Rodrigo1771 commited on
Commit
716eac8
·
verified ·
1 Parent(s): 1f2fc73

Training in progress, epoch 0

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: michiyasunaga/BioLinkBERT-base
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/drugtemist-en-fasttext-75-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/drugtemist-en-fasttext-75-ner
23
+ type: Rodrigo1771/drugtemist-en-fasttext-75-ner
24
+ config: DrugTEMIST English NER
25
+ split: validation
26
+ args: DrugTEMIST English NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.9249771271729186
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.9422180801491147
34
+ - name: F1
35
+ type: f1
36
+ value: 0.9335180055401663
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.998772081600759
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-75-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.0076
50
+ - Precision: 0.9250
51
+ - Recall: 0.9422
52
+ - F1: 0.9335
53
+ - Accuracy: 0.9988
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | 0.0183 | 1.0 | 507 | 0.0055 | 0.8974 | 0.9376 | 0.9170 | 0.9985 |
87
+ | 0.0043 | 2.0 | 1014 | 0.0059 | 0.9099 | 0.9320 | 0.9208 | 0.9986 |
88
+ | 0.0022 | 3.0 | 1521 | 0.0057 | 0.9015 | 0.9301 | 0.9156 | 0.9985 |
89
+ | 0.0018 | 4.0 | 2028 | 0.0072 | 0.9275 | 0.9180 | 0.9227 | 0.9986 |
90
+ | 0.0009 | 5.0 | 2535 | 0.0064 | 0.9078 | 0.9357 | 0.9215 | 0.9987 |
91
+ | 0.0007 | 6.0 | 3042 | 0.0064 | 0.9194 | 0.9357 | 0.9275 | 0.9987 |
92
+ | 0.0004 | 7.0 | 3549 | 0.0072 | 0.9289 | 0.9376 | 0.9332 | 0.9988 |
93
+ | 0.0004 | 8.0 | 4056 | 0.0076 | 0.9250 | 0.9422 | 0.9335 | 0.9988 |
94
+ | 0.0003 | 9.0 | 4563 | 0.0077 | 0.9161 | 0.9366 | 0.9263 | 0.9987 |
95
+ | 0.0002 | 10.0 | 5070 | 0.0077 | 0.9195 | 0.9366 | 0.9280 | 0.9988 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.998772081600759,
4
+ "eval_f1": 0.9335180055401663,
5
+ "eval_loss": 0.007628325838595629,
6
+ "eval_precision": 0.9249771271729186,
7
+ "eval_recall": 0.9422180801491147,
8
+ "eval_runtime": 15.1819,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 457.519,
11
+ "eval_steps_per_second": 57.239,
12
+ "predict_accuracy": 0.9986685364931299,
13
+ "predict_f1": 0.9202592279515356,
14
+ "predict_loss": 0.007816320285201073,
15
+ "predict_precision": 0.8938149972632731,
16
+ "predict_recall": 0.9483159117305459,
17
+ "predict_runtime": 28.7456,
18
+ "predict_samples_per_second": 511.904,
19
+ "predict_steps_per_second": 64.01,
20
+ "total_flos": 1.394810359803495e+16,
21
+ "train_loss": 0.0028968164414402532,
22
+ "train_runtime": 2196.5741,
23
+ "train_samples": 32447,
24
+ "train_samples_per_second": 147.716,
25
+ "train_steps_per_second": 2.308
26
+ }
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "michiyasunaga/BioLinkBERT-base",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "finetuning_task": "ner",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "O",
15
+ "1": "B-FARMACO",
16
+ "2": "I-FARMACO"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "B-FARMACO": 1,
22
+ "I-FARMACO": 2,
23
+ "O": 0
24
+ },
25
+ "layer_norm_eps": 1e-12,
26
+ "max_position_embeddings": 512,
27
+ "model_type": "bert",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pad_token_id": 0,
31
+ "position_embedding_type": "absolute",
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.44.2",
34
+ "type_vocab_size": 2,
35
+ "use_cache": true,
36
+ "vocab_size": 28895
37
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.998772081600759,
4
+ "eval_f1": 0.9335180055401663,
5
+ "eval_loss": 0.007628325838595629,
6
+ "eval_precision": 0.9249771271729186,
7
+ "eval_recall": 0.9422180801491147,
8
+ "eval_runtime": 15.1819,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 457.519,
11
+ "eval_steps_per_second": 57.239
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e76da0b3eca51dbc683e1c05aa3d82ccd599434f3de73f0894ccb2d572948d2
3
+ size 430601004
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9986685364931299,
3
+ "predict_f1": 0.9202592279515356,
4
+ "predict_loss": 0.007816320285201073,
5
+ "predict_precision": 0.8938149972632731,
6
+ "predict_recall": 0.9483159117305459,
7
+ "predict_runtime": 28.7456,
8
+ "predict_samples_per_second": 511.904,
9
+ "predict_steps_per_second": 64.01
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tb/events.out.tfevents.1725881335.0a1c9bec2a53.3232.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593e737686a00ae0f64a94f2ef02389ad7dff30c0ba6a6f2b1c65ac31e873867
3
+ size 11302
tb/events.out.tfevents.1725882696.0a1c9bec2a53.3232.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05ecdc6d00855fb66deb25a7b5be160aa0ebb2ebe07a43beb7d88fb0430fb141
3
+ size 560
tb/events.out.tfevents.1725882852.0a1c9bec2a53.9893.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:543df15001da008ba822f9c1ebf4f77259f803cbf1c5758f2da70bdbf003d86f
3
+ size 11091
tb/events.out.tfevents.1725883955.0a1c9bec2a53.9893.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b842d84c89f0d88706e31e98b113fae6b45879220115930147db648f848a8c24
3
+ size 560
tb/events.out.tfevents.1725884095.0a1c9bec2a53.15221.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a5eb73def06ef281d6c5abe9cbb6a47c633f2d7191b334dbe5cbead1c284e80
3
+ size 10880
tb/events.out.tfevents.1725885059.0a1c9bec2a53.15221.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c793a2eec8072a81c25e2f78d3ef7bcf74abbe37e32354df7dcda008aa71eda
3
+ size 560
tb/events.out.tfevents.1725885168.0a1c9bec2a53.19825.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0f9a2adaf22b0a47090405af62255c59f8c395faf6fe62ec62fa970d9063713
3
+ size 10880
tb/events.out.tfevents.1725886061.0a1c9bec2a53.19825.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa09451db71ecc3a737f5726105cdc310a150c4cd36e427e1f2dad13956046fd
3
+ size 560
tb/events.out.tfevents.1725886210.0a1c9bec2a53.24273.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a173893ab6ea4bae83ba8f7d43d877ca16a06c53d30cb7f414ae20737d881888
3
+ size 12305
tb/events.out.tfevents.1725888457.0a1c9bec2a53.24273.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bb5583c37fdbd9ea659142a09fba0fae95a78d6f0eaac64a0292bc00e64215d
3
+ size 560
tb/events.out.tfevents.1725888716.0a1c9bec2a53.34821.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c09ef59a2ece87dc4e7e284d5092dee166d60ee786a848401fde24245a5830
3
+ size 5593
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
train.log ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/4810 [00:00<?, ?it/s]
1
  0%| | 1/4810 [00:01<1:32:48, 1.16s/it]
2
  0%| | 2/4810 [00:01<56:19, 1.42it/s]
3
  0%| | 3/4810 [00:01<41:07, 1.95it/s]
4
  0%| | 4/4810 [00:02<34:37, 2.31it/s]
5
  0%| | 5/4810 [00:02<33:33, 2.39it/s]
6
  0%| | 6/4810 [00:02<31:08, 2.57it/s]
7
  0%| | 7/4810 [00:03<33:14, 2.41it/s]
8
  0%| | 8/4810 [00:03<30:49, 2.60it/s]
9
  0%| | 9/4810 [00:03<28:57, 2.76it/s]
10
  0%| | 10/4810 [00:04<30:37, 2.61it/s]
11
  0%| | 11/4810 [00:04<31:18, 2.55it/s]
12
  0%| | 12/4810 [00:05<30:02, 2.66it/s]
13
  0%| | 13/4810 [00:05<27:58, 2.86it/s]
14
  0%| | 14/4810 [00:05<27:06, 2.95it/s]
15
  0%| | 15/4810 [00:06<27:05, 2.95it/s]
16
  0%| | 16/4810 [00:06<28:33, 2.80it/s]
17
  0%| | 17/4810 [00:06<29:38, 2.70it/s]
18
  0%| | 18/4810 [00:07<31:10, 2.56it/s]
19
  0%| | 19/4810 [00:07<29:50, 2.68it/s]
20
  0%| | 20/4810 [00:08<31:02, 2.57it/s]
21
  0%| | 21/4810 [00:08<31:46, 2.51it/s]
22
  0%| | 22/4810 [00:08<30:27, 2.62it/s]
23
  0%| | 23/4810 [00:09<28:10, 2.83it/s]
24
  0%| | 24/4810 [00:09<28:35, 2.79it/s]
25
  1%| | 25/4810 [00:09<26:09, 3.05it/s]
26
  1%| | 26/4810 [00:10<31:26, 2.54it/s]
27
  1%| | 27/4810 [00:10<30:18, 2.63it/s]
28
  1%| | 28/4810 [00:11<30:46, 2.59it/s]
29
  1%| | 29/4810 [00:11<35:46, 2.23it/s]
30
  1%| | 30/4810 [00:12<39:19, 2.03it/s]
31
  1%| | 31/4810 [00:12<39:08, 2.03it/s]
32
  1%| | 32/4810 [00:13<36:16, 2.20it/s]
33
  1%| | 33/4810 [00:13<32:23, 2.46it/s]
34
  1%| | 34/4810 [00:13<36:43, 2.17it/s]
35
  1%| | 35/4810 [00:14<35:27, 2.24it/s]
36
  1%| | 36/4810 [00:14<35:59, 2.21it/s]
37
  1%| | 37/4810 [00:15<34:42, 2.29it/s]
38
  1%| | 38/4810 [00:15<33:54, 2.35it/s]
39
  1%| | 39/4810 [00:16<33:10, 2.40it/s]
40
  1%| | 40/4810 [00:16<33:50, 2.35it/s]
41
  1%| | 41/4810 [00:16<35:01, 2.27it/s]
42
  1%| | 42/4810 [00:17<31:37, 2.51it/s]
43
  1%| | 43/4810 [00:17<31:12, 2.55it/s]
44
  1%| | 44/4810 [00:18<47:33, 1.67it/s]
45
  1%| | 45/4810 [00:19<41:13, 1.93it/s]
46
  1%| | 46/4810 [00:19<37:33, 2.11it/s]
47
  1%| | 47/4810 [00:19<35:35, 2.23it/s]
48
  1%| | 48/4810 [00:20<32:29, 2.44it/s]
49
  1%| | 49/4810 [00:20<31:44, 2.50it/s]
50
  1%| | 50/4810 [00:20<31:03, 2.55it/s]
51
  1%| | 51/4810 [00:21<30:39, 2.59it/s]
52
  1%| | 52/4810 [00:21<30:21, 2.61it/s]
53
  1%| | 53/4810 [00:22<33:12, 2.39it/s]
54
  1%| | 54/4810 [00:22<31:57, 2.48it/s]
55
  1%| | 55/4810 [00:22<30:41, 2.58it/s]
56
  1%| | 56/4810 [00:23<30:16, 2.62it/s]
57
  1%| | 57/4810 [00:23<32:50, 2.41it/s]
58
  1%| | 58/4810 [00:24<31:11, 2.54it/s]
59
  1%| | 59/4810 [00:24<29:25, 2.69it/s]
60
  1%| | 60/4810 [00:24<33:13, 2.38it/s]
61
  1%|▏ | 61/4810 [00:25<30:25, 2.60it/s]
62
  1%|▏ | 62/4810 [00:25<29:47, 2.66it/s]
63
  1%|▏ | 63/4810 [00:25<28:16, 2.80it/s]
64
  1%|▏ | 64/4810 [00:26<26:57, 2.93it/s]
65
  1%|▏ | 65/4810 [00:26<26:05, 3.03it/s]
66
  1%|▏ | 66/4810 [00:27<32:46, 2.41it/s]
67
  1%|▏ | 67/4810 [00:27<30:06, 2.62it/s]
68
  1%|▏ | 68/4810 [00:27<31:24, 2.52it/s]
69
  1%|▏ | 69/4810 [00:28<29:04, 2.72it/s]
70
  1%|▏ | 70/4810 [00:28<26:35, 2.97it/s]
71
  1%|▏ | 71/4810 [00:28<27:27, 2.88it/s]
72
  1%|▏ | 72/4810 [00:29<25:01, 3.16it/s]
73
  2%|▏ | 73/4810 [00:29<31:43, 2.49it/s]
74
  2%|▏ | 74/4810 [00:30<32:11, 2.45it/s]
75
  2%|▏ | 75/4810 [00:30<29:21, 2.69it/s]
76
  2%|▏ | 76/4810 [00:30<28:58, 2.72it/s]
77
  2%|▏ | 77/4810 [00:31<29:02, 2.72it/s]
78
  2%|▏ | 78/4810 [00:31<29:10, 2.70it/s]
79
  2%|▏ | 79/4810 [00:31<30:05, 2.62it/s]
80
  2%|▏ | 80/4810 [00:32<28:26, 2.77it/s]
81
  2%|▏ | 81/4810 [00:32<29:36, 2.66it/s]
82
  2%|▏ | 82/4810 [00:32<30:01, 2.62it/s]
83
  2%|▏ | 83/4810 [00:33<30:18, 2.60it/s]
84
  2%|▏ | 84/4810 [00:33<29:04, 2.71it/s]
85
  2%|▏ | 85/4810 [00:34<29:17, 2.69it/s]
86
  2%|▏ | 86/4810 [00:34<29:44, 2.65it/s]
87
  2%|▏ | 87/4810 [00:34<27:27, 2.87it/s]
88
  2%|▏ | 88/4810 [00:35<30:27, 2.58it/s]
89
  2%|▏ | 89/4810 [00:35<31:02, 2.53it/s]
90
  2%|▏ | 90/4810 [00:35<29:15, 2.69it/s]
91
  2%|▏ | 91/4810 [00:36<32:55, 2.39it/s]
92
  2%|▏ | 92/4810 [00:37<37:00, 2.12it/s]
93
  2%|▏ | 93/4810 [00:37<34:32, 2.28it/s]
94
  2%|▏ | 94/4810 [00:37<31:16, 2.51it/s]
95
  2%|▏ | 95/4810 [00:38<32:10, 2.44it/s]
96
  2%|▏ | 96/4810 [00:38<32:09, 2.44it/s]
97
  2%|▏ | 97/4810 [00:38<28:47, 2.73it/s]
98
  2%|▏ | 98/4810 [00:39<29:43, 2.64it/s]
99
  2%|▏ | 99/4810 [00:39<30:19, 2.59it/s]
100
  2%|▏ | 100/4810 [00:40<33:02, 2.38it/s]
101
  2%|▏ | 101/4810 [00:40<35:16, 2.22it/s]
102
  2%|▏ | 102/4810 [00:41<34:17, 2.29it/s]
103
  2%|▏ | 103/4810 [00:41<30:51, 2.54it/s]
104
  2%|▏ | 104/4810 [00:41<28:32, 2.75it/s]
105
  2%|▏ | 105/4810 [00:42<28:40, 2.73it/s]
106
  2%|▏ | 106/4810 [00:42<31:12, 2.51it/s]
107
  2%|▏ | 107/4810 [00:42<28:50, 2.72it/s]
108
  2%|▏ | 108/4810 [00:43<32:31, 2.41it/s]
109
  2%|▏ | 109/4810 [00:43<34:52, 2.25it/s]
110
  2%|▏ | 110/4810 [00:44<32:53, 2.38it/s]
111
  2%|▏ | 111/4810 [00:44<31:06, 2.52it/s]
112
  2%|▏ | 112/4810 [00:45<32:29, 2.41it/s]
113
  2%|▏ | 113/4810 [00:45<30:01, 2.61it/s]
114
  2%|▏ | 114/4810 [00:45<30:44, 2.55it/s]
115
  2%|▏ | 115/4810 [00:46<29:27, 2.66it/s]
116
  2%|▏ | 116/4810 [00:46<27:57, 2.80it/s]
117
  2%|▏ | 117/4810 [00:46<29:01, 2.70it/s]
118
  2%|▏ | 118/4810 [00:47<34:35, 2.26it/s]
119
  2%|▏ | 119/4810 [00:47<32:39, 2.39it/s]
120
  2%|▏ | 120/4810 [00:48<29:25, 2.66it/s]
121
  3%|▎ | 121/4810 [00:48<29:56, 2.61it/s]
122
  3%|▎ | 122/4810 [00:48<29:09, 2.68it/s]
123
  3%|▎ | 123/4810 [00:49<31:43, 2.46it/s]
124
  3%|▎ | 124/4810 [00:49<30:37, 2.55it/s]
125
  3%|▎ | 125/4810 [00:49<29:26, 2.65it/s]
126
  3%|▎ | 126/4810 [00:50<31:10, 2.50it/s]
127
  3%|▎ | 127/4810 [00:50<31:23, 2.49it/s]
128
  3%|▎ | 128/4810 [00:51<30:59, 2.52it/s]
129
  3%|▎ | 129/4810 [00:51<30:56, 2.52it/s]
130
  3%|▎ | 130/4810 [00:52<32:25, 2.41it/s]
131
  3%|▎ | 131/4810 [00:52<29:43, 2.62it/s]
132
  3%|▎ | 132/4810 [00:52<31:11, 2.50it/s]
133
  3%|▎ | 133/4810 [00:53<29:58, 2.60it/s]
134
  3%|▎ | 134/4810 [00:53<29:33, 2.64it/s]
135
  3%|▎ | 135/4810 [00:53<30:00, 2.60it/s]
136
  3%|▎ | 136/4810 [00:54<29:30, 2.64it/s]
137
  3%|▎ | 137/4810 [00:54<29:25, 2.65it/s]
138
  3%|▎ | 138/4810 [00:55<28:18, 2.75it/s]
139
  3%|▎ | 139/4810 [00:55<30:51, 2.52it/s]
140
  3%|▎ | 140/4810 [00:55<29:03, 2.68it/s]
141
  3%|▎ | 141/4810 [00:56<29:12, 2.66it/s]
142
  3%|▎ | 142/4810 [00:56<30:59, 2.51it/s]
143
  3%|▎ | 143/4810 [00:56<29:18, 2.65it/s]
144
  3%|▎ | 144/4810 [00:57<27:56, 2.78it/s]
145
  3%|▎ | 145/4810 [00:57<27:22, 2.84it/s]
146
  3%|▎ | 146/4810 [00:57<26:01, 2.99it/s]
147
  3%|▎ | 147/4810 [00:58<33:33, 2.32it/s]
148
  3%|▎ | 148/4810 [00:59<35:19, 2.20it/s]
149
  3%|▎ | 149/4810 [00:59<33:17, 2.33it/s]
150
  3%|▎ | 150/4810 [00:59<31:10, 2.49it/s]
151
  3%|▎ | 151/4810 [01:00<33:40, 2.31it/s]
152
  3%|▎ | 152/4810 [01:00<32:13, 2.41it/s]
153
  3%|▎ | 153/4810 [01:01<33:32, 2.31it/s]
154
  3%|▎ | 154/4810 [01:01<31:45, 2.44it/s]
155
  3%|▎ | 155/4810 [01:01<29:46, 2.61it/s]
156
  3%|▎ | 156/4810 [01:02<29:28, 2.63it/s]
157
  3%|▎ | 157/4810 [01:02<28:23, 2.73it/s]
158
  3%|▎ | 158/4810 [01:02<28:09, 2.75it/s]
159
  3%|▎ | 159/4810 [01:03<29:46, 2.60it/s]
160
  3%|▎ | 160/4810 [01:03<29:49, 2.60it/s]
161
  3%|▎ | 161/4810 [01:04<29:23, 2.64it/s]
162
  3%|▎ | 162/4810 [01:04<28:17, 2.74it/s]
163
  3%|▎ | 163/4810 [01:04<28:46, 2.69it/s]
164
  3%|▎ | 164/4810 [01:05<29:09, 2.66it/s]
165
  3%|▎ | 165/4810 [01:05<28:25, 2.72it/s]
166
  3%|▎ | 166/4810 [01:05<26:37, 2.91it/s]
167
  3%|▎ | 167/4810 [01:06<27:57, 2.77it/s]
168
  3%|▎ | 168/4810 [01:06<30:28, 2.54it/s]
169
  4%|▎ | 169/4810 [01:07<29:57, 2.58it/s]
170
  4%|▎ | 170/4810 [01:07<28:48, 2.68it/s]
171
  4%|▎ | 171/4810 [01:07<30:14, 2.56it/s]
172
  4%|▎ | 172/4810 [01:08<31:38, 2.44it/s]
173
  4%|▎ | 173/4810 [01:08<31:44, 2.43it/s]
174
  4%|▎ | 174/4810 [01:08<29:13, 2.64it/s]
175
  4%|▎ | 175/4810 [01:09<27:58, 2.76it/s]
