Training in progress, epoch 0
Browse files- README.md +103 -0
- all_results.json +26 -0
- config.json +37 -0
- eval_results.json +12 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- predict_results.json +10 -0
- predictions.txt +0 -0
- special_tokens_map.json +37 -0
- tb/events.out.tfevents.1725881335.0a1c9bec2a53.3232.0 +3 -0
- tb/events.out.tfevents.1725882696.0a1c9bec2a53.3232.1 +3 -0
- tb/events.out.tfevents.1725882852.0a1c9bec2a53.9893.0 +3 -0
- tb/events.out.tfevents.1725883955.0a1c9bec2a53.9893.1 +3 -0
- tb/events.out.tfevents.1725884095.0a1c9bec2a53.15221.0 +3 -0
- tb/events.out.tfevents.1725885059.0a1c9bec2a53.15221.1 +3 -0
- tb/events.out.tfevents.1725885168.0a1c9bec2a53.19825.0 +3 -0
- tb/events.out.tfevents.1725886061.0a1c9bec2a53.19825.1 +3 -0
- tb/events.out.tfevents.1725886210.0a1c9bec2a53.24273.0 +3 -0
- tb/events.out.tfevents.1725888457.0a1c9bec2a53.24273.1 +3 -0
- tb/events.out.tfevents.1725888716.0a1c9bec2a53.34821.0 +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- train.log +329 -0
- train_results.json +9 -0
- trainer_state.json +232 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: michiyasunaga/BioLinkBERT-base
|
5 |
+
tags:
|
6 |
+
- token-classification
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- Rodrigo1771/drugtemist-en-fasttext-75-ner
|
10 |
+
metrics:
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
- accuracy
|
15 |
+
model-index:
|
16 |
+
- name: output
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
name: Token Classification
|
20 |
+
type: token-classification
|
21 |
+
dataset:
|
22 |
+
name: Rodrigo1771/drugtemist-en-fasttext-75-ner
|
23 |
+
type: Rodrigo1771/drugtemist-en-fasttext-75-ner
|
24 |
+
config: DrugTEMIST English NER
|
25 |
+
split: validation
|
26 |
+
args: DrugTEMIST English NER
|
27 |
+
metrics:
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.9249771271729186
|
31 |
+
- name: Recall
|
32 |
+
type: recall
|
33 |
+
value: 0.9422180801491147
|
34 |
+
- name: F1
|
35 |
+
type: f1
|
36 |
+
value: 0.9335180055401663
|
37 |
+
- name: Accuracy
|
38 |
+
type: accuracy
|
39 |
+
value: 0.998772081600759
|
40 |
+
---
|
41 |
+
|
42 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
43 |
+
should probably proofread and complete it, then remove this comment. -->
|
44 |
+
|
45 |
+
# output
|
46 |
+
|
47 |
+
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-75-ner dataset.
|
48 |
+
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 0.0076
|
50 |
+
- Precision: 0.9250
|
51 |
+
- Recall: 0.9422
|
52 |
+
- F1: 0.9335
|
53 |
+
- Accuracy: 0.9988
|
54 |
+
|
55 |
+
## Model description
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Intended uses & limitations
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training and evaluation data
|
64 |
+
|
65 |
+
More information needed
|
66 |
+
|
67 |
+
## Training procedure
|
68 |
+
|
69 |
+
### Training hyperparameters
|
70 |
+
|
71 |
+
The following hyperparameters were used during training:
|
72 |
+
- learning_rate: 5e-05
|
73 |
+
- train_batch_size: 32
|
74 |
+
- eval_batch_size: 8
|
75 |
+
- seed: 42
|
76 |
+
- gradient_accumulation_steps: 2
|
77 |
+
- total_train_batch_size: 64
|
78 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
79 |
+
- lr_scheduler_type: linear
|
80 |
+
- num_epochs: 10.0
|
81 |
+
|
82 |
+
### Training results
|
83 |
+
|
84 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
85 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
86 |
+
| 0.0183 | 1.0 | 507 | 0.0055 | 0.8974 | 0.9376 | 0.9170 | 0.9985 |
|
87 |
+
| 0.0043 | 2.0 | 1014 | 0.0059 | 0.9099 | 0.9320 | 0.9208 | 0.9986 |
|
88 |
+
| 0.0022 | 3.0 | 1521 | 0.0057 | 0.9015 | 0.9301 | 0.9156 | 0.9985 |
|
89 |
+
| 0.0018 | 4.0 | 2028 | 0.0072 | 0.9275 | 0.9180 | 0.9227 | 0.9986 |
|
90 |
+
| 0.0009 | 5.0 | 2535 | 0.0064 | 0.9078 | 0.9357 | 0.9215 | 0.9987 |
|
91 |
+
| 0.0007 | 6.0 | 3042 | 0.0064 | 0.9194 | 0.9357 | 0.9275 | 0.9987 |
|
92 |
+
| 0.0004 | 7.0 | 3549 | 0.0072 | 0.9289 | 0.9376 | 0.9332 | 0.9988 |
|
93 |
+
| 0.0004 | 8.0 | 4056 | 0.0076 | 0.9250 | 0.9422 | 0.9335 | 0.9988 |
|
94 |
+
| 0.0003 | 9.0 | 4563 | 0.0077 | 0.9161 | 0.9366 | 0.9263 | 0.9987 |
|
95 |
+
| 0.0002 | 10.0 | 5070 | 0.0077 | 0.9195 | 0.9366 | 0.9280 | 0.9988 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.44.2
|
101 |
+
- Pytorch 2.4.0+cu121
|
102 |
+
- Datasets 2.21.0
|
103 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.998772081600759,
|
4 |
+
"eval_f1": 0.9335180055401663,
|
5 |
+
"eval_loss": 0.007628325838595629,
|
6 |
+
"eval_precision": 0.9249771271729186,
|
7 |
+
"eval_recall": 0.9422180801491147,
|
8 |
+
"eval_runtime": 15.1819,
|
9 |
+
"eval_samples": 6946,
|
10 |
+
"eval_samples_per_second": 457.519,
|
11 |
+
"eval_steps_per_second": 57.239,
|
12 |
+
"predict_accuracy": 0.9986685364931299,
|
13 |
+
"predict_f1": 0.9202592279515356,
|
14 |
+
"predict_loss": 0.007816320285201073,
|
15 |
+
"predict_precision": 0.8938149972632731,
|
16 |
+
"predict_recall": 0.9483159117305459,
|
17 |
+
"predict_runtime": 28.7456,
|
18 |
+
"predict_samples_per_second": 511.904,
|
19 |
+
"predict_steps_per_second": 64.01,
|
20 |
+
"total_flos": 1.394810359803495e+16,
|
21 |
+
"train_loss": 0.0028968164414402532,
|
22 |
+
"train_runtime": 2196.5741,
|
23 |
+
"train_samples": 32447,
|
24 |
+
"train_samples_per_second": 147.716,
|
25 |
+
"train_steps_per_second": 2.308
|
26 |
+
}
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "michiyasunaga/BioLinkBERT-base",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"finetuning_task": "ner",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "O",
|
15 |
+
"1": "B-FARMACO",
|
16 |
+
"2": "I-FARMACO"
|
17 |
+
},
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 3072,
|
20 |
+
"label2id": {
|
21 |
+
"B-FARMACO": 1,
|
22 |
+
"I-FARMACO": 2,
|
23 |
+
"O": 0
|
24 |
+
},
|
25 |
+
"layer_norm_eps": 1e-12,
|
26 |
+
"max_position_embeddings": 512,
|
27 |
+
"model_type": "bert",
|
28 |
+
"num_attention_heads": 12,
|
29 |
+
"num_hidden_layers": 12,
|
30 |
+
"pad_token_id": 0,
|
31 |
+
"position_embedding_type": "absolute",
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.44.2",
|
34 |
+
"type_vocab_size": 2,
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 28895
|
37 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.998772081600759,
|
4 |
+
"eval_f1": 0.9335180055401663,
|
5 |
+
"eval_loss": 0.007628325838595629,
|
6 |
+
"eval_precision": 0.9249771271729186,
|
7 |
+
"eval_recall": 0.9422180801491147,
|
8 |
+
"eval_runtime": 15.1819,
|
9 |
+
"eval_samples": 6946,
|
10 |
+
"eval_samples_per_second": 457.519,
|
11 |
+
"eval_steps_per_second": 57.239
|
12 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e76da0b3eca51dbc683e1c05aa3d82ccd599434f3de73f0894ccb2d572948d2
|
3 |
+
size 430601004
|
predict_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"predict_accuracy": 0.9986685364931299,
|
3 |
+
"predict_f1": 0.9202592279515356,
|
4 |
+
"predict_loss": 0.007816320285201073,
|
5 |
+
"predict_precision": 0.8938149972632731,
|
6 |
+
"predict_recall": 0.9483159117305459,
|
7 |
+
"predict_runtime": 28.7456,
|
8 |
+
"predict_samples_per_second": 511.904,
|
9 |
+
"predict_steps_per_second": 64.01
|
10 |
+
}
|
predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tb/events.out.tfevents.1725881335.0a1c9bec2a53.3232.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:593e737686a00ae0f64a94f2ef02389ad7dff30c0ba6a6f2b1c65ac31e873867
|
3 |
+
size 11302
|
tb/events.out.tfevents.1725882696.0a1c9bec2a53.3232.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05ecdc6d00855fb66deb25a7b5be160aa0ebb2ebe07a43beb7d88fb0430fb141
|
3 |
+
size 560
|
tb/events.out.tfevents.1725882852.0a1c9bec2a53.9893.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:543df15001da008ba822f9c1ebf4f77259f803cbf1c5758f2da70bdbf003d86f
|
3 |
+
size 11091
|
tb/events.out.tfevents.1725883955.0a1c9bec2a53.9893.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b842d84c89f0d88706e31e98b113fae6b45879220115930147db648f848a8c24
