out.tfevents.1725888716.0a1c9bec2a53.34821.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fda94b3ba089098406124a49f77563fbcc7625629fecf4a02a9057bb530a6a7c
3
- size 11268
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90e8e7961730149c6c235f6c85cd7c14fbfd2b133f0d765a77e4ff36d922e037
3
+ size 12094
train.log CHANGED
@@ -1417,3 +1417,16 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1417
  [INFO|trainer.py:2632] 2024-09-09 14:06:41,207 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4333 (score: 0.9323447636700648).
1418
 
1419
 
1420
  [INFO|trainer.py:4283] 2024-09-09 14:06:41,378 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1417
  [INFO|trainer.py:2632] 2024-09-09 14:06:41,207 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-4333 (score: 0.9323447636700648).
1418
 
1419
 
1420
  [INFO|trainer.py:4283] 2024-09-09 14:06:41,378 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
1421
+ [INFO|trainer.py:3503] 2024-09-09 14:07:13,448 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1422
+ [INFO|configuration_utils.py:472] 2024-09-09 14:07:13,449 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1423
+ [INFO|modeling_utils.py:2799] 2024-09-09 14:07:14,576 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1424
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 14:07:14,577 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1425
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 14:07:14,577 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1426
+ [INFO|trainer.py:3503] 2024-09-09 14:07:14,590 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1427
+ [INFO|configuration_utils.py:472] 2024-09-09 14:07:14,591 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1428
+ [INFO|modeling_utils.py:2799] 2024-09-09 14:07:16,333 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1429
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 14:07:16,334 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1430
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 14:07:16,334 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1431
+ {'eval_loss': 0.007857992313802242, 'eval_precision': 0.9247015610651974, 'eval_recall': 0.9384902143522833, 'eval_f1': 0.9315448658649399, 'eval_accuracy': 0.9987092903189797, 'eval_runtime': 15.1843, 'eval_samples_per_second': 457.447, 'eval_steps_per_second': 57.23, 'epoch': 9.99}
1432
+ {'train_runtime': 2084.9871, 'train_samples_per_second': 147.78, 'train_steps_per_second': 2.307, 'train_loss': 0.0027612092573652642, 'epoch': 9.99}
1433
+