176
  4%|▎ | 176/4810 [01:09<25:59, 2.97it/s]
177
  4%|▎ | 177/4810 [01:09<25:35, 3.02it/s]
178
  4%|▎ | 178/4810 [01:10<29:00, 2.66it/s]
179
  4%|▎ | 179/4810 [01:10<28:27, 2.71it/s]
180
  4%|▎ | 180/4810 [01:11<26:04, 2.96it/s]
181
  4%|▍ | 181/4810 [01:11<28:36, 2.70it/s]
182
  4%|▍ | 182/4810 [01:11<27:50, 2.77it/s]
183
  4%|▍ | 183/4810 [01:12<27:55, 2.76it/s]
184
  4%|▍ | 184/4810 [01:12<27:58, 2.76it/s]
185
  4%|▍ | 185/4810 [01:12<27:18, 2.82it/s]
186
  4%|▍ | 186/4810 [01:13<26:43, 2.88it/s]
187
  4%|▍ | 187/4810 [01:13<27:59, 2.75it/s]
188
  4%|▍ | 188/4810 [01:14<29:04, 2.65it/s]
189
  4%|▍ | 189/4810 [01:14<27:32, 2.80it/s]
190
  4%|▍ | 190/4810 [01:14<27:44, 2.78it/s]
191
  4%|▍ | 191/4810 [01:14<25:15, 3.05it/s]
192
  4%|▍ | 192/4810 [01:15<27:30, 2.80it/s]
193
  4%|▍ | 193/4810 [01:15<30:30, 2.52it/s]
194
  4%|▍ | 194/4810 [01:16<30:40, 2.51it/s]
195
  4%|▍ | 195/4810 [01:16<31:36, 2.43it/s]
196
  4%|▍ | 196/4810 [01:16<29:09, 2.64it/s]
197
  4%|▍ | 197/4810 [01:17<29:05, 2.64it/s]
198
  4%|▍ | 198/4810 [01:17<27:31, 2.79it/s]
199
  4%|▍ | 199/4810 [01:18<26:31, 2.90it/s]
200
  4%|▍ | 200/4810 [01:18<31:05, 2.47it/s]
201
  4%|▍ | 201/4810 [01:19<34:12, 2.25it/s]
202
  4%|▍ | 202/4810 [01:19<32:25, 2.37it/s]
203
  4%|▍ | 203/4810 [01:19<31:53, 2.41it/s]
204
  4%|▍ | 204/4810 [01:20<31:25, 2.44it/s]
205
  4%|▍ | 205/4810 [01:20<34:51, 2.20it/s]
206
  4%|▍ | 206/4810 [01:21<30:38, 2.50it/s]
207
  4%|▍ | 207/4810 [01:21<29:59, 2.56it/s]
208
  4%|▍ | 208/4810 [01:21<28:38, 2.68it/s]
209
  4%|▍ | 209/4810 [01:22<27:18, 2.81it/s]
210
  4%|▍ | 210/4810 [01:22<26:16, 2.92it/s]
211
  4%|▍ | 211/4810 [01:22<26:03, 2.94it/s]
212
  4%|▍ | 212/4810 [01:23<27:44, 2.76it/s]
213
  4%|▍ | 213/4810 [01:23<25:53, 2.96it/s]
214
  4%|▍ | 214/4810 [01:23<26:41, 2.87it/s]
215
  4%|▍ | 215/4810 [01:24<27:15, 2.81it/s]
216
  4%|▍ | 216/4810 [01:24<30:02, 2.55it/s]
217
  5%|▍ | 217/4810 [01:25<29:03, 2.63it/s]
218
  5%|▍ | 218/4810 [01:25<32:35, 2.35it/s]
219
  5%|▍ | 219/4810 [01:25<31:01, 2.47it/s]
220
  5%|▍ | 220/4810 [01:26<29:11, 2.62it/s]
221
  5%|▍ | 221/4810 [01:26<28:58, 2.64it/s]
222
  5%|▍ | 222/4810 [01:26<27:59, 2.73it/s]
223
  5%|▍ | 223/4810 [01:27<34:27, 2.22it/s]
224
  5%|▍ | 224/4810 [01:27<32:30, 2.35it/s]
225
  5%|▍ | 225/4810 [01:28<31:09, 2.45it/s]
226
  5%|▍ | 226/4810 [01:28<30:23, 2.51it/s]
227
  5%|▍ | 227/4810 [01:29<30:04, 2.54it/s]
228
  5%|▍ | 228/4810 [01:29<28:17, 2.70it/s]
229
  5%|▍ | 229/4810 [01:29<26:56, 2.83it/s]
230
  5%|▍ | 230/4810 [01:30<27:26, 2.78it/s]
231
  5%|▍ | 231/4810 [01:30<30:19, 2.52it/s]
232
  5%|▍ | 232/4810 [01:31<31:23, 2.43it/s]
233
  5%|▍ | 233/4810 [01:31<29:54, 2.55it/s]
234
  5%|▍ | 234/4810 [01:31<31:10, 2.45it/s]
235
  5%|▍ | 235/4810 [01:32<31:06, 2.45it/s]
236
  5%|▍ | 236/4810 [01:32<28:42, 2.66it/s]
237
  5%|▍ | 237/4810 [01:32<29:53, 2.55it/s]
238
  5%|▍ | 238/4810 [01:33<28:53, 2.64it/s]
239
  5%|▍ | 239/4810 [01:33<30:33, 2.49it/s]
240
  5%|▍ | 240/4810 [01:34<29:34, 2.58it/s]
241
  5%|▌ | 241/4810 [01:34<29:38, 2.57it/s]
242
  5%|▌ | 242/4810 [01:34<27:36, 2.76it/s]
243
  5%|▌ | 243/4810 [01:35<29:01, 2.62it/s]
244
  5%|▌ | 244/4810 [01:35<33:01, 2.30it/s]
245
  5%|▌ | 245/4810 [01:36<32:23, 2.35it/s]
246
  5%|▌ | 246/4810 [01:36<30:56, 2.46it/s]
247
  5%|▌ | 247/4810 [01:36<29:16, 2.60it/s]
248
  5%|▌ | 248/4810 [01:37<29:22, 2.59it/s]
249
  5%|▌ | 249/4810 [01:37<27:23, 2.77it/s]
250
  5%|▌ | 250/4810 [01:37<28:25, 2.67it/s]
251
  5%|▌ | 251/4810 [01:38<28:59, 2.62it/s]
252
  5%|▌ | 252/4810 [01:38<29:24, 2.58it/s]
253
  5%|▌ | 253/4810 [01:39<28:13, 2.69it/s]
254
  5%|▌ | 254/4810 [01:39<27:08, 2.80it/s]
255
  5%|▌ | 255/4810 [01:39<27:09, 2.80it/s]
256
  5%|▌ | 256/4810 [01:40<30:31, 2.49it/s]
257
  5%|▌ | 257/4810 [01:40<30:16, 2.51it/s]
258
  5%|▌ | 258/4810 [01:41<29:10, 2.60it/s]
259
  5%|▌ | 259/4810 [01:41<29:35, 2.56it/s]
260
  5%|▌ | 260/4810 [01:41<27:11, 2.79it/s]
261
  5%|▌ | 261/4810 [01:42<27:33, 2.75it/s]
262
  5%|▌ | 262/4810 [01:42<27:51, 2.72it/s]
263
  5%|▌ | 263/4810 [01:42<27:09, 2.79it/s]
264
  5%|▌ | 264/4810 [01:43<27:02, 2.80it/s]
265
  6%|▌ | 265/4810 [01:43<26:53, 2.82it/s]
266
  6%|▌ | 266/4810 [01:43<27:05, 2.79it/s]
267
  6%|▌ | 267/4810 [01:44<26:04, 2.90it/s]
268
  6%|▌ | 268/4810 [01:44<27:08, 2.79it/s]
269
  6%|▌ | 269/4810 [01:44<26:02, 2.91it/s]
270
  6%|▌ | 270/4810 [01:45<25:45, 2.94it/s]
271
  6%|▌ | 271/4810 [01:45<29:55, 2.53it/s]
272
  6%|▌ | 272/4810 [01:46<30:42, 2.46it/s]
273
  6%|▌ | 273/4810 [01:46<29:45, 2.54it/s]
274
  6%|▌ | 274/4810 [01:46<29:06, 2.60it/s]
275
  6%|▌ | 275/4810 [01:47<29:01, 2.60it/s]
276
  6%|▌ | 276/4810 [01:47<28:30, 2.65it/s]
277
  6%|▌ | 277/4810 [01:47<26:49, 2.82it/s]
278
  6%|▌ | 278/4810 [01:48<27:18, 2.77it/s]
279
  6%|▌ | 279/4810 [01:48<30:42, 2.46it/s]
280
  6%|▌ | 280/4810 [01:49<29:33, 2.55it/s]
281
  6%|▌ | 281/4810 [01:49<28:53, 2.61it/s]
282
  6%|▌ | 282/4810 [01:49<28:21, 2.66it/s]
283
  6%|▌ | 283/4810 [01:50<28:06, 2.68it/s]
284
  6%|▌ | 284/4810 [01:50<28:46, 2.62it/s]
285
  6%|▌ | 285/4810 [01:51<29:19, 2.57it/s]
286
  6%|▌ | 286/4810 [01:51<29:11, 2.58it/s]
287
  6%|▌ | 287/4810 [01:51<27:13, 2.77it/s]
288
  6%|▌ | 288/4810 [01:52<28:40, 2.63it/s]
289
  6%|▌ | 289/4810 [01:52<27:42, 2.72it/s]
290
  6%|▌ | 290/4810 [01:53<30:54, 2.44it/s]
291
  6%|▌ | 291/4810 [01:53<31:21, 2.40it/s]
292
  6%|▌ | 292/4810 [01:53<30:03, 2.51it/s]
293
  6%|▌ | 293/4810 [01:54<31:26, 2.39it/s]
294
  6%|▌ | 294/4810 [01:54<30:49, 2.44it/s]
295
  6%|▌ | 295/4810 [01:55<29:47, 2.53it/s]
296
  6%|▌ | 296/4810 [01:55<28:36, 2.63it/s]
297
  6%|▌ | 297/4810 [01:55<30:04, 2.50it/s]
298
  6%|▌ | 298/4810 [01:56<29:28, 2.55it/s]
299
  6%|▌ | 299/4810 [01:56<32:33, 2.31it/s]
300
  6%|▌ | 300/4810 [01:57<31:04, 2.42it/s]
301
  6%|▋ | 301/4810 [01:57<28:36, 2.63it/s]
302
  6%|▋ | 302/4810 [01:57<28:01, 2.68it/s]
303
  6%|▋ | 303/4810 [01:58<27:12, 2.76it/s]
304
  6%|▋ | 304/4810 [01:58<28:14, 2.66it/s]
305
  6%|▋ | 305/4810 [01:58<28:00, 2.68it/s]
306
  6%|▋ | 306/4810 [01:59<27:39, 2.71it/s]
307
  6%|▋ | 307/4810 [01:59<29:00, 2.59it/s]
308
  6%|▋ | 308/4810 [02:00<28:37, 2.62it/s]
309
  6%|▋ | 309/4810 [02:00<28:04, 2.67it/s]
310
  6%|▋ | 310/4810 [02:00<30:18, 2.47it/s]
311
  6%|▋ | 311/4810 [02:01<28:53, 2.59it/s]
312
  6%|▋ | 312/4810 [02:01<30:52, 2.43it/s]
313
  7%|▋ | 313/4810 [02:02<31:32, 2.38it/s]
314
  7%|▋ | 314/4810 [02:02<27:08, 2.76it/s]
315
  7%|▋ | 315/4810 [02:02<26:03, 2.87it/s]
316
  7%|▋ | 316/4810 [02:03<25:47, 2.90it/s]
317
  7%|▋ | 317/4810 [02:03<34:04, 2.20it/s]
318
  7%|▋ | 318/4810 [02:04<32:38, 2.29it/s]
319
  7%|▋ | 319/4810 [02:04<28:40, 2.61it/s]
320
  7%|▋ | 320/4810 [02:04<29:58, 2.50it/s]
321
  7%|▋ | 321/4810 [02:05<29:03, 2.58it/s]
322
  7%|▋ | 322/4810 [02:05<27:43, 2.70it/s]
323
  7%|▋ | 323/4810 [02:05<28:43, 2.60it/s]
324
  7%|▋ | 324/4810 [02:06<26:28, 2.82it/s]
325
  7%|▋ | 325/4810 [02:06<25:34, 2.92it/s]
326
  7%|▋ | 326/4810 [02:06<25:07, 2.97it/s]
327
  7%|▋ | 327/4810 [02:07<25:27, 2.94it/s]
328
  7%|▋ | 328/4810 [02:07<24:49, 3.01it/s]
329
  7%|▋ | 329/4810 [02:07<25:59, 2.87it/s]
330
  7%|▋ | 330/4810 [02:08<23:20, 3.20it/s]
331
  7%|▋ | 331/4810 [02:08<24:01, 3.11it/s]
332
  7%|▋ | 332/4810 [02:08<25:07, 2.97it/s]
333
  7%|▋ | 333/4810 [02:09<29:22, 2.54it/s]
334
  7%|▋ | 334/4810 [02:09<32:33, 2.29it/s]
335
  7%|▋ | 335/4810 [02:10<36:50, 2.02it/s]
336
  7%|▋ | 336/4810 [02:10<35:06, 2.12it/s]
337
  7%|▋ | 337/4810 [02:11<36:42, 2.03it/s]
338
  7%|▋ | 338/4810 [02:11<31:47, 2.34it/s]
339
  7%|▋ | 339/4810 [02:12<34:39, 2.15it/s]
340
  7%|▋ | 340/4810 [02:12<32:47, 2.27it/s]
341
  7%|▋ | 341/4810 [02:13<30:18, 2.46it/s]
342
  7%|▋ | 342/4810 [02:13<30:40, 2.43it/s]
343
  7%|▋ | 343/4810 [02:13<33:24, 2.23it/s]
344
  7%|▋ | 344/4810 [02:14<32:55, 2.26it/s]
345
  7%|▋ | 345/4810 [02:14<30:49, 2.41it/s]
346
  7%|▋ | 346/4810 [02:15<31:02, 2.40it/s]
347
  7%|▋ | 347/4810 [02:15<32:49, 2.27it/s]
348
  7%|▋ | 348/4810 [02:16<30:06, 2.47it/s]
349
  7%|▋ | 349/4810 [02:16<30:08, 2.47it/s]
350
  7%|▋ | 350/4810 [02:16<31:01, 2.40it/s]
351
  7%|▋ | 351/4810 [02:17<27:48, 2.67it/s]
352
  7%|▋ | 352/4810 [02:17<25:57, 2.86it/s]
353
  7%|▋ | 353/4810 [02:17<25:06, 2.96it/s]
354
  7%|▋ | 354/4810 [02:18<26:49, 2.77it/s]
355
  7%|▋ | 355/4810 [02:18<26:23, 2.81it/s]
356
  7%|▋ | 356/4810 [02:18<25:07, 2.96it/s]
357
  7%|▋ | 357/4810 [02:19<24:14, 3.06it/s]
358
  7%|▋ | 358/4810 [02:19<28:40, 2.59it/s]
359
  7%|▋ | 359/4810 [02:19<26:46, 2.77it/s]
360
  7%|▋ | 360/4810 [02:20<29:52, 2.48it/s]
361
  8%|▊ | 361/4810 [02:20<28:24, 2.61it/s]
362
  8%|▊ | 362/4810 [02:21<27:07, 2.73it/s]
363
  8%|▊ | 363/4810 [02:21<26:22, 2.81it/s]
364
  8%|▊ | 364/4810 [02:21<24:42, 3.00it/s]
365
  8%|▊ | 365/4810 [02:22<26:20, 2.81it/s]
366
  8%|▊ | 366/4810 [02:22<29:28, 2.51it/s]
367
  8%|▊ | 367/4810 [02:22<26:11, 2.83it/s]
368
  8%|▊ | 368/4810 [02:23<26:59, 2.74it/s]
369
  8%|▊ | 369/4810 [02:23<27:51, 2.66it/s]
370
  8%|▊ | 370/4810 [02:24<28:42, 2.58it/s]
371
  8%|▊ | 371/4810 [02:24<28:57, 2.55it/s]
372
  8%|▊ | 372/4810 [02:24<26:58, 2.74it/s]
373
  8%|▊ | 373/4810 [02:25<27:13, 2.72it/s]
374
  8%|▊ | 374/4810 [02:25<28:23, 2.60it/s]
375
  8%|▊ | 375/4810 [02:25<29:07, 2.54it/s]
376
  8%|▊ | 376/4810 [02:26<30:17, 2.44it/s]
377
  8%|▊ | 377/4810 [02:26<28:21, 2.60it/s]
378
  8%|▊ | 378/4810 [02:27<27:30, 2.69it/s]
379
  8%|▊ | 379/4810 [02:27<27:09, 2.72it/s]
380
  8%|▊ | 380/4810 [02:27<27:03, 2.73it/s]
381
  8%|▊ | 381/4810 [02:28<24:59, 2.95it/s]
382
  8%|▊ | 382/4810 [02:28<24:59, 2.95it/s]
383
  8%|▊ | 383/4810 [02:28<23:45, 3.11it/s]
384
  8%|▊ | 384/4810 [02:29<24:11, 3.05it/s]
385
  8%|▊ | 385/4810 [02:29<25:05, 2.94it/s]
386
  8%|▊ | 386/4810 [02:29<23:06, 3.19it/s]
387
  8%|▊ | 387/4810 [02:29<22:49, 3.23it/s]
388
  8%|▊ | 388/4810 [02:30<27:13, 2.71it/s]
389
  8%|▊ | 389/4810 [02:30<26:54, 2.74it/s]
390
  8%|▊ | 390/4810 [02:31<26:20, 2.80it/s]
391
  8%|▊ | 391/4810 [02:31<26:46, 2.75it/s]
392
  8%|▊ | 392/4810 [02:31<27:22, 2.69it/s]
393
  8%|▊ | 393/4810 [02:32<28:41, 2.57it/s]
394
  8%|▊ | 394/4810 [02:32<28:18, 2.60it/s]
395
  8%|▊ | 395/4810 [02:33<26:25, 2.78it/s]
396
  8%|▊ | 396/4810 [02:33<29:17, 2.51it/s]
397
  8%|▊ | 397/4810 [02:33<26:01, 2.83it/s]
398
  8%|▊ | 398/4810 [02:34<27:15, 2.70it/s]
399
  8%|▊ | 399/4810 [02:34<26:54, 2.73it/s]
400
  8%|▊ | 400/4810 [02:34<27:43, 2.65it/s]
401
  8%|▊ | 401/4810 [02:35<26:36, 2.76it/s]
402
  8%|▊ | 402/4810 [02:35<27:11, 2.70it/s]
403
  8%|▊ | 403/4810 [02:36<27:37, 2.66it/s]
404
  8%|▊ | 404/4810 [02:36<28:51, 2.55it/s]
405
  8%|▊ | 405/4810 [02:36<29:45, 2.47it/s]
406
  8%|▊ | 406/4810 [02:37<29:24, 2.50it/s]
407
  8%|▊ | 407/4810 [02:37<27:26, 2.67it/s]
408
  8%|▊ | 408/4810 [02:37<26:00, 2.82it/s]
409
  9%|▊ | 409/4810 [02:38<28:09, 2.60it/s]
410
  9%|▊ | 410/4810 [02:38<26:20, 2.78it/s]
411
  9%|▊ | 411/4810 [02:39<26:25, 2.77it/s]
412
  9%|▊ | 412/4810 [02:39<30:02, 2.44it/s]
413
  9%|▊ | 413/4810 [02:40<30:37, 2.39it/s]
414
  9%|▊ | 414/4810 [02:40<30:07, 2.43it/s]
415
  9%|▊ | 415/4810 [02:40<27:50, 2.63it/s]
416
  9%|▊ | 416/4810 [02:41<28:19, 2.58it/s]
417
  9%|▊ | 417/4810 [02:41<30:27, 2.40it/s]
418
  9%|▊ | 418/4810 [02:42<30:23, 2.41it/s]
419
  9%|▊ | 419/4810 [02:42<28:35, 2.56it/s]
420
  9%|▊ | 420/4810 [02:42<25:52, 2.83it/s]
421
  9%|▉ | 421/4810 [02:43<26:48, 2.73it/s]
422
  9%|▉ | 422/4810 [02:43<26:00, 2.81it/s]
423
  9%|▉ | 423/4810 [02:43<25:20, 2.88it/s]
424
  9%|▉ | 424/4810 [02:44<27:16, 2.68it/s]
425
  9%|▉ | 425/4810 [02:44<30:23, 2.41it/s]
426
  9%|▉ | 426/4810 [02:44<28:17, 2.58it/s]
427
  9%|▉ | 427/4810 [02:45<25:29, 2.87it/s]
428
  9%|▉ | 428/4810 [02:45<25:15, 2.89it/s]
429
  9%|▉ | 429/4810 [02:45<25:40, 2.84it/s]
430
  9%|▉ | 430/4810 [02:46<25:50, 2.83it/s]
431
  9%|▉ | 431/4810 [02:46<24:59, 2.92it/s]
432
  9%|▉ | 432/4810 [02:46<25:20, 2.88it/s]
433
  9%|▉ | 433/4810 [02:47<31:15, 2.33it/s]
434
  9%|▉ | 434/4810 [02:47<30:38, 2.38it/s]
435
  9%|▉ | 435/4810 [02:48<28:38, 2.55it/s]
436
  9%|▉ | 436/4810 [02:48<29:22, 2.48it/s]
437
  9%|▉ | 437/4810 [02:49<28:07, 2.59it/s]
438
  9%|▉ | 438/4810 [02:49<26:12, 2.78it/s]
439
  9%|▉ | 439/4810 [02:49<26:50, 2.71it/s]
440
  9%|▉ | 440/4810 [02:50<28:16, 2.58it/s]
441
  9%|▉ | 441/4810 [02:50<30:12, 2.41it/s]
442
  9%|▉ | 442/4810 [02:50<27:43, 2.63it/s]
443
  9%|▉ | 443/4810 [02:51<30:29, 2.39it/s]
444
  9%|▉ | 444/4810 [02:51<27:15, 2.67it/s]
445
  9%|▉ | 445/4810 [02:52<27:41, 2.63it/s]
446
  9%|▉ | 446/4810 [02:52<27:59, 2.60it/s]
447
  9%|▉ | 447/4810 [02:52<26:47, 2.71it/s]
448
  9%|▉ | 448/4810 [02:53<28:18, 2.57it/s]
449
  9%|▉ | 449/4810 [02:53<26:22, 2.76it/s]
450
  9%|▉ | 450/4810 [02:53<27:10, 2.67it/s]
451
  9%|▉ | 451/4810 [02:54<28:25, 2.56it/s]
452
  9%|▉ | 452/4810 [02:54<29:26, 2.47it/s]
453
  9%|▉ | 453/4810 [02:55<29:47, 2.44it/s]
454
  9%|▉ | 454/4810 [02:55<29:00, 2.50it/s]
455
  9%|▉ | 455/4810 [02:55<27:33, 2.63it/s]
456
  9%|▉ | 456/4810 [02:56<25:53, 2.80it/s]
457
  10%|▉ | 457/4810 [02:56<25:26, 2.85it/s]
458
  10%|▉ | 458/4810 [02:57<31:06, 2.33it/s]
459
  10%|▉ | 459/4810 [02:57<28:31, 2.54it/s]
460
  10%|▉ | 460/4810 [02:57<27:59, 2.59it/s]
461
  10%|▉ | 461/4810 [02:58<26:21, 2.75it/s]
462
  10%|▉ | 462/4810 [02:58<25:31, 2.84it/s]
463
  10%|▉ | 463/4810 [02:58<26:30, 2.73it/s]
464
  10%|▉ | 464/4810 [02:59<28:33, 2.54it/s]
465
  10%|▉ | 465/4810 [02:59<27:38, 2.62it/s]
466
  10%|▉ | 466/4810 [03:00<27:10, 2.66it/s]
467
  10%|▉ | 467/4810 [03:00<27:59, 2.59it/s]
468
  10%|▉ | 468/4810 [03:01<29:44, 2.43it/s]
469
  10%|▉ | 469/4810 [03:01<31:15, 2.31it/s]
470
  10%|▉ | 470/4810 [03:01<28:21, 2.55it/s]
471
  10%|▉ | 471/4810 [03:02<28:01, 2.58it/s]
472
  10%|▉ | 472/4810 [03:02<28:24, 2.54it/s]
473
  10%|▉ | 473/4810 [03:02<27:27, 2.63it/s]
474
  10%|▉ | 474/4810 [03:03<29:38, 2.44it/s]
475
  10%|▉ | 475/4810 [03:03<27:15, 2.65it/s]
476
  10%|▉ | 476/4810 [03:04<27:16, 2.65it/s]
477
  10%|▉ | 477/4810 [03:04<27:36, 2.62it/s]
478
  10%|▉ | 478/4810 [03:04<28:57, 2.49it/s]
479
  10%|▉ | 479/4810 [03:05<27:11, 2.65it/s]
480
  10%|▉ | 480/4810 [03:05<25:54, 2.79it/s]
481
  10%|█ | 481/4810 [03:05<25:13, 2.86it/s][INFO|trainer.py:811] 2024-09-09 13:35:02,425 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
482
  0%| | 0/869 [00:00<?, ?it/s]
 