|
3 |
+
size 560
|
tb/events.out.tfevents.1725884095.0a1c9bec2a53.15221.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a5eb73def06ef281d6c5abe9cbb6a47c633f2d7191b334dbe5cbead1c284e80
|
3 |
+
size 10880
|
tb/events.out.tfevents.1725885059.0a1c9bec2a53.15221.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c793a2eec8072a81c25e2f78d3ef7bcf74abbe37e32354df7dcda008aa71eda
|
3 |
+
size 560
|
tb/events.out.tfevents.1725885168.0a1c9bec2a53.19825.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0f9a2adaf22b0a47090405af62255c59f8c395faf6fe62ec62fa970d9063713
|
3 |
+
size 10880
|
tb/events.out.tfevents.1725886061.0a1c9bec2a53.19825.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa09451db71ecc3a737f5726105cdc310a150c4cd36e427e1f2dad13956046fd
|
3 |
+
size 560
|
tb/events.out.tfevents.1725886210.0a1c9bec2a53.24273.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a173893ab6ea4bae83ba8f7d43d877ca16a06c53d30cb7f414ae20737d881888
|
3 |
+
size 12305
|
tb/events.out.tfevents.1725888457.0a1c9bec2a53.24273.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bb5583c37fdbd9ea659142a09fba0fae95a78d6f0eaac64a0292bc00e64215d
|
3 |
+
size 560
|
tb/events.out.tfevents.1725888716.0a1c9bec2a53.34821.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18c09ef59a2ece87dc4e7e284d5092dee166d60ee786a848401fde24245a5830
|
3 |
+
size 5593
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 1000000000000000019884624838656,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
train.log
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0%| | 0/4810 [00:00<?, ?it/s]
|
1 |
0%| | 1/4810 [00:01<1:32:48, 1.16s/it]
|
2 |
0%| | 2/4810 [00:01<56:19, 1.42it/s]
|
3 |
0%| | 3/4810 [00:01<41:07, 1.95it/s]
|
4 |
0%| | 4/4810 [00:02<34:37, 2.31it/s]
|
5 |
0%| | 5/4810 [00:02<33:33, 2.39it/s]
|
6 |
0%| | 6/4810 [00:02<31:08, 2.57it/s]
|
7 |
0%| | 7/4810 [00:03<33:14, 2.41it/s]
|
8 |
0%| | 8/4810 [00:03<30:49, 2.60it/s]
|
9 |
0%| | 9/4810 [00:03<28:57, 2.76it/s]
|
10 |
0%| | 10/4810 [00:04<30:37, 2.61it/s]
|
11 |
0%| | 11/4810 [00:04<31:18, 2.55it/s]
|
12 |
0%| | 12/4810 [00:05<30:02, 2.66it/s]
|
13 |
0%| | 13/4810 [00:05<27:58, 2.86it/s]
|
14 |
0%| | 14/4810 [00:05<27:06, 2.95it/s]
|
15 |
0%| | 15/4810 [00:06<27:05, 2.95it/s]
|
16 |
0%| | 16/4810 [00:06<28:33, 2.80it/s]
|
17 |
0%| | 17/4810 [00:06<29:38, 2.70it/s]
|
18 |
0%| | 18/4810 [00:07<31:10, 2.56it/s]
|
19 |
0%| | 19/4810 [00:07<29:50, 2.68it/s]
|
20 |
0%| | 20/4810 [00:08<31:02, 2.57it/s]
|
21 |
0%| | 21/4810 [00:08<31:46, 2.51it/s]
|
22 |
0%| | 22/4810 [00:08<30:27, 2.62it/s]
|
23 |
0%| | 23/4810 [00:09<28:10, 2.83it/s]
|
24 |
0%| | 24/4810 [00:09<28:35, 2.79it/s]
|
25 |
1%| | 25/4810 [00:09<26:09, 3.05it/s]
|
26 |
1%| | 26/4810 [00:10<31:26, 2.54it/s]
|
27 |
1%| | 27/4810 [00:10<30:18, 2.63it/s]
|
28 |
1%| | 28/4810 [00:11<30:46, 2.59it/s]
|
29 |
1%| | 29/4810 [00:11<35:46, 2.23it/s]
|
30 |
1%| | 30/4810 [00:12<39:19, 2.03it/s]
|
31 |
1%| | 31/4810 [00:12<39:08, 2.03it/s]
|
32 |
1%| | 32/4810 [00:13<36:16, 2.20it/s]
|
33 |
1%| | 33/4810 [00:13<32:23, 2.46it/s]
|
34 |
1%| | 34/4810 [00:13<36:43, 2.17it/s]
|
35 |
1%| | 35/4810 [00:14<35:27, 2.24it/s]
|
36 |
1%| | 36/4810 [00:14<35:59, 2.21it/s]
|
37 |
1%| | 37/4810 [00:15<34:42, 2.29it/s]
|
38 |
1%| | 38/4810 [00:15<33:54, 2.35it/s]
|
39 |
1%| | 39/4810 [00:16<33:10, 2.40it/s]
|
40 |
1%| | 40/4810 [00:16<33:50, 2.35it/s]
|
41 |
1%| | 41/4810 [00:16<35:01, 2.27it/s]
|
42 |
1%| | 42/4810 [00:17<31:37, 2.51it/s]
|
43 |
1%| | 43/4810 [00:17<31:12, 2.55it/s]
|
44 |
1%| | 44/4810 [00:18<47:33, 1.67it/s]
|
45 |
1%| | 45/4810 [00:19<41:13, 1.93it/s]
|
46 |
1%| | 46/4810 [00:19<37:33, 2.11it/s]
|
47 |
1%| | 47/4810 [00:19<35:35, 2.23it/s]
|
48 |
1%| | 48/4810 [00:20<32:29, 2.44it/s]
|
49 |
1%| | 49/4810 [00:20<31:44, 2.50it/s]
|
50 |
1%| | 50/4810 [00:20<31:03, 2.55it/s]
|
51 |
1%| | 51/4810 [00:21<30:39, 2.59it/s]
|
52 |
1%| | 52/4810 [00:21<30:21, 2.61it/s]
|
53 |
1%| | 53/4810 [00:22<33:12, 2.39it/s]
|
54 |
1%| | 54/4810 [00:22<31:57, 2.48it/s]
|
55 |
1%| | 55/4810 [00:22<30:41, 2.58it/s]
|
56 |
1%| | 56/4810 [00:23<30:16, 2.62it/s]
|
57 |
1%| | 57/4810 [00:23<32:50, 2.41it/s]
|
58 |
1%| | 58/4810 [00:24<31:11, 2.54it/s]
|
59 |
1%| | 59/4810 [00:24<29:25, 2.69it/s]
|
60 |
1%| | 60/4810 [00:24<33:13, 2.38it/s]
|
61 |
1%|▏ | 61/4810 [00:25<30:25, 2.60it/s]
|
62 |
1%|▏ | 62/4810 [00:25<29:47, 2.66it/s]
|
63 |
1%|▏ | 63/4810 [00:25<28:16, 2.80it/s]
|
64 |
1%|▏ | 64/4810 [00:26<26:57, 2.93it/s]
|
65 |
1%|▏ | 65/4810 [00:26<26:05, 3.03it/s]
|
66 |
1%|▏ | 66/4810 [00:27<32:46, 2.41it/s]
|
67 |
1%|▏ | 67/4810 [00:27<30:06, 2.62it/s]
|
68 |
1%|▏ | 68/4810 [00:27<31:24, 2.52it/s]
|
69 |
1%|▏ | 69/4810 [00:28<29:04, 2.72it/s]
|
70 |
1%|▏ | 70/4810 [00:28<26:35, 2.97it/s]
|
71 |
1%|▏ | 71/4810 [00:28<27:27, 2.88it/s]
|
72 |
1%|▏ | 72/4810 [00:29<25:01, 3.16it/s]
|
73 |
2%|▏ | 73/4810 [00:29<31:43, 2.49it/s]
|
74 |
2%|▏ | 74/4810 [00:30<32:11, 2.45it/s]
|
75 |
2%|▏ | 75/4810 [00:30<29:21, 2.69it/s]
|
76 |
2%|▏ | 76/4810 [00:30<28:58, 2.72it/s]
|
77 |
2%|▏ | 77/4810 [00:31<29:02, 2.72it/s]
|
78 |
2%|▏ | 78/4810 [00:31<29:10, 2.70it/s]
|
79 |
2%|▏ | 79/4810 [00:31<30:05, 2.62it/s]
|
80 |
2%|▏ | 80/4810 [00:32<28:26, 2.77it/s]
|
81 |
2%|▏ | 81/4810 [00:32<29:36, 2.66it/s]
|
82 |
2%|▏ | 82/4810 [00:32<30:01, 2.62it/s]
|
83 |
2%|▏ | 83/4810 [00:33<30:18, 2.60it/s]
|
84 |
2%|▏ | 84/4810 [00:33<29:04, 2.71it/s]
|
85 |
2%|▏ | 85/4810 [00:34<29:17, 2.69it/s]
|
86 |
2%|▏ | 86/4810 [00:34<29:44, 2.65it/s]
|
87 |
2%|▏ | 87/4810 [00:34<27:27, 2.87it/s]
|
88 |
2%|▏ | 88/4810 [00:35<30:27, 2.58it/s]
|
89 |
2%|▏ | 89/4810 [00:35<31:02, 2.53it/s]
|
90 |
2%|▏ | 90/4810 [00:35<29:15, 2.69it/s]
|
91 |
2%|▏ | 91/4810 [00:36<32:55, 2.39it/s]
|
92 |
2%|▏ | 92/4810 [00:37<37:00, 2.12it/s]
|
93 |
2%|▏ | 93/4810 [00:37<34:32, 2.28it/s]
|
94 |
2%|▏ | 94/4810 [00:37<31:16, 2.51it/s]
|
95 |
2%|▏ | 95/4810 [00:38<32:10, 2.44it/s]
|
96 |
2%|▏ | 96/4810 [00:38<32:09, 2.44it/s]
|
97 |
2%|▏ | 97/4810 [00:38<28:47, 2.73it/s]
|
98 |
2%|▏ | 98/4810 [00:39<29:43, 2.64it/s]
|
99 |
2%|▏ | 99/4810 [00:39<30:19, 2.59it/s]
|
100 |
2%|▏ | 100/4810 [00:40<33:02, 2.38it/s]
|
101 |
2%|▏ | 101/4810 [00:40<35:16, 2.22it/s]
|
102 |
2%|▏ | 102/4810 [00:41<34:17, 2.29it/s]
|
103 |
2%|▏ | 103/4810 [00:41<30:51, 2.54it/s]
|
104 |
2%|▏ | 104/4810 [00:41<28:32, 2.75it/s]
|
105 |
2%|▏ | 105/4810 [00:42<28:40, 2.73it/s]
|
106 |
2%|▏ | 106/4810 [00:42<31:12, 2.51it/s]
|
107 |
2%|▏ | 107/4810 [00:42<28:50, 2.72it/s]
|
108 |
2%|▏ | 108/4810 [00:43<32:31, 2.41it/s]
|
109 |
2%|▏ | 109/4810 [00:43<34:52, 2.25it/s]
|
110 |
2%|▏ | 110/4810 [00:44<32:53, 2.38it/s]
|
111 |
2%|▏ | 111/4810 [00:44<31:06, 2.52it/s]
|
112 |
2%|▏ | 112/4810 [00:45<32:29, 2.41it/s]
|
113 |
2%|▏ | 113/4810 [00:45<30:01, 2.61it/s]
|
114 |
2%|▏ | 114/4810 [00:45<30:44, 2.55it/s]
|
115 |
2%|▏ | 115/4810 [00:46<29:27, 2.66it/s]
|
116 |
2%|▏ | 116/4810 [00:46<27:57, 2.80it/s]
|
117 |
2%|▏ | 117/4810 [00:46<29:01, 2.70it/s]
|
118 |
2%|▏ | 118/4810 [00:47<34:35, 2.26it/s]
|
119 |
2%|▏ | 119/4810 [00:47<32:39, 2.39it/s]
|
120 |
2%|▏ | 120/4810 [00:48<29:25, 2.66it/s]
|
121 |
3%|▎ | 121/4810 [00:48<29:56, 2.61it/s]
|
122 |
3%|▎ | 122/4810 [00:48<29:09, 2.68it/s]
|
123 |
3%|▎ | 123/4810 [00:49<31:43, 2.46it/s]
|
124 |
3%|▎ | 124/4810 [00:49<30:37, 2.55it/s]
|
125 |
3%|▎ | 125/4810 [00:49<29:26, 2.65it/s]
|
126 |
3%|▎ | 126/4810 [00:50<31:10, 2.50it/s]
|
127 |
3%|▎ | 127/4810 [00:50<31:23, 2.49it/s]
|
128 |
3%|▎ | 128/4810 [00:51<30:59, 2.52it/s]
|
129 |
3%|▎ | 129/4810 [00:51<30:56, 2.52it/s]
|
130 |
3%|▎ | 130/4810 [00:52<32:25, 2.41it/s]
|
131 |
3%|▎ | 131/4810 [00:52<29:43, 2.62it/s]
|
132 |
3%|▎ | 132/4810 [00:52<31:11, 2.50it/s]
|
133 |
3%|▎ | 133/4810 [00:53<29:58, 2.60it/s]
|
134 |
3%|▎ | 134/4810 [00:53<29:33, 2.64it/s]
|
135 |
3%|▎ | 135/4810 [00:53<30:00, 2.60it/s]
|
136 |
3%|▎ | 136/4810 [00:54<29:30, 2.64it/s]
|
137 |
3%|▎ | 137/4810 [00:54<29:25, 2.65it/s]
|
138 |
3%|▎ | 138/4810 [00:55<28:18, 2.75it/s]
|
139 |
3%|▎ | 139/4810 [00:55<30:51, 2.52it/s]