483
  1%| | 10/869 [00:00<00:09, 92.74it/s]
 
484
  2%|▏ | 20/869 [00:00<00:10, 79.64it/s]
 
485
  3%|▎ | 29/869 [00:00<00:10, 77.94it/s]
 
486
  4%|▍ | 37/869 [00:00<00:11, 75.24it/s]
 
487
  5%|▌ | 46/869 [00:00<00:10, 79.07it/s]
 
488
  6%|▋ | 55/869 [00:00<00:10, 81.38it/s]
 
489
  7%|▋ | 64/869 [00:00<00:10, 76.89it/s]
 
490
  8%|▊ | 72/869 [00:00<00:10, 76.42it/s]
 
491
  9%|▉ | 81/869 [00:01<00:09, 80.05it/s]
 
492
  10%|█ | 90/869 [00:01<00:09, 82.34it/s]
 
493
  12%|█▏ | 100/869 [00:01<00:09, 85.08it/s]
 
494
  13%|█▎ | 109/869 [00:01<00:09, 81.57it/s]
 
495
  14%|█▎ | 118/869 [00:01<00:09, 80.97it/s]
 
496
  15%|█▍ | 127/869 [00:01<00:09, 78.77it/s]
 
497
  16%|█▌ | 136/869 [00:01<00:09, 80.72it/s]
 
498
  17%|█▋ | 145/869 [00:01<00:09, 75.58it/s]
 
499
  18%|█▊ | 154/869 [00:01<00:09, 77.65it/s]
 
500
  19%|█▉ | 163/869 [00:02<00:09, 78.21it/s]
 
501
  20%|█▉ | 171/869 [00:02<00:09, 76.35it/s]
 
502
  21%|██ | 179/869 [00:02<00:09, 75.47it/s]
 
503
  22%|██▏ | 188/869 [00:02<00:08, 77.48it/s]
 
504
  23%|██▎ | 196/869 [00:02<00:08, 74.82it/s]
 
505
  24%|██▎ | 205/869 [00:02<00:08, 77.33it/s]
 
506
  25%|██▍ | 214/869 [00:02<00:08, 78.96it/s]
 
507
  26%|██▌ | 223/869 [00:02<00:08, 80.11it/s]
 
508
  27%|██▋ | 232/869 [00:02<00:08, 77.00it/s]
 
509
  28%|██▊ | 240/869 [00:03<00:08, 77.05it/s]
 
510
  29%|██▊ | 248/869 [00:03<00:08, 71.60it/s]
 
511
  30%|██▉ | 257/869 [00:03<00:08, 74.38it/s]
 
512
  30%|███ | 265/869 [00:03<00:08, 74.11it/s]
 
513
  31%|███▏ | 273/869 [00:03<00:07, 74.77it/s]
 
514
  32%|███▏ | 281/869 [00:03<00:07, 74.24it/s]
 
515
  33%|███▎ | 289/869 [00:03<00:07, 73.58it/s]
 
516
  34%|███▍ | 297/869 [00:03<00:07, 74.51it/s]
 
517
  35%|███▌ | 305/869 [00:03<00:07, 71.14it/s]
 
518
  36%|███▌ | 313/869 [00:04<00:07, 72.91it/s]
 
519
  37%|███▋ | 321/869 [00:04<00:07, 72.67it/s]
 
520
  38%|███▊ | 330/869 [00:04<00:07, 76.39it/s]
 
521
  39%|███▉ | 339/869 [00:04<00:06, 78.05it/s]
 
522
  40%|███▉ | 347/869 [00:04<00:07, 72.56it/s]
 
523
  41%|████ | 355/869 [00:04<00:07, 73.35it/s]
 
524
  42%|████▏ | 364/869 [00:04<00:06, 77.21it/s]
 
525
  43%|████▎ | 373/869 [00:04<00:06, 75.08it/s]
 
526
  44%|████▍ | 381/869 [00:04<00:06, 76.23it/s]
 
527
  45%|████▍ | 389/869 [00:05<00:06, 70.89it/s]
 
528
  46%|████▌ | 398/869 [00:05<00:06, 73.47it/s]
 
529
  47%|████▋ | 407/869 [00:05<00:06, 75.80it/s]
 
530
  48%|████▊ | 416/869 [00:05<00:05, 78.55it/s]
 
531
  49%|████▉ | 424/869 [00:05<00:05, 78.67it/s]
 
532
  50%|████▉ | 433/869 [00:05<00:05, 79.63it/s]
 
533
  51%|█████ | 441/869 [00:05<00:05, 76.93it/s]
 
534
  52%|█████▏ | 449/869 [00:05<00:05, 76.43it/s]
 
535
  53%|█████▎ | 457/869 [00:05<00:05, 77.15it/s]
 
536
  54%|█████▎ | 465/869 [00:06<00:05, 75.70it/s]
 
537
  55%|█████▍ | 475/869 [00:06<00:04, 80.70it/s]
 
538
  56%|█████▌ | 484/869 [00:06<00:04, 82.99it/s]
 
539
  57%|█████▋ | 493/869 [00:06<00:04, 76.39it/s]
 
540
  58%|█████▊ | 501/869 [00:06<00:04, 76.83it/s]
 
541
  59%|█████▊ | 509/869 [00:06<00:04, 74.69it/s]
 
542
  60%|█████▉ | 518/869 [00:06<00:04, 78.00it/s]
 
543
  61%|██████ | 526/869 [00:06<00:04, 72.48it/s]
 
544
  61%|██████▏ | 534/869 [00:06<00:04, 74.17it/s]
 
545
  62%|██████▏ | 542/869 [00:07<00:04, 71.10it/s]
 
546
  63%|██████▎ | 551/869 [00:07<00:04, 74.51it/s]
 