|
140 |
3%|▎ | 140/4810 [00:55<29:03, 2.68it/s]
|
141 |
3%|▎ | 141/4810 [00:56<29:12, 2.66it/s]
|
142 |
3%|▎ | 142/4810 [00:56<30:59, 2.51it/s]
|
143 |
3%|▎ | 143/4810 [00:56<29:18, 2.65it/s]
|
144 |
3%|▎ | 144/4810 [00:57<27:56, 2.78it/s]
|
145 |
3%|▎ | 145/4810 [00:57<27:22, 2.84it/s]
|
146 |
3%|▎ | 146/4810 [00:57<26:01, 2.99it/s]
|
147 |
3%|▎ | 147/4810 [00:58<33:33, 2.32it/s]
|
148 |
3%|▎ | 148/4810 [00:59<35:19, 2.20it/s]
|
149 |
3%|▎ | 149/4810 [00:59<33:17, 2.33it/s]
|
150 |
3%|▎ | 150/4810 [00:59<31:10, 2.49it/s]
|
151 |
3%|▎ | 151/4810 [01:00<33:40, 2.31it/s]
|
152 |
3%|▎ | 152/4810 [01:00<32:13, 2.41it/s]
|
153 |
3%|▎ | 153/4810 [01:01<33:32, 2.31it/s]
|
154 |
3%|▎ | 154/4810 [01:01<31:45, 2.44it/s]
|
155 |
3%|▎ | 155/4810 [01:01<29:46, 2.61it/s]
|
156 |
3%|▎ | 156/4810 [01:02<29:28, 2.63it/s]
|
157 |
3%|▎ | 157/4810 [01:02<28:23, 2.73it/s]
|
158 |
3%|▎ | 158/4810 [01:02<28:09, 2.75it/s]
|
159 |
3%|▎ | 159/4810 [01:03<29:46, 2.60it/s]
|
160 |
3%|▎ | 160/4810 [01:03<29:49, 2.60it/s]
|
161 |
3%|▎ | 161/4810 [01:04<29:23, 2.64it/s]
|
162 |
3%|▎ | 162/4810 [01:04<28:17, 2.74it/s]
|
163 |
3%|▎ | 163/4810 [01:04<28:46, 2.69it/s]
|
164 |
3%|▎ | 164/4810 [01:05<29:09, 2.66it/s]
|
165 |
3%|▎ | 165/4810 [01:05<28:25, 2.72it/s]
|
166 |
3%|▎ | 166/4810 [01:05<26:37, 2.91it/s]
|
167 |
3%|▎ | 167/4810 [01:06<27:57, 2.77it/s]
|
168 |
3%|▎ | 168/4810 [01:06<30:28, 2.54it/s]
|
169 |
4%|▎ | 169/4810 [01:07<29:57, 2.58it/s]
|
170 |
4%|▎ | 170/4810 [01:07<28:48, 2.68it/s]
|
171 |
4%|▎ | 171/4810 [01:07<30:14, 2.56it/s]
|
172 |
4%|▎ | 172/4810 [01:08<31:38, 2.44it/s]
|
173 |
4%|▎ | 173/4810 [01:08<31:44, 2.43it/s]
|
174 |
4%|▎ | 174/4810 [01:08<29:13, 2.64it/s]
|
175 |
4%|▎ | 175/4810 [01:09<27:58, 2.76it/s]
|
176 |
4%|▎ | 176/4810 [01:09<25:59, 2.97it/s]
|
177 |
4%|▎ | 177/4810 [01:09<25:35, 3.02it/s]
|
178 |
4%|▎ | 178/4810 [01:10<29:00, 2.66it/s]
|
179 |
4%|▎ | 179/4810 [01:10<28:27, 2.71it/s]
|
180 |
4%|▎ | 180/4810 [01:11<26:04, 2.96it/s]
|
181 |
4%|▍ | 181/4810 [01:11<28:36, 2.70it/s]
|
182 |
4%|▍ | 182/4810 [01:11<27:50, 2.77it/s]
|
183 |
4%|▍ | 183/4810 [01:12<27:55, 2.76it/s]
|
184 |
4%|▍ | 184/4810 [01:12<27:58, 2.76it/s]
|
185 |
4%|▍ | 185/4810 [01:12<27:18, 2.82it/s]
|
186 |
4%|▍ | 186/4810 [01:13<26:43, 2.88it/s]
|
187 |
4%|▍ | 187/4810 [01:13<27:59, 2.75it/s]
|
188 |
4%|▍ | 188/4810 [01:14<29:04, 2.65it/s]
|
189 |
4%|▍ | 189/4810 [01:14<27:32, 2.80it/s]
|
190 |
4%|▍ | 190/4810 [01:14<27:44, 2.78it/s]
|
191 |
4%|▍ | 191/4810 [01:14<25:15, 3.05it/s]
|
192 |
4%|▍ | 192/4810 [01:15<27:30, 2.80it/s]
|
193 |
4%|▍ | 193/4810 [01:15<30:30, 2.52it/s]
|
194 |
4%|▍ | 194/4810 [01:16<30:40, 2.51it/s]
|
195 |
4%|▍ | 195/4810 [01:16<31:36, 2.43it/s]
|
196 |
4%|▍ | 196/4810 [01:16<29:09, 2.64it/s]
|
197 |
4%|▍ | 197/4810 [01:17<29:05, 2.64it/s]
|
198 |
4%|▍ | 198/4810 [01:17<27:31, 2.79it/s]
|
199 |
4%|▍ | 199/4810 [01:18<26:31, 2.90it/s]
|
200 |
4%|▍ | 200/4810 [01:18<31:05, 2.47it/s]
|
201 |
4%|▍ | 201/4810 [01:19<34:12, 2.25it/s]
|
202 |
4%|▍ | 202/4810 [01:19<32:25, 2.37it/s]
|
203 |
4%|▍ | 203/4810 [01:19<31:53, 2.41it/s]
|
204 |
4%|▍ | 204/4810 [01:20<31:25, 2.44it/s]
|
205 |
4%|▍ | 205/4810 [01:20<34:51, 2.20it/s]
|
206 |
4%|▍ | 206/4810 [01:21<30:38, 2.50it/s]
|
207 |
4%|▍ | 207/4810 [01:21<29:59, 2.56it/s]
|
208 |
4%|▍ | 208/4810 [01:21<28:38, 2.68it/s]
|
209 |
4%|▍ | 209/4810 [01:22<27:18, 2.81it/s]
|
210 |
4%|▍ | 210/4810 [01:22<26:16, 2.92it/s]
|
211 |
4%|▍ | 211/4810 [01:22<26:03, 2.94it/s]
|
212 |
4%|▍ | 212/4810 [01:23<27:44, 2.76it/s]
|
213 |
4%|▍ | 213/4810 [01:23<25:53, 2.96it/s]
|
214 |
4%|▍ | 214/4810 [01:23<26:41, 2.87it/s]
|
215 |
4%|▍ | 215/4810 [01:24<27:15, 2.81it/s]
|
216 |
4%|▍ | 216/4810 [01:24<30:02, 2.55it/s]
|
217 |
5%|▍ | 217/4810 [01:25<29:03, 2.63it/s]
|
218 |
5%|▍ | 218/4810 [01:25<32:35, 2.35it/s]
|
219 |
5%|▍ | 219/4810 [01:25<31:01, 2.47it/s]
|
220 |
5%|▍ | 220/4810 [01:26<29:11, 2.62it/s]
|
221 |
5%|▍ | 221/4810 [01:26<28:58, 2.64it/s]
|
222 |
5%|▍ | 222/4810 [01:26<27:59, 2.73it/s]
|
223 |
5%|▍ | 223/4810 [01:27<34:27, 2.22it/s]
|
224 |
5%|▍ | 224/4810 [01:27<32:30, 2.35it/s]
|
225 |
5%|▍ | 225/4810 [01:28<31:09, 2.45it/s]
|
226 |
5%|▍ | 226/4810 [01:28<30:23, 2.51it/s]
|
227 |
5%|▍ | 227/4810 [01:29<30:04, 2.54it/s]
|
228 |
5%|▍ | 228/4810 [01:29<28:17, 2.70it/s]
|
229 |
5%|▍ | 229/4810 [01:29<26:56, 2.83it/s]
|
230 |
5%|▍ | 230/4810 [01:30<27:26, 2.78it/s]
|
231 |
5%|▍ | 231/4810 [01:30<30:19, 2.52it/s]
|
232 |
5%|▍ | 232/4810 [01:31<31:23, 2.43it/s]
|
233 |
5%|▍ | 233/4810 [01:31<29:54, 2.55it/s]
|
234 |
5%|▍ | 234/4810 [01:31<31:10, 2.45it/s]
|
235 |
5%|▍ | 235/4810 [01:32<31:06, 2.45it/s]
|
236 |
5%|▍ | 236/4810 [01:32<28:42, 2.66it/s]
|
237 |
5%|▍ | 237/4810 [01:32<29:53, 2.55it/s]
|
238 |
5%|▍ | 238/4810 [01:33<28:53, 2.64it/s]
|
239 |
5%|▍ | 239/4810 [01:33<30:33, 2.49it/s]
|
240 |
5%|▍ | 240/4810 [01:34<29:34, 2.58it/s]
|
241 |
5%|▌ | 241/4810 [01:34<29:38, 2.57it/s]
|
242 |
5%|▌ | 242/4810 [01:34<27:36, 2.76it/s]
|
243 |
5%|▌ | 243/4810 [01:35<29:01, 2.62it/s]
|
244 |
5%|▌ | 244/4810 [01:35<33:01, 2.30it/s]
|
245 |
5%|▌ | 245/4810 [01:36<32:23, 2.35it/s]
|
246 |
5%|▌ | 246/4810 [01:36<30:56, 2.46it/s]
|
247 |
5%|▌ | 247/4810 [01:36<29:16, 2.60it/s]
|
248 |
5%|▌ | 248/4810 [01:37<29:22, 2.59it/s]
|
249 |
5%|▌ | 249/4810 [01:37<27:23, 2.77it/s]
|
250 |
5%|▌ | 250/4810 [01:37<28:25, 2.67it/s]
|
251 |
5%|▌ | 251/4810 [01:38<28:59, 2.62it/s]
|
252 |
5%|▌ | 252/4810 [01:38<29:24, 2.58it/s]
|
253 |
5%|▌ | 253/4810 [01:39<28:13, 2.69it/s]
|
254 |
5%|▌ | 254/4810 [01:39<27:08, 2.80it/s]
|
255 |
5%|▌ | 255/4810 [01:39<27:09, 2.80it/s]
|
256 |
5%|▌ | 256/4810 [01:40<30:31, 2.49it/s]
|
257 |
5%|▌ | 257/4810 [01:40<30:16, 2.51it/s]
|
258 |
5%|▌ | 258/4810 [01:41<29:10, 2.60it/s]
|
259 |
5%|▌ | 259/4810 [01:41<29:35, 2.56it/s]
|
260 |
5%|▌ | 260/4810 [01:41<27:11, 2.79it/s]
|
261 |
5%|▌ | 261/4810 [01:42<27:33, 2.75it/s]
|
262 |
5%|▌ | 262/4810 [01:42<27:51, 2.72it/s]
|
263 |
5%|▌ | 263/4810 [01:42<27:09, 2.79it/s]
|
264 |
5%|▌ | 264/4810 [01:43<27:02, 2.80it/s]
|
265 |
6%|▌ | 265/4810 [01:43<26:53, 2.82it/s]
|
266 |
6%|▌ | 266/4810 [01:43<27:05, 2.79it/s]
|
267 |
6%|▌ | 267/4810 [01:44<26:04, 2.90it/s]
|
268 |
6%|▌ | 268/4810 [01:44<27:08, 2.79it/s]
|
269 |
6%|▌ | 269/4810 [01:44<26:02, 2.91it/s]
|
270 |
6%|▌ | 270/4810 [01:45<25:45, 2.94it/s]
|
271 |
6%|▌ | 271/4810 [01:45<29:55, 2.53it/s]
|
272 |
6%|▌ | 272/4810 [01:46<30:42, 2.46it/s]
|
273 |
6%|▌ | 273/4810 [01:46<29:45, 2.54it/s]
|
274 |
6%|▌ | 274/4810 [01:46<29:06, 2.60it/s]
|
275 |
6%|▌ | 275/4810 [01:47<29:01, 2.60it/s]
|
276 |
6%|▌ | 276/4810 [01:47<28:30, 2.65it/s]
|
277 |
6%|▌ | 277/4810 [01:47<26:49, 2.82it/s]
|
278 |
6%|▌ | 278/4810 [01:48<27:18, 2.77it/s]
|
279 |
6%|▌ | 279/4810 [01:48<30:42, 2.46it/s]
|
280 |
6%|▌ | 280/4810 [01:49<29:33, 2.55it/s]
|
281 |
6%|▌ | 281/4810 [01:49<28:53, 2.61it/s]
|
282 |
6%|▌ | 282/4810 [01:49<28:21, 2.66it/s]
|
283 |
6%|▌ | 283/4810 [01:50<28:06, 2.68it/s]
|
284 |
6%|▌ | 284/4810 [01:50<28:46, 2.62it/s]
|
285 |
6%|▌ | 285/4810 [01:51<29:19, 2.57it/s]
|
286 |
6%|▌ | 286/4810 [01:51<29:11, 2.58it/s]
|
287 |
6%|▌ | 287/4810 [01:51<27:13, 2.77it/s]
|
288 |
6%|▌ | 288/4810 [01:52<28:40, 2.63it/s]
|
289 |
6%|▌ | 289/4810 [01:52<27:42, 2.72it/s]
|
290 |
6%|▌ | 290/4810 [01:53<30:54, 2.44it/s]
|
291 |
6%|▌ | 291/4810 [01:53<31:21, 2.40it/s]
|
292 |
6%|▌ | 292/4810 [01:53<30:03, 2.51it/s]
|
293 |
6%|▌ | 293/4810 [01:54<31:26, 2.39it/s]
|
294 |
6%|▌ | 294/4810 [01:54<30:49, 2.44it/s]
|
295 |
6%|▌ | 295/4810 [01:55<29:47, 2.53it/s]
|
296 |
6%|▌ | 296/4810 [01:55<28:36, 2.63it/s]
|
297 |
6%|▌ | 297/4810 [01:55<30:04, 2.50it/s]
|
298 |
6%|▌ | 298/4810 [01:56<29:28, 2.55it/s]
|
299 |
6%|▌ | 299/4810 [01:56<32:33, 2.31it/s]
|
300 |
6%|▌ | 300/4810 [01:57<31:04, 2.42it/s]
|
301 |
6%|▋ | 301/4810 [01:57<28:36, 2.63it/s]
|
302 |
6%|▋ | 302/4810 [01:57<28:01, 2.68it/s]
|
303 |
6%|▋ | 303/4810 [01:58<27:12, 2.76it/s]
|
304 |
6%|▋ | 304/4810 [01:58<28:14, 2.66it/s]
|
305 |
6%|▋ | 305/4810 [01:58<28:00, 2.68it/s]
|
306 |
6%|▋ | 306/4810 [01:59<27:39, 2.71it/s]
|
307 |
6%|▋ | 307/4810 [01:59<29:00, 2.59it/s]
|
308 |
6%|▋ | 308/4810 [02:00<28:37, 2.62it/s]
|
309 |
6%|▋ | 309/4810 [02:00<28:04, 2.67it/s]
|
310 |
6%|▋ | 310/4810 [02:00<30:18, 2.47it/s]
|
311 |
6%|▋ | 311/4810 [02:01<28:53, 2.59it/s]
|
312 |
6%|▋ | 312/4810 [02:01<30:52, 2.43it/s]
|
313 |
7%|▋ | 313/4810 [02:02<31:32, 2.38it/s]
|
314 |
7%|▋ | 314/4810 [02:02<27:08, 2.76it/s]
|
315 |
7%|▋ | 315/4810 [02:02<26:03, 2.87it/s]
|
316 |
7%|▋ | 316/4810 [02:03<25:47, 2.90it/s]
|
317 |
7%|▋ | 317/4810 [02:03<34:04, 2.20it/s]
|
318 |
7%|▋ | 318/4810 [02:04<32:38, 2.29it/s]
|
319 |
7%|▋ | 319/4810 [02:04<28:40, 2.61it/s]
|
320 |
7%|▋ | 320/4810 [02:04<29:58, 2.50it/s]
|
321 |
7%|▋ | 321/4810 [02:05<29:03, 2.58it/s]
|
322 |
7%|▋ | 322/4810 [02:05<27:43, 2.70it/s]
|
323 |
7%|▋ | 323/4810 [02:05<28:43, 2.60it/s]
|
324 |
7%|▋ | 324/4810 [02:06<26:28, 2.82it/s]
|
325 |
7%|▋ | 325/4810 [02:06<25:34, 2.92it/s]
|
326 |
7%|▋ | 326/4810 [02:06<25:07, 2.97it/s]
|
327 |
7%|▋ | 327/4810 [02:07<25:27, 2.94it/s]
|
328 |
7%|▋ | 328/4810 [02:07<24:49, 3.01it/s]
|
329 |
7%|▋ | 329/4810 [02:07<25:59, 2.87it/s]
|
330 |
7%|▋ | 330/4810 [02:08<23:20, 3.20it/s]
|
331 |
7%|▋ | 331/4810 [02:08<24:01, 3.11it/s]
|
332 |
7%|▋ | 332/4810 [02:08<25:07, 2.97it/s]
|
333 |
7%|▋ | 333/4810 [02:09<29:22, 2.54it/s]
|
334 |
7%|▋ | 334/4810 [02:09<32:33, 2.29it/s]
|
335 |
7%|▋ | 335/4810 [02:10<36:50, 2.02it/s]
|
336 |
7%|▋ | 336/4810 [02:10<35:06, 2.12it/s]
|
337 |
7%|▋ | 337/4810 [02:11<36:42, 2.03it/s]
|
338 |
7%|▋ | 338/4810 [02:11<31:47, 2.34it/s]
|
339 |
7%|▋ | 339/4810 [02:12<34:39, 2.15it/s]
|
340 |
7%|▋ | 340/4810 [02:12<32:47, 2.27it/s]
|
341 |
7%|▋ | 341/4810 [02:13<30:18, 2.46it/s]
|
342 |
7%|▋ | 342/4810 [02:13<30:40, 2.43it/s]
|
343 |
7%|▋ | 343/4810 [02:13<33:24, 2.23it/s]
|
344 |
7%|▋ | 344/4810 [02:14<32:55, 2.26it/s]
|
345 |
7%|▋ | 345/4810 [02:14<30:49, 2.41it/s]
|
346 |
7%|▋ | 346/4810 [02:15<31:02, 2.40it/s]
|
347 |
7%|▋ | 347/4810 [02:15<32:49, 2.27it/s]
|
348 |
7%|▋ | 348/4810 [02:16<30:06, 2.47it/s]
|
349 |
7%|▋ | 349/4810 [02:16<30:08, 2.47it/s]
|
350 |
7%|▋ | 350/4810 [02:16<31:01, 2.40it/s]
|
351 |
7%|▋ | 351/4810 [02:17<27:48, 2.67it/s]
|
352 |
7%|▋ | 352/4810 [02:17<25:57, 2.86it/s]
|
353 |
7%|▋ | 353/4810 [02:17<25:06, 2.96it/s]
|
354 |
7%|▋ | 354/4810 [02:18<26:49, 2.77it/s]
|
355 |
7%|▋ | 355/4810 [02:18<26:23, 2.81it/s]
|
356 |
7%|▋ | 356/4810 [02:18<25:07, 2.96it/s]
|
357 |
7%|▋ | 357/4810 [02:19<24:14, 3.06it/s]
|
358 |
7%|▋ | 358/4810 [02:19<28:40, 2.59it/s]
|
359 |
7%|▋ | 359/4810 [02:19<26:46, 2.77it/s]
|
360 |
7%|▋ | 360/4810 [02:20<29:52, 2.48it/s]
|
361 |
8%|▊ | 361/4810 [02:20<28:24, 2.61it/s]
|
362 |
8%|▊ | 362/4810 [02:21<27:07, 2.73it/s]
|
363 |
8%|▊ | 363/4810 [02:21<26:22, 2.81it/s]
|
364 |
8%|▊ | 364/4810 [02:21<24:42, 3.00it/s]
|
365 |
8%|▊ | 365/4810 [02:22<26:20, 2.81it/s]
|
366 |
8%|▊ | 366/4810 [02:22<29:28, 2.51it/s]
|
367 |
8%|▊ | 367/4810 [02:22<26:11, 2.83it/s]
|
368 |
8%|▊ | 368/4810 [02:23<26:59, 2.74it/s]
|
369 |
8%|▊ | 369/4810 [02:23<27:51, 2.66it/s]
|
370 |
8%|▊ | 370/4810 [02:24<28:42, 2.58it/s]
|
371 |
8%|▊ | 371/4810 [02:24<28:57, 2.55it/s]
|
372 |
8%|▊ | 372/4810 [02:24<26:58, 2.74it/s]
|
373 |
8%|▊ | 373/4810 [02:25<27:13, 2.72it/s]
|
374 |
8%|▊ | 374/4810 [02:25<28:23, 2.60it/s]
|
375 |
8%|▊ | 375/4810 [02:25<29:07, 2.54it/s]
|
376 |
8%|▊ | 376/4810 [02:26<30:17, 2.44it/s]
|
377 |
8%|▊ | 377/4810 [02:26<28:21, 2.60it/s]
|
378 |
8%|▊ | 378/4810 [02:27<27:30, 2.69it/s]
|
379 |
8%|▊ | 379/4810 [02:27<27:09, 2.72it/s]
|
380 |
8%|▊ | 380/4810 [02:27<27:03, 2.73it/s]
|
381 |
8%|▊ | 381/4810 [02:28<24:59, 2.95it/s]
|
382 |
8%|▊ | 382/4810 [02:28<24:59, 2.95it/s]
|
383 |
8%|▊ | 383/4810 [02:28<23:45, 3.11it/s]
|
384 |
8%|▊ | 384/4810 [02:29<24:11, 3.05it/s]
|
385 |
8%|▊ | 385/4810 [02:29<25:05, 2.94it/s]
|
386 |
8%|▊ | 386/4810 [02:29<23:06, 3.19it/s]
|
387 |
8%|▊ | 387/4810 [02:29<22:49, 3.23it/s]
|
388 |
8%|▊ | 388/4810 [02:30<27:13, 2.71it/s]
|
389 |
8%|▊ | 389/4810 [02:30<26:54, 2.74it/s]
|
390 |
8%|▊ | 390/4810 [02:31<26:20, 2.80it/s]
|
391 |
8%|▊ | 391/4810 [02:31<26:46, 2.75it/s]
|
392 |
8%|▊ | 392/4810 [02:31<27:22, 2.69it/s]
|
393 |
8%|▊ | 393/4810 [02:32<28:41, 2.57it/s]
|
394 |
8%|▊ | 394/4810 [02:32<28:18, 2.60it/s]
|
395 |
8%|▊ | 395/4810 [02:33<26:25, 2.78it/s]
|
396 |
8%|▊ | 396/4810 [02:33<29:17, 2.51it/s]
|
397 |
8%|▊ | 397/4810 [02:33<26:01, 2.83it/s]
|
398 |
8%|▊ | 398/4810 [02:34<27:15, 2.70it/s]
|
399 |
8%|▊ | 399/4810 [02:34<26:54, 2.73it/s]
|
400 |
8%|▊ | 400/4810 [02:34<27:43, 2.65it/s]
|
401 |
8%|▊ | 401/4810 [02:35<26:36, 2.76it/s]
|
402 |
8%|▊ | 402/4810 [02:35<27:11, 2.70it/s]
|
403 |
8%|▊ | 403/4810 [02:36<27:37, 2.66it/s]
|
404 |
8%|▊ | 404/4810 [02:36<28:51, 2.55it/s]
|
405 |
8%|▊ | 405/4810 [02:36<29:45, 2.47it/s]
|
406 |
8%|▊ | 406/4810 [02:37<29:24, 2.50it/s]
|
407 |
8%|▊ | 407/4810 [02:37<27:26, 2.67it/s]
|
408 |
8%|▊ | 408/4810 [02:37<26:00, 2.82it/s]
|
409 |
9%|▊ | 409/4810 [02:38<28:09, 2.60it/s]
|
410 |
9%|▊ | 410/4810 [02:38<26:20, 2.78it/s]
|
411 |
9%|▊ | 411/4810 [02:39<26:25, 2.77it/s]
|
412 |
9%|▊ | 412/4810 [02:39<30:02, 2.44it/s]
|
413 |
9%|▊ | 413/4810 [02:40<30:37, 2.39it/s]
|
414 |
9%|▊ | 414/4810 [02:40<30:07, 2.43it/s]
|
415 |
9%|▊ | 415/4810 [02:40<27:50, 2.63it/s]
|
416 |
9%|▊ | 416/4810 [02:41<28:19, 2.58it/s]
|
417 |
9%|▊ | 417/4810 [02:41<30:27, 2.40it/s]
|
418 |
9%|▊ | 418/4810 [02:42<30:23, 2.41it/s]
|
419 |
9%|▊ | 419/4810 [02:42<28:35, 2.56it/s]
|
420 |
9%|▊ | 420/4810 [02:42<25:52, 2.83it/s]
|
421 |
9%|▉ | 421/4810 [02:43<26:48, 2.73it/s]
|
422 |
9%|▉ | 422/4810 [02:43<26:00, 2.81it/s]
|
423 |
9%|▉ | 423/4810 [02:43<25:20, 2.88it/s]
|
424 |
9%|▉ | 424/4810 [02:44<27:16, 2.68it/s]
|
425 |
9%|▉ | 425/4810 [02:44<30:23, 2.41it/s]
|
426 |
9%|▉ | 426/4810 [02:44<28:17, 2.58it/s]
|
427 |
9%|▉ | 427/4810 [02:45<25:29, 2.87it/s]
|
428 |
9%|▉ | 428/4810 [02:45<25:15, 2.89it/s]
|
429 |
9%|▉ | 429/4810 [02:45<25:40, 2.84it/s]
|
430 |
9%|▉ | 430/4810 [02:46<25:50, 2.83it/s]
|
431 |
9%|▉ | 431/4810 [02:46<24:59, 2.92it/s]
|
432 |
9%|▉ | 432/4810 [02:46<25:20, 2.88it/s]
|
433 |
9%|▉ | 433/4810 [02:47<31:15, 2.33it/s]
|
434 |
9%|▉ | 434/4810 [02:47<30:38, 2.38it/s]
|
435 |
9%|▉ | 435/4810 [02:48<28:38, 2.55it/s]
|
436 |
9%|▉ | 436/4810 [02:48<29:22, 2.48it/s]
|
437 |
9%|▉ | 437/4810 [02:49<28:07, 2.59it/s]
|
438 |
9%|▉ | 438/4810 [02:49<26:12, 2.78it/s]
|
439 |
9%|▉ | 439/4810 [02:49<26:50, 2.71it/s]
|
440 |
9%|▉ | 440/4810 [02:50<28:16, 2.58it/s]
|
441 |
9%|▉ | 441/4810 [02:50<30:12, 2.41it/s]
|
442 |
9%|▉ | 442/4810 [02:50<27:43, 2.63it/s]
|
443 |
9%|▉ | 443/4810 [02:51<30:29, 2.39it/s]
|
444 |
9%|▉ | 444/4810 [02:51<27:15, 2.67it/s]
|
445 |
9%|▉ | 445/4810 [02:52<27:41, 2.63it/s]
|
446 |
9%|▉ | 446/4810 [02:52<27:59, 2.60it/s]
|
447 |
9%|▉ | 447/4810 [02:52<26:47, 2.71it/s]
|
448 |
9%|▉ | 448/4810 [02:53<28:18, 2.57it/s]
|
449 |
9%|▉ | 449/4810 [02:53<26:22, 2.76it/s]
|
450 |
9%|▉ | 450/4810 [02:53<27:10, 2.67it/s]
|
451 |
9%|▉ | 451/4810 [02:54<28:25, 2.56it/s]
|
452 |
9%|▉ | 452/4810 [02:54<29:26, 2.47it/s]
|
453 |
9%|▉ | 453/4810 [02:55<29:47, 2.44it/s]
|
454 |
9%|▉ | 454/4810 [02:55<29:00, 2.50it/s]
|
455 |
9%|▉ | 455/4810 [02:55<27:33, 2.63it/s]
|
456 |
9%|▉ | 456/4810 [02:56<25:53, 2.80it/s]
|
457 |
10%|▉ | 457/4810 [02:56<25:26, 2.85it/s]
|
458 |
10%|▉ | 458/4810 [02:57<31:06, 2.33it/s]
|
459 |
10%|▉ | 459/4810 [02:57<28:31, 2.54it/s]
|
460 |
10%|▉ | 460/4810 [02:57<27:59, 2.59it/s]
|
461 |
10%|▉ | 461/4810 [02:58<26:21, 2.75it/s]
|
462 |
10%|▉ | 462/4810 [02:58<25:31, 2.84it/s]
|
463 |
10%|▉ | 463/4810 [02:58<26:30, 2.73it/s]
|
464 |
10%|▉ | 464/4810 [02:59<28:33, 2.54it/s]
|
465 |
10%|▉ | 465/4810 [02:59<27:38, 2.62it/s]
|
466 |
10%|▉ | 466/4810 [03:00<27:10, 2.66it/s]
|
467 |
10%|▉ | 467/4810 [03:00<27:59, 2.59it/s]
|
468 |
10%|▉ | 468/4810 [03:01<29:44, 2.43it/s]
|
469 |
10%|▉ | 469/4810 [03:01<31:15, 2.31it/s]
|
470 |
10%|▉ | 470/4810 [03:01<28:21, 2.55it/s]
|
471 |
10%|▉ | 471/4810 [03:02<28:01, 2.58it/s]