547
  64%|██████▍ | 559/869 [00:07<00:04, 75.26it/s]
 
548
  65%|██████▌ | 567/869 [00:07<00:04, 74.55it/s]
 
549
  66%|██████▌ | 575/869 [00:07<00:03, 75.60it/s]
 
550
  67%|██████▋ | 583/869 [00:07<00:03, 74.19it/s]
 
551
  68%|██████▊ | 591/869 [00:07<00:03, 74.92it/s]
 
552
  69%|██████▉ | 600/869 [00:07<00:03, 78.05it/s]
 
553
  70%|███████ | 609/869 [00:07<00:03, 79.24it/s]
 
554
  71%|███████ | 617/869 [00:08<00:03, 77.66it/s]
 
555
  72%|███████▏ | 625/869 [00:08<00:03, 76.47it/s]
 
556
  73%|███████▎ | 633/869 [00:08<00:03, 76.47it/s]
 
557
  74%|███████▍ | 641/869 [00:08<00:03, 75.89it/s]
 
558
  75%|███████▍ | 650/869 [00:08<00:02, 79.01it/s]
 
559
  76%|███████▌ | 658/869 [00:08<00:02, 77.60it/s]
 
560
  77%|███████▋ | 667/869 [00:08<00:02, 78.98it/s]
 
561
  78%|███████▊ | 677/869 [00:08<00:02, 82.51it/s]
 
562
  79%|███████▉ | 686/869 [00:08<00:02, 70.80it/s]
 
563
  80%|███████▉ | 695/869 [00:09<00:02, 73.91it/s]
 
564
  81%|████████ | 703/869 [00:09<00:02, 73.34it/s]
 
565
  82%|████████▏ | 712/869 [00:09<00:02, 76.08it/s]
 
566
  83%|████████▎ | 720/869 [00:09<00:01, 76.70it/s]
 
567
  84%|████████▍ | 729/869 [00:09<00:01, 78.48it/s]
 
568
  85%|████████▍ | 737/869 [00:09<00:01, 77.75it/s]
 
569
  86%|████████▌ | 746/869 [00:09<00:01, 79.14it/s]
 
570
  87%|████████▋ | 754/869 [00:09<00:01, 76.52it/s]
 
571
  88%|████████▊ | 763/869 [00:09<00:01, 79.30it/s]
 
572
  89%|████████▊ | 771/869 [00:10<00:01, 73.38it/s]
 
573
  90%|████████▉ | 779/869 [00:10<00:01, 64.34it/s]
 
574
  91%|█████████ | 788/869 [00:10<00:01, 68.97it/s]
 
575
  92%|█████████▏| 797/869 [00:10<00:00, 72.75it/s]
 
576
  93%|█████████▎| 805/869 [00:10<00:00, 73.42it/s]
 
577
  94%|█████████▎| 814/869 [00:10<00:00, 75.70it/s]
 
578
  95%|█████████▍| 822/869 [00:10<00:00, 75.50it/s]
 
579
  96%|█████████▌| 831/869 [00:10<00:00, 76.45it/s]
 
580
  97%|█████████▋| 840/869 [00:11<00:00, 78.28it/s]
 
581
  98%|█████████▊| 849/869 [00:11<00:00, 80.11it/s]
 
582
  99%|█████████▊| 858/869 [00:11<00:00, 79.41it/s]
 
583
 
 
584
 
585
  10%|█ | 481/4810 [03:21<25:13, 2.86it/s]
 
 
586
  [INFO|trainer.py:3503] 2024-09-09 13:35:17,601 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-481
 
 
 
 
 
 
 
587
  10%|█ | 482/4810 [03:28<8:32:10, 7.10s/it]
588
  10%|█ | 483/4810 [03:29<6:06:12, 5.08s/it]
589
  10%|█ | 484/4810 [03:29<4:21:49, 3.63s/it]
590
  10%|█ | 485/4810 [03:29<3:14:36, 2.70s/it]
591
  10%|█ | 486/4810 [03:30<2:25:03, 2.01s/it]
592
  10%|█ | 487/4810 [03:30<1:48:43, 1.51s/it]
593
  10%|█ | 488/4810 [03:30<1:22:33, 1.15s/it]
594
  10%|█ | 489/4810 [03:31<1:04:51, 1.11it/s]
595
  10%|█ | 490/4810 [03:31<54:32, 1.32it/s]
596
  10%|█ | 491/4810 [03:32<46:15, 1.56it/s]
597
  10%|█ | 492/4810 [03:32<40:57, 1.76it/s]
598
  10%|█ | 493/4810 [03:32<36:38, 1.96it/s]
599
  10%|█ | 494/4810 [03:33<34:17, 2.10it/s]
600
  10%|█ | 495/4810 [03:33<31:53, 2.25it/s]
601
  10%|█ | 496/4810 [03:33<28:30, 2.52it/s]
602
  10%|█ | 497/4810 [03:34<28:31, 2.52it/s]
603
  10%|█ | 498/4810 [03:34<27:10, 2.64it/s]
604
  10%|█ | 499/4810 [03:34<26:54, 2.67it/s]
605
  10%|█ | 500/4810 [03:35<28:10, 2.55it/s]
606
 
607
  10%|█ | 500/4810 [03:35<28:10, 2.55it/s]
608
  10%|█ | 501/4810 [03:35<27:27, 2.62it/s]
609
  10%|█ | 502/4810 [03:36<26:55, 2.67it/s]
610
  10%|█ | 503/4810 [03:36<26:11, 2.74it/s]
611
  10%|█ | 504/4810 [03:36<26:10, 2.74it/s]
612
  10%|█ | 505/4810 [03:37<25:42, 2.79it/s]
613
  11%|█ | 506/4810 [03:37<27:21, 2.62it/s]
614
  11%|█ | 507/4810 [03:37<24:50, 2.89it/s]
615
  11%|█ | 508/4810 [03:38<25:28, 2.81it/s]
616
  11%|█ | 509/4810 [03:38<24:06, 2.97it/s]
617
  11%|█ | 510/4810 [03:39<27:18, 2.62it/s]
618
  11%|█ | 511/4810 [03:39<26:28, 2.71it/s]
619
  11%|█ | 512/4810 [03:39<25:25, 2.82it/s]
620
  11%|█ | 513/4810 [03:40<24:40, 2.90it/s]
621
  11%|█ | 514/4810 [03:40<26:48, 2.67it/s]
622
  11%|█ | 515/4810 [03:40<24:31, 2.92it/s]
623
  11%|█ | 516/4810 [03:41<25:35, 2.80it/s]
624
  11%|█ | 517/4810 [03:41<25:27, 2.81it/s]
625
  11%|█ | 518/4810 [03:41<24:42, 2.89it/s]
626
  11%|█ | 519/4810 [03:42<23:42, 3.02it/s]
627
  11%|█ | 520/4810 [03:42<23:05, 3.10it/s]
628
  11%|█ | 521/4810 [03:42<25:27, 2.81it/s]
629
  11%|█ | 522/4810 [03:43<23:58, 2.98it/s]
630
  11%|█ | 523/4810 [03:43<24:47, 2.88it/s]
631
  11%|█ | 524/4810 [03:43<26:35, 2.69it/s]
632
  11%|█ | 525/4810 [03:44<24:52, 2.87it/s]
633
  11%|█ | 526/4810 [03:44<24:17, 2.94it/s]
634
  11%|█ | 527/4810 [03:44<23:41, 3.01it/s]
635
  11%|█ | 528/4810 [03:45<24:21, 2.93it/s]
636
  11%|█ | 529/4810 [03:45<25:23, 2.81it/s]
637
  11%|█ | 530/4810 [03:45<25:01, 2.85it/s]
638
  11%|█ | 531/4810 [03:46<24:55, 2.86it/s]
639
  11%|█ | 532/4810 [03:46<29:22, 2.43it/s]
640
  11%|█ | 533/4810 [03:47<29:50, 2.39it/s]
641
  11%|█ | 534/4810 [03:47<29:57, 2.38it/s]
642
  11%|█ | 535/4810 [03:48<30:36, 2.33it/s]
643
  11%|█ | 536/4810 [03:48<30:49, 2.31it/s]
644
  11%|█ | 537/4810 [03:49<31:31, 2.26it/s]
645
  11%|█ | 538/4810 [03:49<32:24, 2.20it/s]
646
  11%|█ | 539/4810 [03:49<30:31, 2.33it/s]
647
  11%|█ | 540/4810 [03:50<28:20, 2.51it/s]
648
  11%|█ | 541/4810 [03:50<27:45, 2.56it/s]
649
  11%|█▏ | 542/4810 [03:51<29:57, 2.38it/s]
650
  11%|█▏ | 543/4810 [03:51<30:35, 2.32it/s]
651
  11%|█▏ | 544/4810 [03:51<30:38, 2.32it/s]
652
  11%|█▏ | 545/4810 [03:52<27:32, 2.58it/s]
653
  11%|█▏ | 546/4810 [03:52<30:06, 2.36it/s]
654
  11%|█▏ | 547/4810 [03:53<28:32, 2.49it/s]
655
  11%|█▏ | 548/4810 [03:53<26:05, 2.72it/s]
656
  11%|█▏ | 549/4810 [03:53<25:07, 2.83it/s]
657
  11%|█▏ | 550/4810 [03:54<29:02, 2.45it/s]
658
  11%|█▏ | 551/4810 [03:54<28:36, 2.48it/s]
659
  11%|█▏ | 552/4810 [03:54<25:48, 2.75it/s]
660
  11%|█▏ | 553/4810 [03:55<26:58, 2.63it/s]
661
  12%|█▏ | 554/4810 [03:55<24:59, 2.84it/s]
662
  12%|█▏ | 555/4810 [03:55<25:05, 2.83it/s]
663
  12%|█▏ | 556/4810 [03:56<26:10, 2.71it/s]
664
  12%|█▏ | 557/4810 [03:56<25:34, 2.77it/s]
665
  12%|█▏ | 558/4810 [03:57<24:47, 2.86it/s]
666
  12%|█▏ | 559/4810 [03:57<23:59, 2.95it/s]
667
  12%|█▏ | 560/4810 [03:57<22:49, 3.10it/s]
668
  12%|█▏ | 561/4810 [03:58<27:17, 2.59it/s]
669
  12%|█▏ | 562/4810 [03:58<26:24, 2.68it/s]
670
  12%|█▏ | 563/4810 [03:58<25:16, 2.80it/s]
671
  12%|█▏ | 564/4810 [03:59<26:56, 2.63it/s]
672
  12%|█▏ | 565/4810 [03:59<26:47, 2.64it/s]
673
  12%|█▏ | 566/4810 [03:59<24:55, 2.84it/s]
674
  12%|█▏ | 567/4810 [04:00<27:34, 2.56it/s]
675
  12%|█▏ | 568/4810 [04:00<26:34, 2.66it/s]
676
  12%|█▏ | 569/4810 [04:01<25:54, 2.73it/s]
677
  12%|█▏ | 570/4810 [04:01<29:03, 2.43it/s]
678
  12%|█▏ | 571/4810 [04:02<28:38, 2.47it/s]
679
  12%|█▏ | 572/4810 [04:02<26:48, 2.63it/s]
680
  12%|█▏ | 573/4810 [04:02<27:52, 2.53it/s]
681
  12%|█▏ | 574/4810 [04:03<26:19, 2.68it/s]
682
  12%|█▏ | 575/4810 [04:03<26:38, 2.65it/s]
683
  12%|█▏ | 576/4810 [04:04<29:45, 2.37it/s]
684
  12%|█▏ | 577/4810 [04:04<29:36, 2.38it/s]
685
  12%|█▏ | 578/4810 [04:04<27:07, 2.60it/s]
686
  12%|█▏ | 579/4810 [04:05<29:07, 2.42it/s]
687
  12%|█▏ | 580/4810 [04:05<28:08, 2.51it/s]
688
  12%|█▏ | 581/4810 [04:05<27:40, 2.55it/s]
689
  12%|█▏ | 582/4810 [04:06<27:42, 2.54it/s]
690
  12%|█▏ | 583/4810 [04:06<26:15, 2.68it/s]
691
  12%|█▏ | 584/4810 [04:07<25:43, 2.74it/s]
692
  12%|█▏ | 585/4810 [04:07<25:24, 2.77it/s]
693
  12%|█▏ | 586/4810 [04:07<26:19, 2.67it/s]
694
  12%|█▏ | 587/4810 [04:08<25:39, 2.74it/s]
695
  12%|█▏ | 588/4810 [04:08<25:44, 2.73it/s]
696
  12%|█▏ | 589/4810 [04:08<25:51, 2.72it/s]
697
  12%|█▏ | 590/4810 [04:09<24:15, 2.90it/s]
698
  12%|█▏ | 591/4810 [04:09<26:16, 2.68it/s]
699
  12%|█▏ | 592/4810 [04:09<25:49, 2.72it/s]
700
  12%|█▏ | 593/4810 [04:10<27:03, 2.60it/s]
701
  12%|█▏ | 594/4810 [04:10<27:41, 2.54it/s]
702
  12%|█▏ | 595/4810 [04:11<28:42, 2.45it/s]
703
  12%|█▏ | 596/4810 [04:11<28:15, 2.49it/s]
704
  12%|█▏ | 597/4810 [04:12<28:12, 2.49it/s]
705
  12%|█▏ | 598/4810 [04:12<26:42, 2.63it/s]
706
  12%|█▏ | 599/4810 [04:12<25:00, 2.81it/s]
707
  12%|█▏ | 600/4810 [04:13<25:04, 2.80it/s]
708
  12%|█▏ | 601/4810 [04:13<26:47, 2.62it/s]
709
  13%|█▎ | 602/4810 [04:13<26:45, 2.62it/s]
710
  13%|█▎ | 603/4810 [04:14<26:32, 2.64it/s]
711
  13%|█▎ | 604/4810 [04:14<27:59, 2.50it/s]
712
  13%|█▎ | 605/4810 [04:15<27:25, 2.55it/s]
713
  13%|█▎ | 606/4810 [04:15<25:56, 2.70it/s]
 