|
472 |
10%|▉ | 472/4810 [03:02<28:24, 2.54it/s]
|
473 |
10%|▉ | 473/4810 [03:02<27:27, 2.63it/s]
|
474 |
10%|▉ | 474/4810 [03:03<29:38, 2.44it/s]
|
475 |
10%|▉ | 475/4810 [03:03<27:15, 2.65it/s]
|
476 |
10%|▉ | 476/4810 [03:04<27:16, 2.65it/s]
|
477 |
10%|▉ | 477/4810 [03:04<27:36, 2.62it/s]
|
478 |
10%|▉ | 478/4810 [03:04<28:57, 2.49it/s]
|
479 |
10%|▉ | 479/4810 [03:05<27:11, 2.65it/s]
|
480 |
10%|▉ | 480/4810 [03:05<25:54, 2.79it/s]
|
481 |
10%|█ | 481/4810 [03:05<25:13, 2.86it/s][INFO|trainer.py:811] 2024-09-09 13:35:02,425 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
0%| | 0/869 [00:00<?, ?it/s][A
|
|
|
483 |
1%| | 10/869 [00:00<00:09, 92.74it/s][A
|
|
|
484 |
2%|▏ | 20/869 [00:00<00:10, 79.64it/s][A
|
|
|
485 |
3%|▎ | 29/869 [00:00<00:10, 77.94it/s][A
|
|
|
486 |
4%|▍ | 37/869 [00:00<00:11, 75.24it/s][A
|
|
|
487 |
5%|▌ | 46/869 [00:00<00:10, 79.07it/s][A
|
|
|
488 |
6%|▋ | 55/869 [00:00<00:10, 81.38it/s][A
|
|
|
489 |
7%|▋ | 64/869 [00:00<00:10, 76.89it/s][A
|
|
|
490 |
8%|▊ | 72/869 [00:00<00:10, 76.42it/s][A
|
|
|
491 |
9%|▉ | 81/869 [00:01<00:09, 80.05it/s][A
|
|
|
492 |
10%|█ | 90/869 [00:01<00:09, 82.34it/s][A
|
|
|
493 |
12%|█▏ | 100/869 [00:01<00:09, 85.08it/s][A
|
|
|
494 |
13%|█▎ | 109/869 [00:01<00:09, 81.57it/s][A
|
|
|
495 |
14%|█▎ | 118/869 [00:01<00:09, 80.97it/s][A
|
|
|
496 |
15%|█▍ | 127/869 [00:01<00:09, 78.77it/s][A
|
|
|
497 |
16%|█▌ | 136/869 [00:01<00:09, 80.72it/s][A
|
|
|
498 |
17%|█▋ | 145/869 [00:01<00:09, 75.58it/s][A
|
|
|
499 |
18%|█▊ | 154/869 [00:01<00:09, 77.65it/s][A
|
|
|
500 |
19%|█▉ | 163/869 [00:02<00:09, 78.21it/s][A
|
|
|
501 |
20%|█▉ | 171/869 [00:02<00:09, 76.35it/s][A
|
|
|
502 |
21%|██ | 179/869 [00:02<00:09, 75.47it/s][A
|
|
|
503 |
22%|██▏ | 188/869 [00:02<00:08, 77.48it/s][A
|
|
|
504 |
23%|██▎ | 196/869 [00:02<00:08, 74.82it/s][A
|
|
|
505 |
24%|██▎ | 205/869 [00:02<00:08, 77.33it/s][A
|
|
|
506 |
25%|██▍ | 214/869 [00:02<00:08, 78.96it/s][A
|
|
|
507 |
26%|██▌ | 223/869 [00:02<00:08, 80.11it/s][A
|
|
|
508 |
27%|██▋ | 232/869 [00:02<00:08, 77.00it/s][A
|
|
|
509 |
28%|██▊ | 240/869 [00:03<00:08, 77.05it/s][A
|
|
|
510 |
29%|██▊ | 248/869 [00:03<00:08, 71.60it/s][A
|
|
|
511 |
30%|██▉ | 257/869 [00:03<00:08, 74.38it/s][A
|
|
|
512 |
30%|███ | 265/869 [00:03<00:08, 74.11it/s][A
|
|
|
513 |
31%|███▏ | 273/869 [00:03<00:07, 74.77it/s][A
|
|
|
514 |
32%|███▏ | 281/869 [00:03<00:07, 74.24it/s][A
|
|
|
515 |
33%|███▎ | 289/869 [00:03<00:07, 73.58it/s][A
|
|
|
516 |
34%|███▍ | 297/869 [00:03<00:07, 74.51it/s][A
|
|
|
517 |
35%|███▌ | 305/869 [00:03<00:07, 71.14it/s][A
|
|
|
518 |
36%|███▌ | 313/869 [00:04<00:07, 72.91it/s][A
|
|
|
519 |
37%|███▋ | 321/869 [00:04<00:07, 72.67it/s][A
|
|
|
520 |
38%|███▊ | 330/869 [00:04<00:07, 76.39it/s][A
|
|
|
521 |
39%|███▉ | 339/869 [00:04<00:06, 78.05it/s][A
|
|
|
522 |
40%|███▉ | 347/869 [00:04<00:07, 72.56it/s][A
|
|
|
523 |
41%|████ | 355/869 [00:04<00:07, 73.35it/s][A
|
|
|
524 |
42%|████▏ | 364/869 [00:04<00:06, 77.21it/s][A
|
|
|
525 |
43%|████▎ | 373/869 [00:04<00:06, 75.08it/s][A
|
|
|
526 |
44%|████▍ | 381/869 [00:04<00:06, 76.23it/s][A
|
|
|
527 |
45%|████▍ | 389/869 [00:05<00:06, 70.89it/s][A
|
|
|
528 |
46%|████▌ | 398/869 [00:05<00:06, 73.47it/s][A
|
|
|
529 |
47%|████▋ | 407/869 [00:05<00:06, 75.80it/s][A
|
|
|
530 |
48%|████▊ | 416/869 [00:05<00:05, 78.55it/s][A
|
|
|
531 |
49%|████▉ | 424/869 [00:05<00:05, 78.67it/s][A
|
|
|
532 |
50%|████▉ | 433/869 [00:05<00:05, 79.63it/s][A
|
|
|
533 |
51%|█████ | 441/869 [00:05<00:05, 76.93it/s][A
|
|
|
534 |
52%|█████▏ | 449/869 [00:05<00:05, 76.43it/s][A
|
|
|
535 |
53%|█████▎ | 457/869 [00:05<00:05, 77.15it/s][A
|
|
|
536 |
54%|█████▎ | 465/869 [00:06<00:05, 75.70it/s][A
|
|
|
537 |
55%|█████▍ | 475/869 [00:06<00:04, 80.70it/s][A
|
|
|
538 |
56%|█████▌ | 484/869 [00:06<00:04, 82.99it/s][A
|
|
|
539 |
57%|█████▋ | 493/869 [00:06<00:04, 76.39it/s][A
|
|
|
540 |
58%|█████▊ | 501/869 [00:06<00:04, 76.83it/s][A
|
|
|
541 |
59%|█████▊ | 509/869 [00:06<00:04, 74.69it/s][A
|
|
|
542 |
60%|█████▉ | 518/869 [00:06<00:04, 78.00it/s][A
|
|
|
543 |
61%|██████ | 526/869 [00:06<00:04, 72.48it/s][A
|
|
|
544 |
61%|██████▏ | 534/869 [00:06<00:04, 74.17it/s][A
|
|
|
545 |
62%|██████▏ | 542/869 [00:07<00:04, 71.10it/s][A
|
|
|
546 |
63%|██████▎ | 551/869 [00:07<00:04, 74.51it/s][A
|
|
|
547 |
64%|██████▍ | 559/869 [00:07<00:04, 75.26it/s][A
|
|
|
548 |
65%|██████▌ | 567/869 [00:07<00:04, 74.55it/s][A
|
|
|
549 |
66%|██████▌ | 575/869 [00:07<00:03, 75.60it/s][A
|
|
|
550 |
67%|██████▋ | 583/869 [00:07<00:03, 74.19it/s][A
|
|
|
551 |
68%|██████▊ | 591/869 [00:07<00:03, 74.92it/s][A
|
|
|
552 |
69%|██████▉ | 600/869 [00:07<00:03, 78.05it/s][A
|
|
|
553 |
70%|███████ | 609/869 [00:07<00:03, 79.24it/s][A
|
|
|
554 |
71%|███████ | 617/869 [00:08<00:03, 77.66it/s][A
|
|
|
555 |
72%|███████▏ | 625/869 [00:08<00:03, 76.47it/s][A
|
|
|
556 |
73%|███████▎ | 633/869 [00:08<00:03, 76.47it/s][A
|
|
|
557 |
74%|███████▍ | 641/869 [00:08<00:03, 75.89it/s][A
|
|
|
558 |
75%|███████▍ | 650/869 [00:08<00:02, 79.01it/s][A
|
|
|
559 |
76%|███████▌ | 658/869 [00:08<00:02, 77.60it/s][A
|
|
|
560 |
77%|███████▋ | 667/869 [00:08<00:02, 78.98it/s][A
|
|
|
561 |
78%|███████▊ | 677/869 [00:08<00:02, 82.51it/s][A
|
|
|
562 |
79%|███████▉ | 686/869 [00:08<00:02, 70.80it/s][A
|
|
|
563 |
80%|███████▉ | 695/869 [00:09<00:02, 73.91it/s][A
|
|
|
564 |
81%|████████ | 703/869 [00:09<00:02, 73.34it/s][A
|
|
|
565 |
82%|████████▏ | 712/869 [00:09<00:02, 76.08it/s][A
|
|
|
566 |
83%|████████▎ | 720/869 [00:09<00:01, 76.70it/s][A
|
|
|
567 |
84%|████████▍ | 729/869 [00:09<00:01, 78.48it/s][A
|
|
|
568 |
85%|████████▍ | 737/869 [00:09<00:01, 77.75it/s][A
|
|
|
569 |
86%|████████▌ | 746/869 [00:09<00:01, 79.14it/s][A
|
|
|
570 |
87%|████████▋ | 754/869 [00:09<00:01, 76.52it/s][A
|
|
|
571 |
88%|████████▊ | 763/869 [00:09<00:01, 79.30it/s][A
|
|
|
572 |
89%|████████▊ | 771/869 [00:10<00:01, 73.38it/s][A
|
|
|
573 |
90%|████████▉ | 779/869 [00:10<00:01, 64.34it/s][A
|
|
|
574 |
91%|█████████ | 788/869 [00:10<00:01, 68.97it/s][A
|
|
|
575 |
92%|█████████▏| 797/869 [00:10<00:00, 72.75it/s][A
|
|
|
576 |
93%|█████████▎| 805/869 [00:10<00:00, 73.42it/s][A
|
|
|
577 |
94%|█████████▎| 814/869 [00:10<00:00, 75.70it/s][A
|
|
|
578 |
95%|█████████▍| 822/869 [00:10<00:00, 75.50it/s][A
|
|
|
579 |
96%|█████████▌| 831/869 [00:10<00:00, 76.45it/s][A
|
|
|
580 |
97%|█████████▋| 840/869 [00:11<00:00, 78.28it/s][A
|
|
|
581 |
98%|█████████▊| 849/869 [00:11<00:00, 80.11it/s][A
|
|
|
582 |
99%|█████████▊| 858/869 [00:11<00:00, 79.41it/s][A
|
|
|
583 |
|
|
|
584 |
|
585 |
10%|█ | 481/4810 [03:21<25:13, 2.86it/s]
|
|
|
|
|
586 |
[A[INFO|trainer.py:3503] 2024-09-09 13:35:17,601 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-481
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
587 |
10%|█ | 482/4810 [03:28<8:32:10, 7.10s/it]
|
588 |
10%|█ | 483/4810 [03:29<6:06:12, 5.08s/it]
|
589 |
10%|█ | 484/4810 [03:29<4:21:49, 3.63s/it]
|
590 |
10%|█ | 485/4810 [03:29<3:14:36, 2.70s/it]
|
591 |
10%|█ | 486/4810 [03:30<2:25:03, 2.01s/it]
|
592 |
10%|█ | 487/4810 [03:30<1:48:43, 1.51s/it]
|
593 |
10%|█ | 488/4810 [03:30<1:22:33, 1.15s/it]
|
594 |
10%|█ | 489/4810 [03:31<1:04:51, 1.11it/s]
|
595 |
10%|█ | 490/4810 [03:31<54:32, 1.32it/s]
|
596 |
10%|█ | 491/4810 [03:32<46:15, 1.56it/s]
|
597 |
10%|█ | 492/4810 [03:32<40:57, 1.76it/s]
|
598 |
10%|█ | 493/4810 [03:32<36:38, 1.96it/s]
|
599 |
10%|█ | 494/4810 [03:33<34:17, 2.10it/s]
|
600 |
10%|█ | 495/4810 [03:33<31:53, 2.25it/s]
|
601 |
10%|█ | 496/4810 [03:33<28:30, 2.52it/s]
|
602 |
10%|█ | 497/4810 [03:34<28:31, 2.52it/s]
|
603 |
10%|█ | 498/4810 [03:34<27:10, 2.64it/s]
|
604 |
10%|█ | 499/4810 [03:34<26:54, 2.67it/s]
|
605 |
10%|█ | 500/4810 [03:35<28:10, 2.55it/s]
|
606 |
|
607 |
10%|█ | 500/4810 [03:35<28:10, 2.55it/s]
|
608 |
10%|█ | 501/4810 [03:35<27:27, 2.62it/s]
|
609 |
10%|█ | 502/4810 [03:36<26:55, 2.67it/s]
|
610 |
10%|█ | 503/4810 [03:36<26:11, 2.74it/s]
|
611 |
10%|█ | 504/4810 [03:36<26:10, 2.74it/s]