1
+ 2024-09-09 13:31:26.574394: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-09 13:31:26.592525: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-09 13:31:26.613856: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-09 13:31:26.620385: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-09 13:31:26.635777: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-09 13:31:27.891241: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/09/2024 13:31:29 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/09/2024 13:31:29 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-09 13:31:48,080 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-09 13:31:48,083 >> Model config BertConfig {
149
+ "_name_or_path": "michiyasunaga/BioLinkBERT-base",
150
+ "architectures": [
151
+ "BertModel"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "classifier_dropout": null,
155
+ "finetuning_task": "ner",
156
+ "gradient_checkpointing": false,
157
+ "hidden_act": "gelu",
158
+ "hidden_dropout_prob": 0.1,
159
+ "hidden_size": 768,
160
+ "id2label": {
161
+ "0": "O",
162
+ "1": "B-FARMACO",
163
+ "2": "I-FARMACO"
164
+ },
165
+ "initializer_range": 0.02,
166
+ "intermediate_size": 3072,
167
+ "label2id": {
168
+ "B-FARMACO": 1,
169
+ "I-FARMACO": 2,
170
+ "O": 0
171
+ },
172
+ "layer_norm_eps": 1e-12,
173
+ "max_position_embeddings": 512,
174
+ "model_type": "bert",
175
+ "num_attention_heads": 12,
176
+ "num_hidden_layers": 12,
177
+ "pad_token_id": 0,
178
+ "position_embedding_type": "absolute",
179
+ "transformers_version": "4.44.2",
180
+ "type_vocab_size": 2,
181
+ "use_cache": true,
182
+ "vocab_size": 28895
183
+ }
184
+
185
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/vocab.txt
186
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer.json
187
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file added_tokens.json from cache at None
188
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/special_tokens_map.json
189
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer_config.json
190
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
191
+ warnings.warn(
192
+ [INFO|modeling_utils.py:3678] 2024-09-09 13:31:48,637 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/pytorch_model.bin
193
+ [INFO|modeling_utils.py:4497] 2024-09-09 13:31:48,717 >> Some weights of the model checkpoint at michiyasunaga/BioLinkBERT-base were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']
194
+ - This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
195
+ - This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
196
+ [WARNING|modeling_utils.py:4509] 2024-09-09 13:31:48,717 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at michiyasunaga/BioLinkBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight']
197
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
198
+
199
+
200
+
201
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
202
+ metric = load_metric("seqeval", trust_remote_code=True)
203
+ [INFO|trainer.py:811] 2024-09-09 13:31:55,820 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
204
+ [INFO|trainer.py:2134] 2024-09-09 13:31:56,387 >> ***** Running training *****
205
+ [INFO|trainer.py:2135] 2024-09-09 13:31:56,387 >> Num examples = 30,812
206
+ [INFO|trainer.py:2136] 2024-09-09 13:31:56,388 >> Num Epochs = 10
207
+ [INFO|trainer.py:2137] 2024-09-09 13:31:56,388 >> Instantaneous batch size per device = 32
208
+ [INFO|trainer.py:2140] 2024-09-09 13:31:56,388 >> Total train batch size (w. parallel, distributed & accumulation) = 64
209
+ [INFO|trainer.py:2141] 2024-09-09 13:31:56,388 >> Gradient Accumulation steps = 2
210
+ [INFO|trainer.py:2142] 2024-09-09 13:31:56,388 >> Total optimization steps = 4,810
211
+ [INFO|trainer.py:2143] 2024-09-09 13:31:56,388 >> Number of trainable parameters = 107,644,419
212
+
213
  0%| | 0/4810 [00:00<?, ?it/s]
214
  0%| | 1/4810 [00:01<1:32:48, 1.16s/it]
215
  0%| | 2/4810 [00:01<56:19, 1.42it/s]
216
  0%| | 3/4810 [00:01<41:07, 1.95it/s]
217
  0%| | 4/4810 [00:02<34:37, 2.31it/s]
218
  0%| | 5/4810 [00:02<33:33, 2.39it/s]
219
  0%| | 6/4810 [00:02<31:08, 2.57it/s]
220
  0%| | 7/4810 [00:03<33:14, 2.41it/s]
221
  0%| | 8/4810 [00:03<30:49, 2.60it/s]
222
  0%| | 9/4810 [00:03<28:57, 2.76it/s]
223
  0%| | 10/4810 [00:04<30:37, 2.61it/s]
224
  0%| | 11/4810 [00:04<31:18, 2.55it/s]
225
  0%| | 12/4810 [00:05<30:02, 2.66it/s]
226
  0%| | 13/4810 [00:05<27:58, 2.86it/s]
227
  0%| | 14/4810 [00:05<27:06, 2.95it/s]
228
  0%| | 15/4810 [00:06<27:05, 2.95it/s]
229
  0%| | 16/4810 [00:06<28:33, 2.80it/s]
230
  0%| | 17/4810 [00:06<29:38, 2.70it/s]
231
  0%| | 18/4810 [00:07<31:10, 2.56it/s]
232
  0%| | 19/4810 [00:07<29:50, 2.68it/s]
233
  0%| | 20/4810 [00:08<31:02, 2.57it/s]
234
  0%| | 21/4810 [00:08<31:46, 2.51it/s]
235
  0%| | 22/4810 [00:08<30:27, 2.62it/s]
236
  0%| | 23/4810 [00:09<28:10, 2.83it/s]
237
  0%| | 24/4810 [00:09<28:35, 2.79it/s]
238
  1%| | 25/4810 [00:09<26:09, 3.05it/s]
239
  1%| | 26/4810 [00:10<31:26, 2.54it/s]
240
  1%| | 27/4810 [00:10<30:18, 2.63it/s]
241
  1%| | 28/4810 [00:11<30:46, 2.59it/s]
242
  1%| | 29/4810 [00:11<35:46, 2.23it/s]
243
  1%| | 30/4810 [00:12<39:19, 2.03it/s]
244
  1%| | 31/4810 [00:12<39:08, 2.03it/s]
245
  1%| | 32/4810 [00:13<36:16, 2.20it/s]
246
  1%| | 33/4810 [00:13<32:23, 2.46it/s]
247
  1%| | 34/4810 [00:13<36:43, 2.17it/s]
248
  1%| | 35/4810 [00:14<35:27, 2.24it/s]
249
  1%| | 36/4810 [00:14<35:59, 2.21it/s]
250
  1%| | 37/4810 [00:15<34:42, 2.29it/s]
251
  1%| | 38/4810 [00:15<33:54, 2.35it/s]
252
  1%| | 39/4810 [00:16<33:10, 2.40it/s]
253
  1%| | 40/4810 [00:16<33:50, 2.35it/s]
254
  1%| | 41/4810 [00:16<35:01, 2.27it/s]
255
  1%| | 42/4810 [00:17<31:37, 2.51it/s]
256
  1%| | 43/4810 [00:17<31:12, 2.55it/s]
257
  1%| | 44/4810 [00:18<47:33, 1.67it/s]
258
  1%| | 45/4810 [00:19<41:13, 1.93it/s]
259
  1%| | 46/4810 [00:19<37:33, 2.11it/s]
260
  1%| | 47/4810 [00:19<35:35, 2.23it/s]
261
  1%| | 48/4810 [00:20<32:29, 2.44it/s]
262
  1%| | 49/4810 [00:20<31:44, 2.50it/s]
263
  1%| | 50/4810 [00:20<31:03, 2.55it/s]
264
  1%| | 51/4810 [00:21<30:39, 2.59it/s]
265
  1%| | 52/4810 [00:21<30:21, 2.61it/s]
266
  1%| | 53/4810 [00:22<33:12, 2.39it/s]
267
  1%| | 54/4810 [00:22<31:57, 2.48it/s]
268
  1%| | 55/4810 [00:22<30:41, 2.58it/s]
269
  1%| | 56/4810 [00:23<30:16, 2.62it/s]
270
  1%| | 57/4810 [00:23<32:50, 2.41it/s]
271
  1%| | 58/4810 [00:24<31:11, 2.54it/s]
272
  1%| | 59/4810 [00:24<29:25, 2.69it/s]
273
  1%| | 60/4810 [00:24<33:13, 2.38it/s]
274
  1%|▏ | 61/4810 [00:25<30:25, 2.60it/s]
275
  1%|▏ | 62/4810 [00:25<29:47, 2.66it/s]
276
  1%|▏ | 63/4810 [00:25<28:16, 2.80it/s]
277
  1%|▏ | 64/4810 [00:26<26:57, 2.93it/s]
278
  1%|▏ | 65/4810 [00:26<26:05, 3.03it/s]
279
  1%|▏ | 66/4810 [00:27<32:46, 2.41it/s]
280
  1%|▏ | 67/4810 [00:27<30:06, 2.62it/s]
281
  1%|▏ | 68/4810 [00:27<31:24, 2.52it/s]
282
  1%|▏ | 69/4810 [00:28<29:04, 2.72it/s]
283
  1%|▏ | 70/4810 [00:28<26:35, 2.97it/s]
284
  1%|▏ | 71/4810 [00:28<27:27, 2.88it/s]
285
  1%|▏ | 72/4810 [00:29<25:01, 3.16it/s]
286
  2%|▏ | 73/4810 [00:29<31:43, 2.49it/s]
287
  2%|▏ | 74/4810 [00:30<32:11, 2.45it/s]
288
  2%|▏ | 75/4810 [00:30<29:21, 2.69it/s]
289
  2%|▏ | 76/4810 [00:30<28:58, 2.72it/s]
290
  2%|▏ | 77/4810 [00:31<29:02, 2.72it/s]
291
  2%|▏ | 78/4810 [00:31<29:10, 2.70it/s]
292
  2%|▏ | 79/4810 [00:31<30:05, 2.62it/s]
293
  2%|▏ | 80/4810 [00:32<28:26, 2.77it/s]
294
  2%|▏ | 81/4810 [00:32<29:36, 2.66it/s]
295
  2%|▏ | 82/4810 [00:32<30:01, 2.62it/s]
296
  2%|▏ | 83/4810 [00:33<30:18, 2.60it/s]
297
  2%|▏ | 84/4810 [00:33<29:04, 2.71it/s]
298
  2%|▏ | 85/4810 [00:34<29:17, 2.69it/s]
299
  2%|▏ | 86/4810 [00:34<29:44, 2.65it/s]
300
  2%|▏ | 87/4810 [00:34<27:27, 2.87it/s]
301
  2%|▏ | 88/4810 [00:35<30:27, 2.58it/s]
302
  2%|▏ | 89/4810 [00:35<31:02, 2.53it/s]
303
  2%|▏ | 90/4810 [00:35<29:15, 2.69it/s]
304
  2%|▏ | 91/4810 [00:36<32:55, 2.39it/s]
305
  2%|▏ | 92/4810 [00:37<37:00, 2.12it/s]
306
  2%|▏ | 93/4810 [00:37<34:32, 2.28it/s]
307
  2%|▏ | 94/4810 [00:37<31:16, 2.51it/s]
308
  2%|▏ | 95/4810 [00:38<32:10, 2.44it/s]
309
  2%|▏ | 96/4810 [00:38<32:09, 2.44it/s]
310
  2%|▏ | 97/4810 [00:38<28:47, 2.73it/s]
311
  2%|▏ | 98/4810 [00:39<29:43, 2.64it/s]
312
  2%|▏ | 99/4810 [00:39<30:19, 2.59it/s]
313
  2%|▏ | 100/4810 [00:40<33:02, 2.38it/s]
314
  2%|▏ | 101/4810 [00:40<35:16, 2.22it/s]
315
  2%|▏ | 102/4810 [00:41<34:17, 2.29it/s]
316
  2%|▏ | 103/4810 [00:41<30:51, 2.54it/s]
317
  2%|▏ | 104/4810 [00:41<28:32, 2.75it/s]
318
  2%|▏ | 105/4810 [00:42<28:40, 2.73it/s]
319
  2%|▏ | 106/4810 [00:42<31:12, 2.51it/s]
320
  2%|▏ | 107/4810 [00:42<28:50, 2.72it/s]
321
  2%|▏ | 108/4810 [00:43<32:31, 2.41it/s]
322
  2%|▏ | 109/4810 [00:43<34:52, 2.25it/s]
323
  2%|▏ | 110/4810 [00:44<32:53, 2.38it/s]
324
  2%|▏ | 111/4810 [00:44<31:06, 2.52it/s]
325
  2%|▏ | 112/4810 [00:45<32:29, 2.41it/s]
326
  2%|▏ | 113/4810 [00:45<30:01, 2.61it/s]
327
  2%|▏ | 114/4810 [00:45<30:44, 2.55it/s]
328
  2%|▏ | 115/4810 [00:46<29:27, 2.66it/s]
329
  2%|▏ | 116/4810 [00:46<27:57, 2.80it/s]
330
  2%|▏ | 117/4810 [00:46<29:01, 2.70it/s]
331
  2%|▏ | 118/4810 [00:47<34:35, 2.26it/s]
332
  2%|▏ | 119/4810 [00:47<32:39, 2.39it/s]
333
  2%|▏ | 120/4810 [00:48<29:25, 2.66it/s]
334
  3%|▎ | 121/4810 [00:48<29:56, 2.61it/s]
335
  3%|▎ | 122/4810 [00:48<29:09, 2.68it/s]
336
  3%|▎ | 123/4810 [00:49<31:43, 2.46it/s]
337
  3%|▎ | 124/4810 [00:49<30:37, 2.55it/s]
338
  3%|▎ | 125/4810 [00:49<29:26, 2.65it/s]
339
  3%|▎ | 126/4810 [00:50<31:10, 2.50it/s]
340
  3%|▎ | 127/4810 [00:50<31:23, 2.49it/s]
341
  3%|▎ | 128/4810 [00:51<30:59, 2.52it/s]
342
  3%|▎ | 129/4810 [00:51<30:56, 2.52it/s]
343
  3%|▎ | 130/4810 [00:52<32:25, 2.41it/s]
344
  3%|▎ | 131/4810 [00:52<29:43, 2.62it/s]
345
  3%|▎ | 132/4810 [00:52<31:11, 2.50it/s]
346
  3%|▎ | 133/4810 [00:53<29:58, 2.60it/s]
347
  3%|▎ | 134/4810 [00:53<29:33, 2.64it/s]
348
  3%|▎ | 135/4810 [00:53<30:00, 2.60it/s]
349
  3%|▎ | 136/4810 [00:54<29:30, 2.64it/s]
350
  3%|▎ | 137/4810 [00:54<29:25, 2.65it/s]
351
  3%|▎ | 138/4810 [00:55<28:18, 2.75it/s]
352
  3%|▎ | 139/4810 [00:55<30:51, 2.52it/s]
353
  3%|▎ | 140/4810 [00:55<29:03, 2.68it/s]
354
  3%|▎ | 141/4810 [00:56<29:12, 2.66it/s]
355
  3%|▎ | 142/4810 [00:56<30:59, 2.51it/s]
356
  3%|▎ | 143/4810 [00:56<29:18, 2.65it/s]
357
  3%|▎ | 144/4810 [00:57<27:56, 2.78it/s]
358
  3%|▎ | 145/4810 [00:57<27:22, 2.84it/s]
359
  3%|▎ | 146/4810 [00:57<26:01, 2.99it/s]
360
  3%|▎ | 147/4810 [00:58<33:33, 2.32it/s]
361
  3%|▎ | 148/4810 [00:59<35:19, 2.20it/s]
362
  3%|▎ | 149/4810 [00:59<33:17, 2.33it/s]
363
  3%|▎ | 150/4810 [00:59<31:10, 2.49it/s]
364
  3%|▎ | 151/4810 [01:00<33:40, 2.31it/s]
365
  3%|▎ | 152/4810 [01:00<32:13, 2.41it/s]
366
  3%|▎ | 153/4810 [01:01<33:32, 2.31it/s]
367
  3%|▎ | 154/4810 [01:01<31:45, 2.44it/s]
368
  3%|▎ | 155/4810 [01:01<29:46, 2.61it/s]
369
  3%|▎ | 156/4810 [01:02<29:28, 2.63it/s]
370
  3%|▎ | 157/4810 [01:02<28:23, 2.73it/s]
371
  3%|▎ | 158/4810 [01:02<28:09, 2.75it/s]
372
  3%|▎ | 159/4810 [01:03<29:46, 2.60it/s]
373
  3%|▎ | 160/4810 [01:03<29:49, 2.60it/s]
374
  3%|▎ | 161/4810 [01:04<29:23, 2.64it/s]
375
  3%|▎ | 162/4810 [01:04<28:17, 2.74it/s]
376
  3%|▎ | 163/4810 [01:04<28:46, 2.69it/s]
377
  3%|▎ | 164/4810 [01:05<29:09, 2.66it/s]
378
  3%|▎ | 165/4810 [01:05<28:25, 2.72it/s]
379
  3%|▎ | 166/4810 [01:05<26:37, 2.91it/s]
380
  3%|▎ | 167/4810 [01:06<27:57, 2.77it/s]
381
  3%|▎ | 168/4810 [01:06<30:28, 2.54it/s]
382
  4%|▎ | 169/4810 [01:07<29:57, 2.58it/s]
383
  4%|▎ | 170/4810 [01:07<28:48, 2.68it/s]
384
  4%|▎ | 171/4810 [01:07<30:14, 2.56it/s]
385
  4%|▎ | 172/4810 [01:08<31:38, 2.44it/s]
386
  4%|▎ | 173/4810 [01:08<31:44, 2.43it/s]
387
  4%|▎ | 174/4810 [01:08<29:13, 2.64it/s]
388
  4%|▎ | 175/4810 [01:09<27:58, 2.76it/s]
389
  4%|▎ | 176/4810 [01:09<25:59, 2.97it/s]
390
  4%|▎ | 177/4810 [01:09<25:35, 3.02it/s]
391
  4%|▎ | 178/4810 [01:10<29:00, 2.66it/s]
392
  4%|▎ | 179/4810 [01:10<28:27, 2.71it/s]
393
  4%|▎ | 180/4810 [01:11<26:04, 2.96it/s]
394
  4%|▍ | 181/4810 [01:11<28:36, 2.70it/s]
395
  4%|▍ | 182/4810 [01:11<27:50, 2.77it/s]
396
  4%|▍ | 183/4810 [01:12<27:55, 2.76it/s]
397
  4%|▍ | 184/4810 [01:12<27:58, 2.76it/s]
398
  4%|▍ | 185/4810 [01:12<27:18, 2.82it/s]
399
  4%|▍ | 186/4810 [01:13<26:43, 2.88it/s]
400
  4%|▍ | 187/4810 [01:13<27:59, 2.75it/s]
401
  4%|▍ | 188/4810 [01:14<29:04, 2.65it/s]
402
  4%|▍ | 189/4810 [01:14<27:32, 2.80it/s]
403
  4%|▍ | 190/4810 [01:14<27:44, 2.78it/s]
404
  4%|▍ | 191/4810 [01:14<25:15, 3.05it/s]
405
  4%|▍ | 192/4810 [01:15<27:30, 2.80it/s]
406
  4%|▍ | 193/4810 [01:15<30:30, 2.52it/s]
407
  4%|▍ | 194/4810 [01:16<30:40, 2.51it/s]
408
  4%|▍ | 195/4810 [01:16<31:36, 2.43it/s]
409
  4%|▍ | 196/4810 [01:16<29:09, 2.64it/s]
410
  4%|▍ | 197/4810 [01:17<29:05, 2.64it/s]
411
  4%|▍ | 198/4810 [01:17<27:31, 2.79it/s]
412
  4%|▍ | 199/4810 [01:18<26:31, 2.90it/s]
413
  4%|▍ | 200/4810 [01:18<31:05, 2.47it/s]
414
  4%|▍ | 201/4810 [01:19<34:12, 2.25it/s]
415
  4%|▍ | 202/4810 [01:19<32:25, 2.37it/s]
416
  4%|▍ | 203/4810 [01:19<31:53, 2.41it/s]
417
  4%|▍ | 204/4810 [01:20<31:25, 2.44it/s]
418
  4%|▍ | 205/4810 [01:20<34:51, 2.20it/s]
419
  4%|▍ | 206/4810 [01:21<30:38, 2.50it/s]
420
  4%|▍ | 207/4810 [01:21<29:59, 2.56it/s]
421
  4%|▍ | 208/4810 [01:21<28:38, 2.68it/s]
422
  4%|▍ | 209/4810 [01:22<27:18, 2.81it/s]
423
  4%|▍ | 210/4810 [01:22<26:16, 2.92it/s]
424
  4%|▍ | 211/4810 [01:22<26:03, 2.94it/s]
425
  4%|▍ | 212/4810 [01:23<27:44, 2.76it/s]
426
  4%|▍ | 213/4810 [01:23<25:53, 2.96it/s]
427
  4%|▍ | 214/4810 [01:23<26:41, 2.87it/s]
428
  4%|▍ | 215/4810 [01:24<27:15, 2.81it/s]
429
  4%|▍ | 216/4810 [01:24<30:02, 2.55it/s]
430
  5%|▍ | 217/4810 [01:25<29:03, 2.63it/s]
431
  5%|▍ | 218/4810 [01:25<32:35, 2.35it/s]
432
  5%|▍ | 219/4810 [01:25<31:01, 2.47it/s]
433
  5%|▍ | 220/4810 [01:26<29:11, 2.62it/s]
434
  5%|▍ | 221/4810 [01:26<28:58, 2.64it/s]
435
  5%|▍ | 222/4810 [01:26<27:59, 2.73it/s]
436
  5%|▍ | 223/4810 [01:27<34:27, 2.22it/s]
437
  5%|▍ | 224/4810 [01:27<32:30, 2.35it/s]
438
  5%|▍ | 225/4810 [01:28<31:09, 2.45it/s]
439
  5%|▍ | 226/4810 [01:28<30:23, 2.51it/s]
440
  5%|▍ | 227/4810 [01:29<30:04, 2.54it/s]
441
  5%|▍ | 228/4810 [01:29<28:17, 2.70it/s]
442
  5%|▍ | 229/4810 [01:29<26:56, 2.83it/s]
443
  5%|▍ | 230/4810 [01:30<27:26, 2.78it/s]
444
  5%|▍ | 231/4810 [01:30<30:19, 2.52it/s]
445
  5%|▍ | 232/4810 [01:31<31:23, 2.43it/s]
446
  5%|▍ | 233/4810 [01:31<29:54, 2.55it/s]
447
  5%|▍ | 234/4810 [01:31<31:10, 2.45it/s]
448
  5%|▍ | 235/4810 [01:32<31:06, 2.45it/s]
449
  5%|▍ | 236/4810 [01:32<28:42, 2.66it/s]
450
  5%|▍ | 237/4810 [01:32<29:53, 2.55it/s]
451
  5%|▍ | 238/4810 [01:33<28:53, 2.64it/s]
452
  5%|▍ | 239/4810 [01:33<30:33, 2.49it/s]
453
  5%|▍ | 240/4810 [01:34<29:34, 2.58it/s]
454
  5%|▌ | 241/4810 [01:34<29:38, 2.57it/s]
455
  5%|▌ | 242/4810 [01:34<27:36, 2.76it/s]
456
  5%|▌ | 243/4810 [01:35<29:01, 2.62it/s]
457
  5%|▌ | 244/4810 [01:35<33:01, 2.30it/s]
458
  5%|▌ | 245/4810 [01:36<32:23, 2.35it/s]
459
  5%|▌ | 246/4810 [01:36<30:56, 2.46it/s]
460
  5%|▌ | 247/4810 [01:36<29:16, 2.60it/s]
461
  5%|▌ | 248/4810 [01:37<29:22, 2.59it/s]
462
  5%|▌ | 249/4810 [01:37<27:23, 2.77it/s]
463
  5%|▌ | 250/4810 [01:37<28:25, 2.67it/s]
464
  5%|▌ | 251/4810 [01:38<28:59, 2.62it/s]
465
  5%|▌ | 252/4810 [01:38<29:24, 2.58it/s]
466
  5%|▌ | 253/4810 [01:39<28:13, 2.69it/s]
467
  5%|▌ | 254/4810 [01:39<27:08, 2.80it/s]
468
  5%|▌ | 255/4810 [01:39<27:09, 2.80it/s]
469
  5%|▌ | 256/4810 [01:40<30:31, 2.49it/s]
470
  5%|▌ | 257/4810 [01:40<30:16, 2.51it/s]
471
  5%|▌ | 258/4810 [01:41<29:10, 2.60it/s]
472
  5%|▌ | 259/4810 [01:41<29:35, 2.56it/s]
473
  5%|▌ | 260/4810 [01:41<27:11, 2.79it/s]
474
  5%|▌ | 261/4810 [01:42<27:33, 2.75it/s]
475
  5%|▌ | 262/4810 [01:42<27:51, 2.72it/s]
476
  5%|▌ | 263/4810 [01:42<27:09, 2.79it/s]
477
  5%|▌ | 264/4810 [01:43<27:02, 2.80it/s]
478
  6%|▌ | 265/4810 [01:43<26:53, 2.82it/s]
479
  6%|▌ | 266/4810 [01:43<27:05, 2.79it/s]
480
  6%|▌ | 267/4810 [01:44<26:04, 2.90it/s]
481
  6%|▌ | 268/4810 [01:44<27:08, 2.79it/s]
482
  6%|▌ | 269/4810 [01:44<26:02, 2.91it/s]
483
  6%|▌ | 270/4810 [01:45<25:45, 2.94it/s]
484
  6%|▌ | 271/4810 [01:45<29:55, 2.53it/s]
485
  6%|▌ | 272/4810 [01:46<30:42, 2.46it/s]
486
  6%|▌ | 273/4810 [01:46<29:45, 2.54it/s]
487
  6%|▌ | 274/4810 [01:46<29:06, 2.60it/s]
488
  6%|▌ | 275/4810 [01:47<29:01, 2.60it/s]
489
  6%|▌ | 276/4810 [01:47<28:30, 2.65it/s]
490
  6%|▌ | 277/4810 [01:47<26:49, 2.82it/s]
491
  6%|▌ | 278/4810 [01:48<27:18, 2.77it/s]
492
  6%|▌ | 279/4810 [01:48<30:42, 2.46it/s]
493
  6%|▌ | 280/4810 [01:49<29:33, 2.55it/s]
494
  6%|▌ | 281/4810 [01:49<28:53, 2.61it/s]
495
  6%|▌ | 282/4810 [01:49<28:21, 2.66it/s]
496
  6%|▌ | 283/4810 [01:50<28:06, 2.68it/s]
497
  6%|▌ | 284/4810 [01:50<28:46, 2.62it/s]
498
  6%|▌ | 285/4810 [01:51<29:19, 2.57it/s]
499
  6%|▌ | 286/4810 [01:51<29:11, 2.58it/s]
500
  6%|▌ | 287/4810 [01:51<27:13, 2.77it/s]
501
  6%|▌ | 288/4810 [01:52<28:40, 2.63it/s]
502
  6%|▌ | 289/4810 [01:52<27:42, 2.72it/s]
503
  6%|▌ | 290/4810 [01:53<30:54, 2.44it/s]
504
  6%|▌ | 291/4810 [01:53<31:21, 2.40it/s]
505
  6%|▌ | 292/4810 [01:53<30:03, 2.51it/s]
506
  6%|▌ | 293/4810 [01:54<31:26, 2.39it/s]
507
  6%|▌ | 294/4810 [01:54<30:49, 2.44it/s]
508
  6%|▌ | 295/4810 [01:55<29:47, 2.53it/s]
509
  6%|▌ | 296/4810 [01:55<28:36, 2.63it/s]
510
  6%|▌ | 297/4810 [01:55<30:04, 2.50it/s]
511
  6%|▌ | 298/4810 [01:56<29:28, 2.55it/s]
512
  6%|▌ | 299/4810 [01:56<32:33, 2.31it/s]
513
  6%|▌ | 300/4810 [01:57<31:04, 2.42it/s]
514
  6%|▋ | 301/4810 [01:57<28:36, 2.63it/s]
515
  6%|▋ | 302/4810 [01:57<28:01, 2.68it/s]
516
  6%|▋ | 303/4810 [01:58<27:12, 2.76it/s]
517
  6%|▋ | 304/4810 [01:58<28:14, 2.66it/s]
518
  6%|▋ | 305/4810 [01:58<28:00, 2.68it/s]
519
  6%|▋ | 306/4810 [01:59<27:39, 2.71it/s]
520
  6%|▋ | 307/4810 [01:59<29:00, 2.59it/s]
521
  6%|▋ | 308/4810 [02:00<28:37, 2.62it/s]
522
  6%|▋ | 309/4810 [02:00<28:04, 2.67it/s]
523
  6%|▋ | 310/4810 [02:00<30:18, 2.47it/s]
524
  6%|▋ | 311/4810 [02:01<28:53, 2.59it/s]
525
  6%|▋ | 312/4810 [02:01<30:52, 2.43it/s]
526
  7%|▋ | 313/4810 [02:02<31:32, 2.38it/s]
527
  7%|▋ | 314/4810 [02:02<27:08, 2.76it/s]
528
  7%|▋ | 315/4810 [02:02<26:03, 2.87it/s]
529
  7%|▋ | 316/4810 [02:03<25:47, 2.90it/s]
530
  7%|▋ | 317/4810 [02:03<34:04, 2.20it/s]
531
  7%|▋ | 318/4810 [02:04<32:38, 2.29it/s]
532
  7%|▋ | 319/4810 [02:04<28:40, 2.61it/s]
533
  7%|▋ | 320/4810 [02:04<29:58, 2.50it/s]
534
  7%|▋ | 321/4810 [02:05<29:03, 2.58it/s]
535
  7%|▋ | 322/4810 [02:05<27:43, 2.70it/s]
536
  7%|▋ | 323/4810 [02:05<28:43, 2.60it/s]
537
  7%|▋ | 324/4810 [02:06<26:28, 2.82it/s]
538
  7%|▋ | 325/4810 [02:06<25:34, 2.92it/s]
539
  7%|▋ | 326/4810 [02:06<25:07, 2.97it/s]
540
  7%|▋ | 327/4810 [02:07<25:27, 2.94it/s]
541
  7%|▋ | 328/4810 [02:07<24:49, 3.01it/s]
542
  7%|▋ | 329/4810 [02:07<25:59, 2.87it/s]
543
  7%|▋ | 330/4810 [02:08<23:20, 3.20it/s]
544
  7%|▋ | 331/4810 [02:08<24:01, 3.11it/s]
545
  7%|▋ | 332/4810 [02:08<25:07, 2.97it/s]
546
  7%|▋ | 333/4810 [02:09<29:22, 2.54it/s]
547
  7%|▋ | 334/4810 [02:09<32:33, 2.29it/s]
548
  7%|▋ | 335/4810 [02:10<36:50, 2.02it/s]
549
  7%|▋ | 336/4810 [02:10<35:06, 2.12it/s]
550
  7%|▋ | 337/4810 [02:11<36:42, 2.03it/s]
551
  7%|▋ | 338/4810 [02:11<31:47, 2.34it/s]
552
  7%|▋ | 339/4810 [02:12<34:39, 2.15it/s]
553
  7%|▋ | 340/4810 [02:12<32:47, 2.27it/s]
554
  7%|▋ | 341/4810 [02:13<30:18, 2.46it/s]
555
  7%|▋ | 342/4810 [02:13<30:40, 2.43it/s]
556
  7%|▋ | 343/4810 [02:13<33:24, 2.23it/s]
557
  7%|▋ | 344/4810 [02:14<32:55, 2.26it/s]
558
  7%|▋ | 345/4810 [02:14<30:49, 2.41it/s]
559
  7%|▋ | 346/4810 [02:15<31:02, 2.40it/s]
560
  7%|▋ | 347/4810 [02:15<32:49, 2.27it/s]
561
  7%|▋ | 348/4810 [02:16<30:06, 2.47it/s]
562
  7%|▋ | 349/4810 [02:16<30:08, 2.47it/s]
563
  7%|▋ | 350/4810 [02:16<31:01, 2.40it/s]
564
  7%|▋ | 351/4810 [02:17<27:48, 2.67it/s]
565
  7%|▋ | 352/4810 [02:17<25:57, 2.86it/s]
566
  7%|▋ | 353/4810 [02:17<25:06, 2.96it/s]
567
  7%|▋ | 354/4810 [02:18<26:49, 2.77it/s]
568
  7%|▋ | 355/4810 [02:18<26:23, 2.81it/s]
569
  7%|▋ | 356/4810 [02:18<25:07, 2.96it/s]
570
  7%|▋ | 357/4810 [02:19<24:14, 3.06it/s]
571
  7%|▋ | 358/4810 [02:19<28:40, 2.59it/s]
572
  7%|▋ | 359/4810 [02:19<26:46, 2.77it/s]
573
  7%|▋ | 360/4810 [02:20<29:52, 2.48it/s]
574
  8%|▊ | 361/4810 [02:20<28:24, 2.61it/s]
575
  8%|▊ | 362/4810 [02:21<27:07, 2.73it/s]
576
  8%|▊ | 363/4810 [02:21<26:22, 2.81it/s]
577
  8%|▊ | 364/4810 [02:21<24:42, 3.00it/s]
578
  8%|▊ | 365/4810 [02:22<26:20, 2.81it/s]
579
  8%|▊ | 366/4810 [02:22<29:28, 2.51it/s]
580
  8%|▊ | 367/4810 [02:22<26:11, 2.83it/s]
581
  8%|▊ | 368/4810 [02:23<26:59, 2.74it/s]
582
  8%|▊ | 369/4810 [02:23<27:51, 2.66it/s]
583
  8%|▊ | 370/4810 [02:24<28:42, 2.58it/s]
584
  8%|▊ | 371/4810 [02:24<28:57, 2.55it/s]
585
  8%|▊ | 372/4810 [02:24<26:58, 2.74it/s]
586
  8%|▊ | 373/4810 [02:25<27:13, 2.72it/s]
587
  8%|▊ | 374/4810 [02:25<28:23, 2.60it/s]
588
  8%|▊ | 375/4810 [02:25<29:07, 2.54it/s]
589
  8%|▊ | 376/4810 [02:26<30:17, 2.44it/s]
590
  8%|▊ | 377/4810 [02:26<28:21, 2.60it/s]
591
  8%|▊ | 378/4810 [02:27<27:30, 2.69it/s]
592
  8%|▊ | 379/4810 [02:27<27:09, 2.72it/s]
593
  8%|▊ | 380/4810 [02:27<27:03, 2.73it/s]
594
  8%|▊ | 381/4810 [02:28<24:59, 2.95it/s]
595
  8%|▊ | 382/4810 [02:28<24:59, 2.95it/s]
596
  8%|▊ | 383/4810 [02:28<23:45, 3.11it/s]
597
  8%|▊ | 384/4810 [02:29<24:11, 3.05it/s]
598
  8%|▊ | 385/4810 [02:29<25:05, 2.94it/s]
599
  8%|▊ | 386/4810 [02:29<23:06, 3.19it/s]
600
  8%|▊ | 387/4810 [02:29<22:49, 3.23it/s]
601
  8%|▊ | 388/4810 [02:30<27:13, 2.71it/s]
602
  8%|▊ | 389/4810 [02:30<26:54, 2.74it/s]
603
  8%|▊ | 390/4810 [02:31<26:20, 2.80it/s]
604
  8%|▊ | 391/4810 [02:31<26:46, 2.75it/s]
605
  8%|▊ | 392/4810 [02:31<27:22, 2.69it/s]
606
  8%|▊ | 393/4810 [02:32<28:41, 2.57it/s]
607
  8%|▊ | 394/4810 [02:32<28:18, 2.60it/s]
608
  8%|▊ | 395/4810 [02:33<26:25, 2.78it/s]
609
  8%|▊ | 396/4810 [02:33<29:17, 2.51it/s]
610
  8%|▊ | 397/4810 [02:33<26:01, 2.83it/s]
611
  8%|▊ | 398/4810 [02:34<27:15, 2.70it/s]
612
  8%|▊ | 399/4810 [02:34<26:54, 2.73it/s]
613
  8%|▊ | 400/4810 [02:34<27:43, 2.65it/s]
614
  8%|▊ | 401/4810 [02:35<26:36, 2.76it/s]
615
  8%|▊ | 402/4810 [02:35<27:11, 2.70it/s]
616
  8%|▊ | 403/4810 [02:36<27:37, 2.66it/s]
617
  8%|▊ | 404/4810 [02:36<28:51, 2.55it/s]
618
  8%|▊ | 405/4810 [02:36<29:45, 2.47it/s]
619
  8%|▊ | 406/4810 [02:37<29:24, 2.50it/s]
620
  8%|▊ | 407/4810 [02:37<27:26, 2.67it/s]
621
  8%|▊ | 408/4810 [02:37<26:00, 2.82it/s]
622
  9%|▊ | 409/4810 [02:38<28:09, 2.60it/s]
623
  9%|▊ | 410/4810 [02:38<26:20, 2.78it/s]
624
  9%|▊ | 411/4810 [02:39<26:25, 2.77it/s]
625
  9%|▊ | 412/4810 [02:39<30:02, 2.44it/s]
626
  9%|▊ | 413/4810 [02:40<30:37, 2.39it/s]
627
  9%|▊ | 414/4810 [02:40<30:07, 2.43it/s]
628
  9%|▊ | 415/4810 [02:40<27:50, 2.63it/s]
629
  9%|▊ | 416/4810 [02:41<28:19, 2.58it/s]
630
  9%|▊ | 417/4810 [02:41<30:27, 2.40it/s]
631
  9%|▊ | 418/4810 [02:42<30:23, 2.41it/s]
632
  9%|▊ | 419/4810 [02:42<28:35, 2.56it/s]
633
  9%|▊ | 420/4810 [02:42<25:52, 2.83it/s]
634
  9%|▉ | 421/4810 [02:43<26:48, 2.73it/s]
635
  9%|▉ | 422/4810 [02:43<26:00, 2.81it/s]
636
  9%|▉ | 423/4810 [02:43<25:20, 2.88it/s]
637
  9%|▉ | 424/4810 [02:44<27:16, 2.68it/s]
638
  9%|▉ | 425/4810 [02:44<30:23, 2.41it/s]
639
  9%|▉ | 426/4810 [02:44<28:17, 2.58it/s]
640
  9%|▉ | 427/4810 [02:45<25:29, 2.87it/s]
641
  9%|▉ | 428/4810 [02:45<25:15, 2.89it/s]
642
  9%|▉ | 429/4810 [02:45<25:40, 2.84it/s]
643
  9%|▉ | 430/4810 [02:46<25:50, 2.83it/s]
644
  9%|▉ | 431/4810 [02:46<24:59, 2.92it/s]
645
  9%|▉ | 432/4810 [02:46<25:20, 2.88it/s]
646
  9%|▉ | 433/4810 [02:47<31:15, 2.33it/s]
647
  9%|▉ | 434/4810 [02:47<30:38, 2.38it/s]
648
  9%|▉ | 435/4810 [02:48<28:38, 2.55it/s]
649
  9%|▉ | 436/4810 [02:48<29:22, 2.48it/s]
650
  9%|▉ | 437/4810 [02:49<28:07, 2.59it/s]
651
  9%|▉ | 438/4810 [02:49<26:12, 2.78it/s]
652
  9%|▉ | 439/4810 [02:49<26:50, 2.71it/s]
653
  9%|▉ | 440/4810 [02:50<28:16, 2.58it/s]
654
  9%|▉ | 441/4810 [02:50<30:12, 2.41it/s]
655
  9%|▉ | 442/4810 [02:50<27:43, 2.63it/s]
656
  9%|▉ | 443/4810 [02:51<30:29, 2.39it/s]
657
  9%|▉ | 444/4810 [02:51<27:15, 2.67it/s]
658
  9%|▉ | 445/4810 [02:52<27:41, 2.63it/s]
659
  9%|▉ | 446/4810 [02:52<27:59, 2.60it/s]
660
  9%|▉ | 447/4810 [02:52<26:47, 2.71it/s]
661
  9%|▉ | 448/4810 [02:53<28:18, 2.57it/s]
662
  9%|▉ | 449/4810 [02:53<26:22, 2.76it/s]
663
  9%|▉ | 450/4810 [02:53<27:10, 2.67it/s]
664
  9%|▉ | 451/4810 [02:54<28:25, 2.56it/s]
665
  9%|▉ | 452/4810 [02:54<29:26, 2.47it/s]
666
  9%|▉ | 453/4810 [02:55<29:47, 2.44it/s]
667
  9%|▉ | 454/4810 [02:55<29:00, 2.50it/s]
668
  9%|▉ | 455/4810 [02:55<27:33, 2.63it/s]
669
  9%|▉ | 456/4810 [02:56<25:53, 2.80it/s]
670
  10%|▉ | 457/4810 [02:56<25:26, 2.85it/s]
671
  10%|▉ | 458/4810 [02:57<31:06, 2.33it/s]
672
  10%|▉ | 459/4810 [02:57<28:31, 2.54it/s]
673
  10%|▉ | 460/4810 [02:57<27:59, 2.59it/s]
674
  10%|▉ | 461/4810 [02:58<26:21, 2.75it/s]
675
  10%|▉ | 462/4810 [02:58<25:31, 2.84it/s]
676
  10%|▉ | 463/4810 [02:58<26:30, 2.73it/s]
677
  10%|▉ | 464/4810 [02:59<28:33, 2.54it/s]
678
  10%|▉ | 465/4810 [02:59<27:38, 2.62it/s]
679
  10%|▉ | 466/4810 [03:00<27:10, 2.66it/s]
680
  10%|▉ | 467/4810 [03:00<27:59, 2.59it/s]
681
  10%|▉ | 468/4810 [03:01<29:44, 2.43it/s]
682
  10%|▉ | 469/4810 [03:01<31:15, 2.31it/s]
683
  10%|▉ | 470/4810 [03:01<28:21, 2.55it/s]
684
  10%|▉ | 471/4810 [03:02<28:01, 2.58it/s]
685
  10%|▉ | 472/4810 [03:02<28:24, 2.54it/s]
686
  10%|▉ | 473/4810 [03:02<27:27, 2.63it/s]
687
  10%|▉ | 474/4810 [03:03<29:38, 2.44it/s]
688
  10%|▉ | 475/4810 [03:03<27:15, 2.65it/s]
689
  10%|▉ | 476/4810 [03:04<27:16, 2.65it/s]
690
  10%|▉ | 477/4810 [03:04<27:36, 2.62it/s]
691
  10%|▉ | 478/4810 [03:04<28:57, 2.49it/s]
692
  10%|▉ | 479/4810 [03:05<27:11, 2.65it/s]
693
  10%|▉ | 480/4810 [03:05<25:54, 2.79it/s]
694
  10%|█ | 481/4810 [03:05<25:13, 2.86it/s][INFO|trainer.py:811] 2024-09-09 13:35:02,425 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
695
+ [INFO|trainer.py:3819] 2024-09-09 13:35:02,428 >>
696
+ ***** Running Evaluation *****
697
+ [INFO|trainer.py:3821] 2024-09-09 13:35:02,428 >> Num examples = 6946
698
+ [INFO|trainer.py:3824] 2024-09-09 13:35:02,428 >> Batch size = 8
699
+
700
+
701
  0%| | 0/869 [00:00<?, ?it/s]
702
+
703
  1%| | 10/869 [00:00<00:09, 92.74it/s]
704
+
705
  2%|▏ | 20/869 [00:00<00:10, 79.64it/s]
706
+
707
  3%|▎ | 29/869 [00:00<00:10, 77.94it/s]
708
+
709
  4%|▍ | 37/869 [00:00<00:11, 75.24it/s]
710
+
711
  5%|▌ | 46/869 [00:00<00:10, 79.07it/s]
712
+
713
  6%|▋ | 55/869 [00:00<00:10, 81.38it/s]
714
+
715
  7%|▋ | 64/869 [00:00<00:10, 76.89it/s]
716
+
717
  8%|▊ | 72/869 [00:00<00:10, 76.42it/s]
718
+
719
  9%|▉ | 81/869 [00:01<00:09, 80.05it/s]
720
+
721
  10%|█ | 90/869 [00:01<00:09, 82.34it/s]
722
+
723
  12%|█▏ | 100/869 [00:01<00:09, 85.08it/s]
724
+
725
  13%|█▎ | 109/869 [00:01<00:09, 81.57it/s]
726
+
727
  14%|█▎ | 118/869 [00:01<00:09, 80.97it/s]
728
+
729
  15%|█▍ | 127/869 [00:01<00:09, 78.77it/s]
730
+
731
  16%|█▌ | 136/869 [00:01<00:09, 80.72it/s]
732
+
733
  17%|█▋ | 145/869 [00:01<00:09, 75.58it/s]
734
+
735
  18%|█▊ | 154/869 [00:01<00:09, 77.65it/s]
736
+
737
  19%|█▉ | 163/869 [00:02<00:09, 78.21it/s]
738
+
739
  20%|█▉ | 171/869 [00:02<00:09, 76.35it/s]
740
+
741
  21%|██ | 179/869 [00:02<00:09, 75.47it/s]
742
+
743
  22%|██▏ | 188/869 [00:02<00:08, 77.48it/s]
744
+
745
  23%|██▎ | 196/869 [00:02<00:08, 74.82it/s]
746
+
747
  24%|██▎ | 205/869 [00:02<00:08, 77.33it/s]
748
+
749
  25%|██▍ | 214/869 [00:02<00:08, 78.96it/s]
750
+
751
  26%|██▌ | 223/869 [00:02<00:08, 80.11it/s]
752
+
753
  27%|██▋ | 232/869 [00:02<00:08, 77.00it/s]
754
+
755
  28%|██▊ | 240/869 [00:03<00:08, 77.05it/s]
756
+
757
  29%|██▊ | 248/869 [00:03<00:08, 71.60it/s]
758
+
759
  30%|██▉ | 257/869 [00:03<00:08, 74.38it/s]
760
+
761
  30%|███ | 265/869 [00:03<00:08, 74.11it/s]
762
+
763
  31%|███▏ | 273/869 [00:03<00:07, 74.77it/s]
764
+
765
  32%|███▏ | 281/869 [00:03<00:07, 74.24it/s]
766
+
767
  33%|███▎ | 289/869 [00:03<00:07, 73.58it/s]
768
+
769
  34%|███▍ | 297/869 [00:03<00:07, 74.51it/s]
770
+
771
  35%|███▌ | 305/869 [00:03<00:07, 71.14it/s]
772
+
773
  36%|███▌ | 313/869 [00:04<00:07, 72.91it/s]
774
+
775
  37%|███▋ | 321/869 [00:04<00:07, 72.67it/s]
776
+
777
  38%|███▊ | 330/869 [00:04<00:07, 76.39it/s]
778
+
779
  39%|███▉ | 339/869 [00:04<00:06, 78.05it/s]
780
+
781
  40%|███▉ | 347/869 [00:04<00:07, 72.56it/s]
782
+
783
  41%|████ | 355/869 [00:04<00:07, 73.35it/s]
784
+
785
  42%|████▏ | 364/869 [00:04<00:06, 77.21it/s]
786
+
787
  43%|████▎ | 373/869 [00:04<00:06, 75.08it/s]
788
+
789
  44%|████▍ | 381/869 [00:04<00:06, 76.23it/s]
790
+
791
  45%|████▍ | 389/869 [00:05<00:06, 70.89it/s]
792
+
793
  46%|████▌ | 398/869 [00:05<00:06, 73.47it/s]
794
+
795
  47%|████▋ | 407/869 [00:05<00:06, 75.80it/s]
796
+
797
  48%|████▊ | 416/869 [00:05<00:05, 78.55it/s]
798
+
799
  49%|████▉ | 424/869 [00:05<00:05, 78.67it/s]
800
+
801
  50%|████▉ | 433/869 [00:05<00:05, 79.63it/s]
802
+
803
  51%|█████ | 441/869 [00:05<00:05, 76.93it/s]
804
+
805
  52%|█████▏ | 449/869 [00:05<00:05, 76.43it/s]
806
+
807
  53%|█████▎ | 457/869 [00:05<00:05, 77.15it/s]
808
+
809
  54%|█████▎ | 465/869 [00:06<00:05, 75.70it/s]
810
+
811
  55%|█████▍ | 475/869 [00:06<00:04, 80.70it/s]
812
+
813
  56%|█████▌ | 484/869 [00:06<00:04, 82.99it/s]
814
+
815
  57%|█████▋ | 493/869 [00:06<00:04, 76.39it/s]
816
+
817
  58%|█████▊ | 501/869 [00:06<00:04, 76.83it/s]
818
+
819
  59%|█████▊ | 509/869 [00:06<00:04, 74.69it/s]
820
+
821
  60%|█████▉ | 518/869 [00:06<00:04, 78.00it/s]
822
+
823
  61%|██████ | 526/869 [00:06<00:04, 72.48it/s]
824
+
825
  61%|██████▏ | 534/869 [00:06<00:04, 74.17it/s]
826
+
827
  62%|██████▏ | 542/869 [00:07<00:04, 71.10it/s]
828
+
829
  63%|██████▎ | 551/869 [00:07<00:04, 74.51it/s]
830
+
831
  64%|██████▍ | 559/869 [00:07<00:04, 75.26it/s]
832
+
833
  65%|██████▌ | 567/869 [00:07<00:04, 74.55it/s]
834
+
835
  66%|██████▌ | 575/869 [00:07<00:03, 75.60it/s]
836
+
837
  67%|██████▋ | 583/869 [00:07<00:03, 74.19it/s]
838
+
839
  68%|██████▊ | 591/869 [00:07<00:03, 74.92it/s]
840
+
841
  69%|██████▉ | 600/869 [00:07<00:03, 78.05it/s]
842
+
843
  70%|███████ | 609/869 [00:07<00:03, 79.24it/s]
844
+
845
  71%|███████ | 617/869 [00:08<00:03, 77.66it/s]
846
+
847
  72%|███████▏ | 625/869 [00:08<00:03, 76.47it/s]
848
+
849
  73%|███████▎ | 633/869 [00:08<00:03, 76.47it/s]
850
+
851
  74%|███████▍ | 641/869 [00:08<00:03, 75.89it/s]
852
+
853
  75%|███████▍ | 650/869 [00:08<00:02, 79.01it/s]
854
+
855
  76%|███████▌ | 658/869 [00:08<00:02, 77.60it/s]
856
+
857
  77%|███████▋ | 667/869 [00:08<00:02, 78.98it/s]
858
+
859
  78%|███████▊ | 677/869 [00:08<00:02, 82.51it/s]
860
+
861
  79%|███████▉ | 686/869 [00:08<00:02, 70.80it/s]
862
+
863
  80%|███████▉ | 695/869 [00:09<00:02, 73.91it/s]
864
+
865
  81%|████████ | 703/869 [00:09<00:02, 73.34it/s]
866
+
867
  82%|████████▏ | 712/869 [00:09<00:02, 76.08it/s]
868
+
869
  83%|████████▎ | 720/869 [00:09<00:01, 76.70it/s]
870
+
871
  84%|████████▍ | 729/869 [00:09<00:01, 78.48it/s]
872
+
873
  85%|████████▍ | 737/869 [00:09<00:01, 77.75it/s]
874
+
875
  86%|████████▌ | 746/869 [00:09<00:01, 79.14it/s]
876
+
877
  87%|████████▋ | 754/869 [00:09<00:01, 76.52it/s]
878
+
879
  88%|████████▊ | 763/869 [00:09<00:01, 79.30it/s]
880
+
881
  89%|████████▊ | 771/869 [00:10<00:01, 73.38it/s]
882
+
883
  90%|████████▉ | 779/869 [00:10<00:01, 64.34it/s]
884
+
885
  91%|█████████ | 788/869 [00:10<00:01, 68.97it/s]
886
+
887
  92%|█████████▏| 797/869 [00:10<00:00, 72.75it/s]
888
+
889
  93%|█████████▎| 805/869 [00:10<00:00, 73.42it/s]
890
+
891
  94%|█████████▎| 814/869 [00:10<00:00, 75.70it/s]
892
+
893
  95%|█████████▍| 822/869 [00:10<00:00, 75.50it/s]
894
+
895
  96%|█████████▌| 831/869 [00:10<00:00, 76.45it/s]
896
+
897
  97%|█████████▋| 840/869 [00:11<00:00, 78.28it/s]
898
+
899
  98%|█████████▊| 849/869 [00:11<00:00, 80.11it/s]
900
+
901
  99%|█████████▊| 858/869 [00:11<00:00, 79.41it/s]
902
+
903
 