|
612 |
10%|█ | 505/4810 [03:37<25:42, 2.79it/s]
|
613 |
11%|█ | 506/4810 [03:37<27:21, 2.62it/s]
|
614 |
11%|█ | 507/4810 [03:37<24:50, 2.89it/s]
|
615 |
11%|█ | 508/4810 [03:38<25:28, 2.81it/s]
|
616 |
11%|█ | 509/4810 [03:38<24:06, 2.97it/s]
|
617 |
11%|█ | 510/4810 [03:39<27:18, 2.62it/s]
|
618 |
11%|█ | 511/4810 [03:39<26:28, 2.71it/s]
|
619 |
11%|█ | 512/4810 [03:39<25:25, 2.82it/s]
|
620 |
11%|█ | 513/4810 [03:40<24:40, 2.90it/s]
|
621 |
11%|█ | 514/4810 [03:40<26:48, 2.67it/s]
|
622 |
11%|█ | 515/4810 [03:40<24:31, 2.92it/s]
|
623 |
11%|█ | 516/4810 [03:41<25:35, 2.80it/s]
|
624 |
11%|█ | 517/4810 [03:41<25:27, 2.81it/s]
|
625 |
11%|█ | 518/4810 [03:41<24:42, 2.89it/s]
|
626 |
11%|█ | 519/4810 [03:42<23:42, 3.02it/s]
|
627 |
11%|█ | 520/4810 [03:42<23:05, 3.10it/s]
|
628 |
11%|█ | 521/4810 [03:42<25:27, 2.81it/s]
|
629 |
11%|█ | 522/4810 [03:43<23:58, 2.98it/s]
|
630 |
11%|█ | 523/4810 [03:43<24:47, 2.88it/s]
|
631 |
11%|█ | 524/4810 [03:43<26:35, 2.69it/s]
|
632 |
11%|█ | 525/4810 [03:44<24:52, 2.87it/s]
|
633 |
11%|█ | 526/4810 [03:44<24:17, 2.94it/s]
|
634 |
11%|█ | 527/4810 [03:44<23:41, 3.01it/s]
|
635 |
11%|█ | 528/4810 [03:45<24:21, 2.93it/s]
|
636 |
11%|█ | 529/4810 [03:45<25:23, 2.81it/s]
|
637 |
11%|█ | 530/4810 [03:45<25:01, 2.85it/s]
|
638 |
11%|█ | 531/4810 [03:46<24:55, 2.86it/s]
|
639 |
11%|█ | 532/4810 [03:46<29:22, 2.43it/s]
|
640 |
11%|█ | 533/4810 [03:47<29:50, 2.39it/s]
|
641 |
11%|█ | 534/4810 [03:47<29:57, 2.38it/s]
|
642 |
11%|█ | 535/4810 [03:48<30:36, 2.33it/s]
|
643 |
11%|█ | 536/4810 [03:48<30:49, 2.31it/s]
|
644 |
11%|█ | 537/4810 [03:49<31:31, 2.26it/s]
|
645 |
11%|█ | 538/4810 [03:49<32:24, 2.20it/s]
|
646 |
11%|█ | 539/4810 [03:49<30:31, 2.33it/s]
|
647 |
11%|█ | 540/4810 [03:50<28:20, 2.51it/s]
|
648 |
11%|█ | 541/4810 [03:50<27:45, 2.56it/s]
|
649 |
11%|█▏ | 542/4810 [03:51<29:57, 2.38it/s]
|
650 |
11%|█▏ | 543/4810 [03:51<30:35, 2.32it/s]
|
651 |
11%|█▏ | 544/4810 [03:51<30:38, 2.32it/s]
|
652 |
11%|█▏ | 545/4810 [03:52<27:32, 2.58it/s]
|
653 |
11%|█▏ | 546/4810 [03:52<30:06, 2.36it/s]
|
654 |
11%|█▏ | 547/4810 [03:53<28:32, 2.49it/s]
|
655 |
11%|█▏ | 548/4810 [03:53<26:05, 2.72it/s]
|
656 |
11%|█▏ | 549/4810 [03:53<25:07, 2.83it/s]
|
657 |
11%|█▏ | 550/4810 [03:54<29:02, 2.45it/s]
|
658 |
11%|█▏ | 551/4810 [03:54<28:36, 2.48it/s]
|
659 |
11%|█▏ | 552/4810 [03:54<25:48, 2.75it/s]
|
660 |
11%|█▏ | 553/4810 [03:55<26:58, 2.63it/s]
|
661 |
12%|█▏ | 554/4810 [03:55<24:59, 2.84it/s]
|
662 |
12%|█▏ | 555/4810 [03:55<25:05, 2.83it/s]
|
663 |
12%|█▏ | 556/4810 [03:56<26:10, 2.71it/s]
|
664 |
12%|█▏ | 557/4810 [03:56<25:34, 2.77it/s]
|
665 |
12%|█▏ | 558/4810 [03:57<24:47, 2.86it/s]
|
666 |
12%|█▏ | 559/4810 [03:57<23:59, 2.95it/s]
|
667 |
12%|█▏ | 560/4810 [03:57<22:49, 3.10it/s]
|
668 |
12%|█▏ | 561/4810 [03:58<27:17, 2.59it/s]
|
669 |
12%|█▏ | 562/4810 [03:58<26:24, 2.68it/s]
|
670 |
12%|█▏ | 563/4810 [03:58<25:16, 2.80it/s]
|
671 |
12%|█▏ | 564/4810 [03:59<26:56, 2.63it/s]
|
672 |
12%|█▏ | 565/4810 [03:59<26:47, 2.64it/s]
|
673 |
12%|█▏ | 566/4810 [03:59<24:55, 2.84it/s]
|
674 |
12%|█▏ | 567/4810 [04:00<27:34, 2.56it/s]
|
675 |
12%|█▏ | 568/4810 [04:00<26:34, 2.66it/s]
|
676 |
12%|█▏ | 569/4810 [04:01<25:54, 2.73it/s]
|
677 |
12%|█▏ | 570/4810 [04:01<29:03, 2.43it/s]
|
678 |
12%|█▏ | 571/4810 [04:02<28:38, 2.47it/s]
|
679 |
12%|█▏ | 572/4810 [04:02<26:48, 2.63it/s]
|
680 |
12%|█▏ | 573/4810 [04:02<27:52, 2.53it/s]
|
681 |
12%|█▏ | 574/4810 [04:03<26:19, 2.68it/s]
|
682 |
12%|█▏ | 575/4810 [04:03<26:38, 2.65it/s]
|
683 |
12%|█▏ | 576/4810 [04:04<29:45, 2.37it/s]
|
684 |
12%|█▏ | 577/4810 [04:04<29:36, 2.38it/s]
|
685 |
12%|█▏ | 578/4810 [04:04<27:07, 2.60it/s]
|
686 |
12%|█▏ | 579/4810 [04:05<29:07, 2.42it/s]
|
687 |
12%|█▏ | 580/4810 [04:05<28:08, 2.51it/s]
|
688 |
12%|█▏ | 581/4810 [04:05<27:40, 2.55it/s]
|
689 |
12%|█▏ | 582/4810 [04:06<27:42, 2.54it/s]
|
690 |
12%|█▏ | 583/4810 [04:06<26:15, 2.68it/s]
|
691 |
12%|█▏ | 584/4810 [04:07<25:43, 2.74it/s]
|
692 |
12%|█▏ | 585/4810 [04:07<25:24, 2.77it/s]
|
693 |
12%|█▏ | 586/4810 [04:07<26:19, 2.67it/s]
|
694 |
12%|█▏ | 587/4810 [04:08<25:39, 2.74it/s]
|
695 |
12%|█▏ | 588/4810 [04:08<25:44, 2.73it/s]
|
696 |
12%|█▏ | 589/4810 [04:08<25:51, 2.72it/s]
|
697 |
12%|█▏ | 590/4810 [04:09<24:15, 2.90it/s]
|
698 |
12%|█▏ | 591/4810 [04:09<26:16, 2.68it/s]
|
699 |
12%|█▏ | 592/4810 [04:09<25:49, 2.72it/s]
|
700 |
12%|█▏ | 593/4810 [04:10<27:03, 2.60it/s]
|
701 |
12%|█▏ | 594/4810 [04:10<27:41, 2.54it/s]
|
702 |
12%|█▏ | 595/4810 [04:11<28:42, 2.45it/s]
|
703 |
12%|█▏ | 596/4810 [04:11<28:15, 2.49it/s]
|
704 |
12%|█▏ | 597/4810 [04:12<28:12, 2.49it/s]
|
705 |
12%|█▏ | 598/4810 [04:12<26:42, 2.63it/s]
|
706 |
12%|█▏ | 599/4810 [04:12<25:00, 2.81it/s]
|
707 |
12%|█▏ | 600/4810 [04:13<25:04, 2.80it/s]
|
708 |
12%|█▏ | 601/4810 [04:13<26:47, 2.62it/s]
|
709 |
13%|█▎ | 602/4810 [04:13<26:45, 2.62it/s]
|
710 |
13%|█▎ | 603/4810 [04:14<26:32, 2.64it/s]
|
711 |
13%|█▎ | 604/4810 [04:14<27:59, 2.50it/s]
|
712 |
13%|█▎ | 605/4810 [04:15<27:25, 2.55it/s]
|
713 |
13%|█▎ | 606/4810 [04:15<25:56, 2.70it/s]
|
|
|
1 |
+
2024-09-09 13:31:26.574394: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
2 |
+
2024-09-09 13:31:26.592525: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
|
3 |
+
2024-09-09 13:31:26.613856: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
|
4 |
+
2024-09-09 13:31:26.620385: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
|
5 |
+
2024-09-09 13:31:26.635777: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
|
6 |
+
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
|
7 |
+
2024-09-09 13:31:27.891241: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
|
8 |
+
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
|
9 |
+
warnings.warn(
|
10 |
+
09/09/2024 13:31:29 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
|
11 |
+
09/09/2024 13:31:29 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
|
12 |
+
_n_gpu=1,
|
13 |
+
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
|
14 |
+
adafactor=False,
|
15 |
+
adam_beta1=0.9,
|
16 |
+
adam_beta2=0.999,
|
17 |
+
adam_epsilon=1e-08,
|
18 |
+
auto_find_batch_size=False,
|
19 |
+
batch_eval_metrics=False,
|
20 |
+
bf16=False,
|
21 |
+
bf16_full_eval=False,
|
22 |
+
data_seed=None,
|
23 |
+
dataloader_drop_last=False,
|
24 |
+
dataloader_num_workers=0,
|
25 |
+
dataloader_persistent_workers=False,
|
26 |
+
dataloader_pin_memory=True,
|
27 |
+
dataloader_prefetch_factor=None,
|
28 |
+
ddp_backend=None,
|
29 |
+
ddp_broadcast_buffers=None,
|
30 |
+
ddp_bucket_cap_mb=None,
|
31 |
+
ddp_find_unused_parameters=None,
|
32 |
+
ddp_timeout=1800,
|
33 |
+
debug=[],
|
34 |
+
deepspeed=None,
|
35 |
+
disable_tqdm=False,
|
36 |
+
dispatch_batches=None,
|
37 |
+
do_eval=True,
|
38 |
+
do_predict=True,
|
39 |
+
do_train=True,
|
40 |
+
eval_accumulation_steps=None,
|
41 |
+
eval_delay=0,
|
42 |
+
eval_do_concat_batches=True,
|
43 |
+
eval_on_start=False,
|
44 |
+
eval_steps=None,
|
45 |
+
eval_strategy=epoch,
|
46 |
+
eval_use_gather_object=False,
|
47 |
+
evaluation_strategy=epoch,
|
48 |
+
fp16=False,
|
49 |
+
fp16_backend=auto,
|
50 |
+
fp16_full_eval=False,
|
51 |
+
fp16_opt_level=O1,
|
52 |
+
fsdp=[],
|
53 |
+
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
|
54 |
+
fsdp_min_num_params=0,
|
55 |
+
fsdp_transformer_layer_cls_to_wrap=None,
|
56 |
+
full_determinism=False,
|
57 |
+
gradient_accumulation_steps=2,
|
58 |
+
gradient_checkpointing=False,
|
59 |
+
gradient_checkpointing_kwargs=None,
|
60 |
+
greater_is_better=True,
|
61 |
+
group_by_length=False,
|
62 |
+
half_precision_backend=auto,
|
63 |
+
hub_always_push=False,
|
64 |
+
hub_model_id=None,
|
65 |
+
hub_private_repo=False,
|
66 |
+
hub_strategy=every_save,
|
67 |
+
hub_token=<HUB_TOKEN>,
|
68 |
+
ignore_data_skip=False,
|
69 |
+
include_inputs_for_metrics=False,
|
70 |
+
include_num_input_tokens_seen=False,
|
71 |
+
include_tokens_per_second=False,
|
72 |
+
jit_mode_eval=False,
|
73 |
+
label_names=None,
|
74 |
+