904
+
905
 
906
  10%|█ | 481/4810 [03:21<25:13, 2.86it/s]
907
+
908
+
909
  [INFO|trainer.py:3503] 2024-09-09 13:35:17,601 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-481
910
+ [INFO|configuration_utils.py:472] 2024-09-09 13:35:17,602 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-481/config.json
911
+ [INFO|modeling_utils.py:2799] 2024-09-09 13:35:18,488 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-481/model.safetensors
912
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 13:35:18,489 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-481/tokenizer_config.json
913
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 13:35:18,489 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-481/special_tokens_map.json
914
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 13:35:24,962 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
915
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 13:35:24,963 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
916
+
917
  10%|█ | 482/4810 [03:28<8:32:10, 7.10s/it]
918
  10%|█ | 483/4810 [03:29<6:06:12, 5.08s/it]
919
  10%|█ | 484/4810 [03:29<4:21:49, 3.63s/it]
920
  10%|█ | 485/4810 [03:29<3:14:36, 2.70s/it]
921
  10%|█ | 486/4810 [03:30<2:25:03, 2.01s/it]
922
  10%|█ | 487/4810 [03:30<1:48:43, 1.51s/it]
923
  10%|█ | 488/4810 [03:30<1:22:33, 1.15s/it]
924
  10%|█ | 489/4810 [03:31<1:04:51, 1.11it/s]
925
  10%|█ | 490/4810 [03:31<54:32, 1.32it/s]
926
  10%|█ | 491/4810 [03:32<46:15, 1.56it/s]
927
  10%|█ | 492/4810 [03:32<40:57, 1.76it/s]
928
  10%|█ | 493/4810 [03:32<36:38, 1.96it/s]
929
  10%|█ | 494/4810 [03:33<34:17, 2.10it/s]
930
  10%|█ | 495/4810 [03:33<31:53, 2.25it/s]
931
  10%|█ | 496/4810 [03:33<28:30, 2.52it/s]
932
  10%|█ | 497/4810 [03:34<28:31, 2.52it/s]
933
  10%|█ | 498/4810 [03:34<27:10, 2.64it/s]
934
  10%|█ | 499/4810 [03:34<26:54, 2.67it/s]
935
  10%|█ | 500/4810 [03:35<28:10, 2.55it/s]
936
 