label_smoothing_factor=0.0,
|
75 |
+
learning_rate=5e-05,
|
76 |
+
length_column_name=length,
|
77 |
+
load_best_model_at_end=True,
|
78 |
+
local_rank=0,
|
79 |
+
log_level=passive,
|
80 |
+
log_level_replica=warning,
|
81 |
+
log_on_each_node=True,
|
82 |
+
logging_dir=/content/dissertation/scripts/ner/output/tb,
|
83 |
+
logging_first_step=False,
|
84 |
+
logging_nan_inf_filter=True,
|
85 |
+
logging_steps=500,
|
86 |
+
logging_strategy=steps,
|
87 |
+
lr_scheduler_kwargs={},
|
88 |
+
lr_scheduler_type=linear,
|
89 |
+
max_grad_norm=1.0,
|
90 |
+
max_steps=-1,
|
91 |
+
metric_for_best_model=f1,
|
92 |
+
mp_parameters=,
|
93 |
+
neftune_noise_alpha=None,
|
94 |
+
no_cuda=False,
|
95 |
+
num_train_epochs=10.0,
|
96 |
+
optim=adamw_torch,
|
97 |
+
optim_args=None,
|
98 |
+
optim_target_modules=None,
|
99 |
+
output_dir=/content/dissertation/scripts/ner/output,
|
100 |
+
overwrite_output_dir=True,
|
101 |
+
past_index=-1,
|
102 |
+
per_device_eval_batch_size=8,
|
103 |
+
per_device_train_batch_size=32,
|
104 |
+
prediction_loss_only=False,
|
105 |
+
push_to_hub=True,
|
106 |
+
push_to_hub_model_id=None,
|
107 |
+
push_to_hub_organization=None,
|
108 |
+
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
|
109 |
+
ray_scope=last,
|
110 |
+
remove_unused_columns=True,
|
111 |
+
report_to=['tensorboard'],
|
112 |
+
restore_callback_states_from_checkpoint=False,
|
113 |
+
resume_from_checkpoint=None,
|
114 |
+
run_name=/content/dissertation/scripts/ner/output,
|
115 |
+
save_on_each_node=False,
|
116 |
+
save_only_model=False,
|
117 |
+
save_safetensors=True,
|
118 |
+
save_steps=500,
|
119 |
+
save_strategy=epoch,
|
120 |
+
save_total_limit=None,
|
121 |
+
seed=42,
|
122 |
+
skip_memory_metrics=True,
|
123 |
+
split_batches=None,
|
124 |
+
tf32=None,
|
125 |
+
torch_compile=False,
|
126 |
+
torch_compile_backend=None,
|
127 |
+
torch_compile_mode=None,
|
128 |
+
torch_empty_cache_steps=None,
|
129 |
+
torchdynamo=None,
|
130 |
+
tpu_metrics_debug=False,
|
131 |
+
tpu_num_cores=None,
|
132 |
+
use_cpu=False,
|
133 |
+
use_ipex=False,
|
134 |
+
use_legacy_prediction_loop=False,
|
135 |
+
use_mps_device=False,
|
136 |
+
warmup_ratio=0.0,
|
137 |
+
warmup_steps=0,
|
138 |
+
weight_decay=0.0,
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
[INFO|configuration_utils.py:733] 2024-09-09 13:31:48,080 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/config.json
|
148 |
+
[INFO|configuration_utils.py:800] 2024-09-09 13:31:48,083 >> Model config BertConfig {
|
149 |
+
"_name_or_path": "michiyasunaga/BioLinkBERT-base",
|
150 |
+
"architectures": [
|
151 |
+
"BertModel"
|
152 |
+
],
|
153 |
+
"attention_probs_dropout_prob": 0.1,
|
154 |
+
"classifier_dropout": null,
|
155 |
+
"finetuning_task": "ner",
|
156 |
+
"gradient_checkpointing": false,
|
157 |
+
"hidden_act": "gelu",
|
158 |
+
"hidden_dropout_prob": 0.1,
|
159 |
+
"hidden_size": 768,
|
160 |
+
"id2label": {
|
161 |
+
"0": "O",
|
162 |
+
"1": "B-FARMACO",
|
163 |
+
"2": "I-FARMACO"
|
164 |
+
},
|
165 |
+
"initializer_range": 0.02,
|
166 |
+
"intermediate_size": 3072,
|
167 |
+
"label2id": {
|
168 |
+
"B-FARMACO": 1,
|
169 |
+
"I-FARMACO": 2,
|
170 |
+
"O": 0
|
171 |
+
},
|
172 |
+
"layer_norm_eps": 1e-12,
|
173 |
+
"max_position_embeddings": 512,
|
174 |
+
"model_type": "bert",
|
175 |
+
"num_attention_heads": 12,
|
176 |
+
"num_hidden_layers": 12,
|
177 |
+
"pad_token_id": 0,
|
178 |
+
"position_embedding_type": "absolute",
|
179 |
+
"transformers_version": "4.44.2",
|
180 |
+
"type_vocab_size": 2,
|
181 |
+
"use_cache": true,
|
182 |
+
"vocab_size": 28895
|
183 |
+
}
|
184 |
+
|
185 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/vocab.txt
|
186 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer.json
|
187 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file added_tokens.json from cache at None
|
188 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/special_tokens_map.json
|
189 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-09 13:31:48,337 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer_config.json
|
190 |
+
/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
|
191 |
+
warnings.warn(
|
192 |
+
[INFO|modeling_utils.py:3678] 2024-09-09 13:31:48,637 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/pytorch_model.bin
|
193 |
+
[INFO|modeling_utils.py:4497] 2024-09-09 13:31:48,717 >> Some weights of the model checkpoint at michiyasunaga/BioLinkBERT-base were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']
|
194 |
+
- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
|
195 |
+
- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
|
196 |
+
[WARNING|modeling_utils.py:4509] 2024-09-09 13:31:48,717 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at michiyasunaga/BioLinkBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight']
|
197 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
|
202 |
+
metric = load_metric("seqeval", trust_remote_code=True)
|
203 |
+
[INFO|trainer.py:811] 2024-09-09 13:31:55,820 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
204 |
+
[INFO|trainer.py:2134] 2024-09-09 13:31:56,387 >> ***** Running training *****
|
205 |
+
[INFO|trainer.py:2135] 2024-09-09 13:31:56,387 >> Num examples = 30,812
|
206 |
+
[INFO|trainer.py:2136] 2024-09-09 13:31:56,388 >> Num Epochs = 10
|
207 |
+
[INFO|trainer.py:2137] 2024-09-09 13:31:56,388 >> Instantaneous batch size per device = 32
|
208 |
+
[INFO|trainer.py:2140] 2024-09-09 13:31:56,388 >> Total train batch size (w. parallel, distributed & accumulation) = 64
|
209 |
+
[INFO|trainer.py:2141] 2024-09-09 13:31:56,388 >> Gradient Accumulation steps = 2
|
210 |
+
[INFO|trainer.py:2142] 2024-09-09 13:31:56,388 >> Total optimization steps = 4,810
|
211 |
+
[INFO|trainer.py:2143] 2024-09-09 13:31:56,388 >> Number of trainable parameters = 107,644,419
|
212 |
+
|
213 |
0%| | 0/4810 [00:00<?, ?it/s]
|
214 |
0%| | 1/4810 [00:01<1:32:48, 1.16s/it]
|
215 |
0%| | 2/4810 [00:01<56:19, 1.42it/s]
|
216 |
0%| | 3/4810 [00:01<41:07, 1.95it/s]
|
217 |
0%| | 4/4810 [00:02<34:37, 2.31it/s]
|
218 |
0%| | 5/4810 [00:02<33:33, 2.39it/s]
|
219 |
0%| | 6/4810 [00:02<31:08, 2.57it/s]
|
220 |
0%| | 7/4810 [00:03<33:14, 2.41it/s]
|
221 |
0%| | 8/4810 [00:03<30:49, 2.60it/s]
|
222 |
0%| | 9/4810 [00:03<28:57, 2.76it/s]
|
223 |
0%| | 10/4810 [00:04<30:37, 2.61it/s]
|
224 |
0%| | 11/4810 [00:04<31:18, 2.55it/s]
|
225 |
0%| | 12/4810 [00:05<30:02, 2.66it/s]
|
226 |
0%| | 13/4810 [00:05<27:58, 2.86it/s]
|
227 |
0%| | 14/4810 [00:05<27:06, 2.95it/s]
|
228 |
0%| | 15/4810 [00:06<27:05, 2.95it/s]
|
229 |
0%| | 16/4810 [00:06<28:33, 2.80it/s]
|
230 |
0%| | 17/4810 [00:06<29:38, 2.70it/s]
|
231 |
0%| | 18/4810 [00:07<31:10, 2.56it/s]
|
232 |
0%| | 19/4810 [00:07<29:50, 2.68it/s]
|
233 |
0%| | 20/4810 [00:08<31:02, 2.57it/s]
|
234 |
0%| | 21/4810 [00:08<31:46, 2.51it/s]
|
235 |
0%| | 22/4810 [00:08<30:27, 2.62it/s]
|
236 |
0%| | 23/4810 [00:09<28:10, 2.83it/s]
|
237 |
0%| | 24/4810 [00:09<28:35, 2.79it/s]
|
238 |
1%| | 25/4810 [00:09<26:09, 3.05it/s]
|
239 |
1%| | 26/4810 [00:10<31:26, 2.54it/s]
|
240 |
1%| | 27/4810 [00:10<30:18, 2.63it/s]
|
241 |
1%| | 28/4810 [00:11<30:46, 2.59it/s]
|
242 |
1%| | 29/4810 [00:11<35:46, 2.23it/s]
|
243 |
1%| | 30/4810 [00:12<39:19, 2.03it/s]
|
244 |
1%| | 31/4810 [00:12<39:08, 2.03it/s]
|
245 |
1%| | 32/4810 [00:13<36:16, 2.20it/s]
|
246 |
1%| | 33/4810 [00:13<32:23, 2.46it/s]
|
247 |
1%| | 34/4810 [00:13<36:43, 2.17it/s]
|
248 |
1%| | 35/4810 [00:14<35:27, 2.24it/s]
|
249 |
1%| | 36/4810 [00:14<35:59, 2.21it/s]
|
250 |
1%| | 37/4810 [00:15<34:42, 2.29it/s]
|
251 |
1%| | 38/4810 [00:15<33:54, 2.35it/s]
|
252 |
1%| | 39/4810 [00:16<33:10, 2.40it/s]
|
253 |
1%| | 40/4810 [00:16<33:50, 2.35it/s]
|
254 |
1%| | 41/4810 [00:16<35:01, 2.27it/s]
|
255 |
1%| | 42/4810 [00:17<31:37, 2.51it/s]
|
256 |
1%| | 43/4810 [00:17<31:12, 2.55it/s]
|
257 |
1%| | 44/4810 [00:18<47:33, 1.67it/s]
|
258 |
1%| | 45/4810 [00:19<41:13, 1.93it/s]
|
259 |
1%| | 46/4810 [00:19<37:33, 2.11it/s]