937
  10%|█ | 500/4810 [03:35<28:10, 2.55it/s]
938
  10%|█ | 501/4810 [03:35<27:27, 2.62it/s]
939
  10%|█ | 502/4810 [03:36<26:55, 2.67it/s]
940
  10%|█ | 503/4810 [03:36<26:11, 2.74it/s]
941
  10%|█ | 504/4810 [03:36<26:10, 2.74it/s]
942
  10%|█ | 505/4810 [03:37<25:42, 2.79it/s]
943
  11%|█ | 506/4810 [03:37<27:21, 2.62it/s]
944
  11%|█ | 507/4810 [03:37<24:50, 2.89it/s]
945
  11%|█ | 508/4810 [03:38<25:28, 2.81it/s]
946
  11%|█ | 509/4810 [03:38<24:06, 2.97it/s]
947
  11%|█ | 510/4810 [03:39<27:18, 2.62it/s]
948
  11%|█ | 511/4810 [03:39<26:28, 2.71it/s]
949
  11%|█ | 512/4810 [03:39<25:25, 2.82it/s]
950
  11%|█ | 513/4810 [03:40<24:40, 2.90it/s]
951
  11%|█ | 514/4810 [03:40<26:48, 2.67it/s]
952
  11%|█ | 515/4810 [03:40<24:31, 2.92it/s]
953
  11%|█ | 516/4810 [03:41<25:35, 2.80it/s]
954
  11%|█ | 517/4810 [03:41<25:27, 2.81it/s]
955
  11%|█ | 518/4810 [03:41<24:42, 2.89it/s]
956
  11%|█ | 519/4810 [03:42<23:42, 3.02it/s]
957
  11%|█ | 520/4810 [03:42<23:05, 3.10it/s]
958
  11%|█ | 521/4810 [03:42<25:27, 2.81it/s]
959
  11%|█ | 522/4810 [03:43<23:58, 2.98it/s]
960
  11%|█ | 523/4810 [03:43<24:47, 2.88it/s]
961
  11%|█ | 524/4810 [03:43<26:35, 2.69it/s]
962
  11%|█ | 525/4810 [03:44<24:52, 2.87it/s]
963
  11%|█ | 526/4810 [03:44<24:17, 2.94it/s]
964
  11%|█ | 527/4810 [03:44<23:41, 3.01it/s]
965
  11%|█ | 528/4810 [03:45<24:21, 2.93it/s]
966
  11%|█ | 529/4810 [03:45<25:23, 2.81it/s]
967
  11%|█ | 530/4810 [03:45<25:01, 2.85it/s]
968
  11%|█ | 531/4810 [03:46<24:55, 2.86it/s]
969
  11%|█ | 532/4810 [03:46<29:22, 2.43it/s]
970
  11%|█ | 533/4810 [03:47<29:50, 2.39it/s]
971
  11%|█ | 534/4810 [03:47<29:57, 2.38it/s]
972
  11%|█ | 535/4810 [03:48<30:36, 2.33it/s]
973
  11%|█ | 536/4810 [03:48<30:49, 2.31it/s]
974
  11%|█ | 537/4810 [03:49<31:31, 2.26it/s]
975
  11%|█ | 538/4810 [03:49<32:24, 2.20it/s]
976
  11%|█ | 539/4810 [03:49<30:31, 2.33it/s]
977
  11%|█ | 540/4810 [03:50<28:20, 2.51it/s]
978
  11%|█ | 541/4810 [03:50<27:45, 2.56it/s]
979
  11%|█▏ | 542/4810 [03:51<29:57, 2.38it/s]
980
  11%|█▏ | 543/4810 [03:51<30:35, 2.32it/s]
981
  11%|█▏ | 544/4810 [03:51<30:38, 2.32it/s]
982
  11%|█▏ | 545/4810 [03:52<27:32, 2.58it/s]
983
  11%|█▏ | 546/4810 [03:52<30:06, 2.36it/s]
984
  11%|█▏ | 547/4810 [03:53<28:32, 2.49it/s]
985
  11%|█▏ | 548/4810 [03:53<26:05, 2.72it/s]
986
  11%|█▏ | 549/4810 [03:53<25:07, 2.83it/s]
987
  11%|█▏ | 550/4810 [03:54<29:02, 2.45it/s]
988
  11%|█▏ | 551/4810 [03:54<28:36, 2.48it/s]
989
  11%|█▏ | 552/4810 [03:54<25:48, 2.75it/s]
990
  11%|█▏ | 553/4810 [03:55<26:58, 2.63it/s]
991
  12%|█▏ | 554/4810 [03:55<24:59, 2.84it/s]
992
  12%|█▏ | 555/4810 [03:55<25:05, 2.83it/s]
993
  12%|█▏ | 556/4810 [03:56<26:10, 2.71it/s]
994
  12%|█▏ | 557/4810 [03:56<25:34, 2.77it/s]
995
  12%|█▏ | 558/4810 [03:57<24:47, 2.86it/s]
996
  12%|█▏ | 559/4810 [03:57<23:59, 2.95it/s]
997
  12%|█▏ | 560/4810 [03:57<22:49, 3.10it/s]
998
  12%|█▏ | 561/4810 [03:58<27:17, 2.59it/s]
999
  12%|█▏ | 562/4810 [03:58<26:24, 2.68it/s]
1000
  12%|█▏ | 563/4810 [03:58<25:16, 2.80it/s]
1001
  12%|█▏ | 564/4810 [03:59<26:56, 2.63it/s]
1002
  12%|█▏ | 565/4810 [03:59<26:47, 2.64it/s]
1003
  12%|█▏ | 566/4810 [03:59<24:55, 2.84it/s]
1004
  12%|█▏ | 567/4810 [04:00<27:34, 2.56it/s]
1005
  12%|█▏ | 568/4810 [04:00<26:34, 2.66it/s]
1006
  12%|█▏ | 569/4810 [04:01<25:54, 2.73it/s]
1007
  12%|█▏ | 570/4810 [04:01<29:03, 2.43it/s]
1008
  12%|█▏ | 571/4810 [04:02<28:38, 2.47it/s]
1009
  12%|█▏ | 572/4810 [04:02<26:48, 2.63it/s]
1010
  12%|█▏ | 573/4810 [04:02<27:52, 2.53it/s]
1011
  12%|█▏ | 574/4810 [04:03<26:19, 2.68it/s]
1012
  12%|█▏ | 575/4810 [04:03<26:38, 2.65it/s]
1013
  12%|█▏ | 576/4810 [04:04<29:45, 2.37it/s]
1014
  12%|█▏ | 577/4810 [04:04<29:36, 2.38it/s]
1015
  12%|█▏ | 578/4810 [04:04<27:07, 2.60it/s]
1016
  12%|█▏ | 579/4810 [04:05<29:07, 2.42it/s]
1017
  12%|█▏ | 580/4810 [04:05<28:08, 2.51it/s]
1018
  12%|█▏ | 581/4810 [04:05<27:40, 2.55it/s]
1019
  12%|█▏ | 582/4810 [04:06<27:42, 2.54it/s]
1020
  12%|█▏ | 583/4810 [04:06<26:15, 2.68it/s]
1021
  12%|█▏ | 584/4810 [04:07<25:43, 2.74it/s]
1022
  12%|█▏ | 585/4810 [04:07<25:24, 2.77it/s]
1023
  12%|█▏ | 586/4810 [04:07<26:19, 2.67it/s]
1024
  12%|█▏ | 587/4810 [04:08<25:39, 2.74it/s]
1025
  12%|█▏ | 588/4810 [04:08<25:44, 2.73it/s]
1026
  12%|█▏ | 589/4810 [04:08<25:51, 2.72it/s]
1027
  12%|█▏ | 590/4810 [04:09<24:15, 2.90it/s]
1028
  12%|█▏ | 591/4810 [04:09<26:16, 2.68it/s]
1029
  12%|█▏ | 592/4810 [04:09<25:49, 2.72it/s]
1030
  12%|█▏ | 593/4810 [04:10<27:03, 2.60it/s]
1031
  12%|█▏ | 594/4810 [04:10<27:41, 2.54it/s]
1032
  12%|█▏ | 595/4810 [04:11<28:42, 2.45it/s]
1033
  12%|█▏ | 596/4810 [04:11<28:15, 2.49it/s]
1034
  12%|█▏ | 597/4810 [04:12<28:12, 2.49it/s]
1035
  12%|█▏ | 598/4810 [04:12<26:42, 2.63it/s]
1036
  12%|█▏ | 599/4810 [04:12<25:00, 2.81it/s]
1037
  12%|█▏ | 600/4810 [04:13<25:04, 2.80it/s]
1038
  12%|█▏ | 601/4810 [04:13<26:47, 2.62it/s]
1039
  13%|█▎ | 602/4810 [04:13<26:45, 2.62it/s]
1040
  13%|█▎ | 603/4810 [04:14<26:32, 2.64it/s]
1041
  13%|█▎ | 604/4810 [04:14<27:59, 2.50it/s]
1042
  13%|█▎ | 605/4810 [04:15<27:25, 2.55it/s]
1043
  13%|█▎ | 606/4810 [04:15<25:56, 2.70it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 1.394810359803495e+16,
4
+ "train_loss": 0.0028968164414402532,
5
+ "train_runtime": 2196.5741,
6
+ "train_samples": 32447,
7
+ "train_samples_per_second": 147.716,
8
+ "train_steps_per_second": 2.308
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9335180055401663,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-4056",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 5070,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9861932938856016,
13
+ "grad_norm": 0.16175590455532074,
14
+ "learning_rate": 4.5069033530571994e-05,
15
+ "loss": 0.0183,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "eval_accuracy": 0.9985418469009014,
21
+ "eval_f1": 0.9170464904284412,
22
+ "eval_loss": 0.005470008589327335,
23
+ "eval_precision": 0.8974130240856378,
24
+ "eval_recall": 0.9375582479030755,
25
+ "eval_runtime": 15.2218,
26
+ "eval_samples_per_second": 456.319,
27
+ "eval_steps_per_second": 57.089,
28
+ "step": 507
29
+ },
30
+ {
31
+ "epoch": 1.972386587771203,
32
+ "grad_norm": 0.13494741916656494,
33
+ "learning_rate": 4.0138067061143986e-05,
34
+ "loss": 0.0043,
35
+ "step": 1000
36
+ },
37
+ {
38
+ "epoch": 2.0,
39
+ "eval_accuracy": 0.9985976613735942,
40
+ "eval_f1": 0.9208103130755064,
41
+ "eval_loss": 0.005941031500697136,
42
+ "eval_precision": 0.9099181073703366,
43
+ "eval_recall": 0.9319664492078286,
44
+ "eval_runtime": 15.129,
45
+ "eval_samples_per_second": 459.117,
46
+ "eval_steps_per_second": 57.439,
47
+ "step": 1014
48
+ },
49
+ {
50
+ "epoch": 2.9585798816568047,
51
+ "grad_norm": 0.14869354665279388,
52
+ "learning_rate": 3.520710059171598e-05,
53
+ "loss": 0.0022,
54
+ "step": 1500
55
+ },
56
+ {
57
+ "epoch": 3.0,
58
+ "eval_accuracy": 0.998513939664555,
59
+ "eval_f1": 0.9155963302752294,
60
+ "eval_loss": 0.005716267507523298,
61
+ "eval_precision": 0.9015356820234869,
62
+ "eval_recall": 0.9301025163094129,
63
+ "eval_runtime": 15.1542,
64
+ "eval_samples_per_second": 458.356,
65
+ "eval_steps_per_second": 57.344,
66
+ "step": 1521
67
+ },
68
+ {
69
+ "epoch": 3.9447731755424065,
70
+ "grad_norm": 0.15148845314979553,
71
+ "learning_rate": 3.027613412228797e-05,
72
+ "loss": 0.0018,
73
+ "step": 2000
74
+ },
75
+ {
76
+ "epoch": 4.0,
77
+ "eval_accuracy": 0.9985767309463344,
78
+ "eval_f1": 0.9227166276346604,
79
+ "eval_loss": 0.0072021945379674435,
80
+ "eval_precision": 0.9274952919020716,
81
+ "eval_recall": 0.9179869524697111,
82
+ "eval_runtime": 15.3453,
83
+ "eval_samples_per_second": 452.646,
84
+ "eval_steps_per_second": 56.63,
85
+ "step": 2028
86
+ },
87
+ {
88
+ "epoch": 4.930966469428008,
89
+ "grad_norm": 0.17791983485221863,
90
+ "learning_rate": 2.5345167652859964e-05,
91
+ "loss": 0.0009,
92
+ "step": 2500
93
+ },
94
+ {
95
+ "epoch": 5.0,
96
+ "eval_accuracy": 0.9986604526553735,
97
+ "eval_f1": 0.9215236346948141,
98
+ "eval_loss": 0.0063728527165949345,
99
+ "eval_precision": 0.9077757685352622,
100
+ "eval_recall": 0.9356943150046598,
101
+ "eval_runtime": 15.1945,
102
+ "eval_samples_per_second": 457.14,
103
+ "eval_steps_per_second": 57.192,
104
+ "step": 2535
105
+ },
106
+ {
107
+ "epoch": 5.9171597633136095,
108
+ "grad_norm": 0.027111981064081192,
109
+ "learning_rate": 2.0414201183431952e-05,
110
+ "loss": 0.0007,
111
+ "step": 3000
112
+ },
113
+ {
114
+ "epoch": 6.0,
115
+ "eval_accuracy": 0.9987302207462395,
116
+ "eval_f1": 0.9274826789838336,
117
+ "eval_loss": 0.006401057820767164,
118
+ "eval_precision": 0.9194139194139194,
119
+ "eval_recall": 0.9356943150046598,
120
+ "eval_runtime": 15.0971,
121
+ "eval_samples_per_second": 460.088,
122
+ "eval_steps_per_second": 57.561,
123
+ "step": 3042
124
+ },
125
+ {
126
+ "epoch": 6.903353057199211,
127
+ "grad_norm": 0.0044996230863034725,
128
+ "learning_rate": 1.5483234714003947e-05,
129
+ "loss": 0.0004,
130
+ "step": 3500
131
+ },
132
+ {
133
+ "epoch": 7.0,
134
+ "eval_accuracy": 0.9987651047916725,
135
+ "eval_f1": 0.9332096474953618,
136
+ "eval_loss": 0.00720419455319643,
137
+ "eval_precision": 0.9289012003693444,
138
+ "eval_recall": 0.9375582479030755,
139
+ "eval_runtime": 15.1686,
140
+ "eval_samples_per_second": 457.919,
141
+ "eval_steps_per_second": 57.289,
142
+ "step": 3549
143
+ },
144
+ {
145
+ "epoch": 7.889546351084813,
146
+ "grad_norm": 0.0005134351667948067,
147
+ "learning_rate": 1.0552268244575937e-05,
148
+ "loss": 0.0004,
149
+ "step": 4000
150
+ },
151
+ {
152
+ "epoch": 8.0,
153
+ "eval_accuracy": 0.998772081600759,
154
+ "eval_f1": 0.9335180055401663,
155
+ "eval_loss": 0.007628325838595629,
156
+ "eval_precision": 0.9249771271729186,
157
+ "eval_recall": 0.9422180801491147,
158
+ "eval_runtime": 15.1289,
159
+ "eval_samples_per_second": 459.122,
160
+ "eval_steps_per_second": 57.44,
161
+ "step": 4056
162
+ },
163
+ {
164
+ "epoch": 8.875739644970414,
165
+ "grad_norm": 0.0011633747490122914,
166
+ "learning_rate": 5.621301775147929e-06,
167
+ "loss": 0.0003,
168
+ "step": 4500
169
+ },
170
+ {
171
+ "epoch": 9.0,
172
+ "eval_accuracy": 0.9987162671280663,
173
+ "eval_f1": 0.9262672811059908,
174
+ "eval_loss": 0.00773056922480464,
175
+ "eval_precision": 0.9161349134001823,
176
+ "eval_recall": 0.9366262814538676,
177
+ "eval_runtime": 15.3347,
178
+ "eval_samples_per_second": 452.96,
179
+ "eval_steps_per_second": 56.669,
180
+ "step": 4563
181
+ },
182
+ {
183
+ "epoch": 9.861932938856016,
184
+ "grad_norm": 0.001042825635522604,
185
+ "learning_rate": 6.903353057199211e-07,
186
+ "loss": 0.0002,
187
+ "step": 5000
188
+ },
189
+ {
190
+ "epoch": 10.0,
191
+ "eval_accuracy": 0.9987511511734993,
192
+ "eval_f1": 0.92797783933518,
193
+ "eval_loss": 0.00769586768001318,
194
+ "eval_precision": 0.9194876486733761,
195
+ "eval_recall": 0.9366262814538676,
196
+ "eval_runtime": 15.2047,
197
+ "eval_samples_per_second": 456.832,
198
+ "eval_steps_per_second": 57.153,
199
+ "step": 5070
200
+ },
201
+ {
202
+ "epoch": 10.0,
203
+ "step": 5070,
204
+ "total_flos": 1.394810359803495e+16,
205
+ "train_loss": 0.0028968164414402532,
206
+ "train_runtime": 2196.5741,
207
+ "train_samples_per_second": 147.716,
208
+ "train_steps_per_second": 2.308
209
+ }
210
+ ],
211
+ "logging_steps": 500,
212
+ "max_steps": 5070,
213
+ "num_input_tokens_seen": 0,
214
+ "num_train_epochs": 10,
215
+ "save_steps": 500,
216
+ "stateful_callbacks": {
217
+ "TrainerControl": {
218
+ "args": {
219
+ "should_epoch_stop": false,
220
+ "should_evaluate": false,
221
+ "should_log": false,
222
+ "should_save": true,
223
+ "should_training_stop": true
224
+ },
225
+ "attributes": {}
226
+ }
227
+ },
228
+ "total_flos": 1.394810359803495e+16,
229
+ "train_batch_size": 32,
230
+ "trial_name": null,
231
+ "trial_params": null
232
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.txt ADDED
The diff for this file is too large to render. See raw diff