|
260 |
1%| | 47/4810 [00:19<35:35, 2.23it/s]
|
261 |
1%| | 48/4810 [00:20<32:29, 2.44it/s]
|
262 |
1%| | 49/4810 [00:20<31:44, 2.50it/s]
|
263 |
1%| | 50/4810 [00:20<31:03, 2.55it/s]
|
264 |
1%| | 51/4810 [00:21<30:39, 2.59it/s]
|
265 |
1%| | 52/4810 [00:21<30:21, 2.61it/s]
|
266 |
1%| | 53/4810 [00:22<33:12, 2.39it/s]
|
267 |
1%| | 54/4810 [00:22<31:57, 2.48it/s]
|
268 |
1%| | 55/4810 [00:22<30:41, 2.58it/s]
|
269 |
1%| | 56/4810 [00:23<30:16, 2.62it/s]
|
270 |
1%| | 57/4810 [00:23<32:50, 2.41it/s]
|
271 |
1%| | 58/4810 [00:24<31:11, 2.54it/s]
|
272 |
1%| | 59/4810 [00:24<29:25, 2.69it/s]
|
273 |
1%| | 60/4810 [00:24<33:13, 2.38it/s]
|
274 |
1%|▏ | 61/4810 [00:25<30:25, 2.60it/s]
|
275 |
1%|▏ | 62/4810 [00:25<29:47, 2.66it/s]
|
276 |
1%|▏ | 63/4810 [00:25<28:16, 2.80it/s]
|
277 |
1%|▏ | 64/4810 [00:26<26:57, 2.93it/s]
|
278 |
1%|▏ | 65/4810 [00:26<26:05, 3.03it/s]
|
279 |
1%|▏ | 66/4810 [00:27<32:46, 2.41it/s]
|
280 |
1%|▏ | 67/4810 [00:27<30:06, 2.62it/s]
|
281 |
1%|▏ | 68/4810 [00:27<31:24, 2.52it/s]
|
282 |
1%|▏ | 69/4810 [00:28<29:04, 2.72it/s]
|
283 |
1%|▏ | 70/4810 [00:28<26:35, 2.97it/s]
|
284 |
1%|▏ | 71/4810 [00:28<27:27, 2.88it/s]
|
285 |
1%|▏ | 72/4810 [00:29<25:01, 3.16it/s]
|
286 |
2%|▏ | 73/4810 [00:29<31:43, 2.49it/s]
|
287 |
2%|▏ | 74/4810 [00:30<32:11, 2.45it/s]
|
288 |
2%|▏ | 75/4810 [00:30<29:21, 2.69it/s]
|
289 |
2%|▏ | 76/4810 [00:30<28:58, 2.72it/s]
|
290 |
2%|▏ | 77/4810 [00:31<29:02, 2.72it/s]
|
291 |
2%|▏ | 78/4810 [00:31<29:10, 2.70it/s]
|
292 |
2%|▏ | 79/4810 [00:31<30:05, 2.62it/s]
|
293 |
2%|▏ | 80/4810 [00:32<28:26, 2.77it/s]
|
294 |
2%|▏ | 81/4810 [00:32<29:36, 2.66it/s]
|
295 |
2%|▏ | 82/4810 [00:32<30:01, 2.62it/s]
|
296 |
2%|▏ | 83/4810 [00:33<30:18, 2.60it/s]
|
297 |
2%|▏ | 84/4810 [00:33<29:04, 2.71it/s]
|
298 |
2%|▏ | 85/4810 [00:34<29:17, 2.69it/s]
|
299 |
2%|▏ | 86/4810 [00:34<29:44, 2.65it/s]
|
300 |
2%|▏ | 87/4810 [00:34<27:27, 2.87it/s]
|
301 |
2%|▏ | 88/4810 [00:35<30:27, 2.58it/s]
|
302 |
2%|▏ | 89/4810 [00:35<31:02, 2.53it/s]
|
303 |
2%|▏ | 90/4810 [00:35<29:15, 2.69it/s]
|
304 |
2%|▏ | 91/4810 [00:36<32:55, 2.39it/s]
|
305 |
2%|▏ | 92/4810 [00:37<37:00, 2.12it/s]
|
306 |
2%|▏ | 93/4810 [00:37<34:32, 2.28it/s]
|
307 |
2%|▏ | 94/4810 [00:37<31:16, 2.51it/s]
|
308 |
2%|▏ | 95/4810 [00:38<32:10, 2.44it/s]
|
309 |
2%|▏ | 96/4810 [00:38<32:09, 2.44it/s]
|
310 |
2%|▏ | 97/4810 [00:38<28:47, 2.73it/s]
|
311 |
2%|▏ | 98/4810 [00:39<29:43, 2.64it/s]
|
312 |
2%|▏ | 99/4810 [00:39<30:19, 2.59it/s]
|
313 |
2%|▏ | 100/4810 [00:40<33:02, 2.38it/s]
|
314 |
2%|▏ | 101/4810 [00:40<35:16, 2.22it/s]
|
315 |
2%|▏ | 102/4810 [00:41<34:17, 2.29it/s]
|
316 |
2%|▏ | 103/4810 [00:41<30:51, 2.54it/s]
|
317 |
2%|▏ | 104/4810 [00:41<28:32, 2.75it/s]
|
318 |
2%|▏ | 105/4810 [00:42<28:40, 2.73it/s]
|
319 |
2%|▏ | 106/4810 [00:42<31:12, 2.51it/s]
|
320 |
2%|▏ | 107/4810 [00:42<28:50, 2.72it/s]
|
321 |
2%|▏ | 108/4810 [00:43<32:31, 2.41it/s]
|
322 |
2%|▏ | 109/4810 [00:43<34:52, 2.25it/s]
|
323 |
2%|▏ | 110/4810 [00:44<32:53, 2.38it/s]
|
324 |
2%|▏ | 111/4810 [00:44<31:06, 2.52it/s]
|
325 |
2%|▏ | 112/4810 [00:45<32:29, 2.41it/s]
|
326 |
2%|▏ | 113/4810 [00:45<30:01, 2.61it/s]
|
327 |
2%|▏ | 114/4810 [00:45<30:44, 2.55it/s]
|
328 |
2%|▏ | 115/4810 [00:46<29:27, 2.66it/s]
|
329 |
2%|▏ | 116/4810 [00:46<27:57, 2.80it/s]
|
330 |
2%|▏ | 117/4810 [00:46<29:01, 2.70it/s]
|
331 |
2%|▏ | 118/4810 [00:47<34:35, 2.26it/s]
|
332 |
2%|▏ | 119/4810 [00:47<32:39, 2.39it/s]
|
333 |
2%|▏ | 120/4810 [00:48<29:25, 2.66it/s]
|
334 |
3%|▎ | 121/4810 [00:48<29:56, 2.61it/s]
|
335 |
3%|▎ | 122/4810 [00:48<29:09, 2.68it/s]
|
336 |
3%|▎ | 123/4810 [00:49<31:43, 2.46it/s]
|
337 |
3%|▎ | 124/4810 [00:49<30:37, 2.55it/s]
|
338 |
3%|▎ | 125/4810 [00:49<29:26, 2.65it/s]
|
339 |
3%|▎ | 126/4810 [00:50<31:10, 2.50it/s]
|
340 |
3%|▎ | 127/4810 [00:50<31:23, 2.49it/s]
|
341 |
3%|▎ | 128/4810 [00:51<30:59, 2.52it/s]
|
342 |
3%|▎ | 129/4810 [00:51<30:56, 2.52it/s]
|
343 |
3%|▎ | 130/4810 [00:52<32:25, 2.41it/s]
|
344 |
3%|▎ | 131/4810 [00:52<29:43, 2.62it/s]
|
345 |
3%|▎ | 132/4810 [00:52<31:11, 2.50it/s]
|
346 |
3%|▎ | 133/4810 [00:53<29:58, 2.60it/s]
|
347 |
3%|▎ | 134/4810 [00:53<29:33, 2.64it/s]
|
348 |
3%|▎ | 135/4810 [00:53<30:00, 2.60it/s]
|
349 |
3%|▎ | 136/4810 [00:54<29:30, 2.64it/s]
|
350 |
3%|▎ | 137/4810 [00:54<29:25, 2.65it/s]
|
351 |
3%|▎ | 138/4810 [00:55<28:18, 2.75it/s]
|
352 |
3%|▎ | 139/4810 [00:55<30:51, 2.52it/s]
|
353 |
3%|▎ | 140/4810 [00:55<29:03, 2.68it/s]
|
354 |
3%|▎ | 141/4810 [00:56<29:12, 2.66it/s]
|
355 |
3%|▎ | 142/4810 [00:56<30:59, 2.51it/s]
|
356 |
3%|▎ | 143/4810 [00:56<29:18, 2.65it/s]
|
357 |
3%|▎ | 144/4810 [00:57<27:56, 2.78it/s]
|
358 |
3%|▎ | 145/4810 [00:57<27:22, 2.84it/s]
|
359 |
3%|▎ | 146/4810 [00:57<26:01, 2.99it/s]
|
360 |
3%|▎ | 147/4810 [00:58<33:33, 2.32it/s]
|
361 |
3%|▎ | 148/4810 [00:59<35:19, 2.20it/s]
|
362 |
3%|▎ | 149/4810 [00:59<33:17, 2.33it/s]
|
363 |
3%|▎ | 150/4810 [00:59<31:10, 2.49it/s]
|
364 |
3%|▎ | 151/4810 [01:00<33:40, 2.31it/s]
|
365 |
3%|▎ | 152/4810 [01:00<32:13, 2.41it/s]
|
366 |
3%|▎ | 153/4810 [01:01<33:32, 2.31it/s]
|
367 |
3%|▎ | 154/4810 [01:01<31:45, 2.44it/s]
|
368 |
3%|▎ | 155/4810 [01:01<29:46, 2.61it/s]
|
369 |
3%|▎ | 156/4810 [01:02<29:28, 2.63it/s]
|
370 |
3%|▎ | 157/4810 [01:02<28:23, 2.73it/s]
|
371 |
3%|▎ | 158/4810 [01:02<28:09, 2.75it/s]
|
372 |
3%|▎ | 159/4810 [01:03<29:46, 2.60it/s]
|
373 |
3%|▎ | 160/4810 [01:03<29:49, 2.60it/s]
|
374 |
3%|▎ | 161/4810 [01:04<29:23, 2.64it/s]
|
375 |
3%|▎ | 162/4810 [01:04<28:17, 2.74it/s]
|
376 |
3%|▎ | 163/4810 [01:04<28:46, 2.69it/s]
|
377 |
3%|▎ | 164/4810 [01:05<29:09, 2.66it/s]
|
378 |
3%|▎ | 165/4810 [01:05<28:25, 2.72it/s]
|
379 |
3%|▎ | 166/4810 [01:05<26:37, 2.91it/s]
|
380 |
3%|▎ | 167/4810 [01:06<27:57, 2.77it/s]
|
381 |
3%|▎ | 168/4810 [01:06<30:28, 2.54it/s]
|
382 |
4%|▎ | 169/4810 [01:07<29:57, 2.58it/s]
|
383 |
4%|▎ | 170/4810 [01:07<28:48, 2.68it/s]
|
384 |
4%|▎ | 171/4810 [01:07<30:14, 2.56it/s]
|
385 |
4%|▎ | 172/4810 [01:08<31:38, 2.44it/s]
|
386 |
4%|▎ | 173/4810 [01:08<31:44, 2.43it/s]
|
387 |
4%|▎ | 174/4810 [01:08<29:13, 2.64it/s]
|
388 |
4%|▎ | 175/4810 [01:09<27:58, 2.76it/s]
|
389 |
4%|▎ | 176/4810 [01:09<25:59, 2.97it/s]
|
390 |
4%|▎ | 177/4810 [01:09<25:35, 3.02it/s]
|
391 |
4%|▎ | 178/4810 [01:10<29:00, 2.66it/s]
|
392 |
4%|▎ | 179/4810 [01:10<28:27, 2.71it/s]
|
393 |
4%|▎ | 180/4810 [01:11<26:04, 2.96it/s]
|
394 |
4%|▍ | 181/4810 [01:11<28:36, 2.70it/s]
|
395 |
4%|▍ | 182/4810 [01:11<27:50, 2.77it/s]
|
396 |
4%|▍ | 183/4810 [01:12<27:55, 2.76it/s]
|
397 |
4%|▍ | 184/4810 [01:12<27:58, 2.76it/s]
|
398 |
4%|▍ | 185/4810 [01:12<27:18, 2.82it/s]
|
399 |
4%|▍ | 186/4810 [01:13<26:43, 2.88it/s]
|
400 |
4%|▍ | 187/4810 [01:13<27:59, 2.75it/s]
|
401 |
4%|▍ | 188/4810 [01:14<29:04, 2.65it/s]
|
402 |
4%|▍ | 189/4810 [01:14<27:32, 2.80it/s]
|
403 |
4%|▍ | 190/4810 [01:14<27:44, 2.78it/s]
|
404 |
4%|▍ | 191/4810 [01:14<25:15, 3.05it/s]
|
405 |
4%|▍ | 192/4810 [01:15<27:30, 2.80it/s]
|
406 |
4%|▍ | 193/4810 [01:15<30:30, 2.52it/s]
|
407 |
4%|▍ | 194/4810 [01:16<30:40, 2.51it/s]
|
408 |
4%|▍ | 195/4810 [01:16<31:36, 2.43it/s]
|
409 |
4%|▍ | 196/4810 [01:16<29:09, 2.64it/s]
|
410 |
4%|▍ | 197/4810 [01:17<29:05, 2.64it/s]
|
411 |
4%|▍ | 198/4810 [01:17<27:31, 2.79it/s]
|
412 |
4%|▍ | 199/4810 [01:18<26:31, 2.90it/s]
|
413 |
4%|▍ | 200/4810 [01:18<31:05, 2.47it/s]
|
414 |
4%|▍ | 201/4810 [01:19<34:12, 2.25it/s]
|
415 |
4%|▍ | 202/4810 [01:19<32:25, 2.37it/s]
|
416 |
4%|▍ | 203/4810 [01:19<31:53, 2.41it/s]
|
417 |
4%|▍ | 204/4810 [01:20<31:25, 2.44it/s]
|
418 |
4%|▍ | 205/4810 [01:20<34:51, 2.20it/s]
|
419 |
4%|▍ | 206/4810 [01:21<30:38, 2.50it/s]
|
420 |
4%|▍ | 207/4810 [01:21<29:59, 2.56it/s]
|
421 |
4%|▍ | 208/4810 [01:21<28:38, 2.68it/s]
|
422 |
4%|▍ | 209/4810 [01:22<27:18, 2.81it/s]
|
423 |
4%|▍ | 210/4810 [01:22<26:16, 2.92it/s]
|
424 |
4%|▍ | 211/4810 [01:22<26:03, 2.94it/s]
|
425 |
4%|▍ | 212/4810 [01:23<27:44, 2.76it/s]
|
426 |
4%|▍ | 213/4810 [01:23<25:53, 2.96it/s]
|
427 |
4%|▍ | 214/4810 [01:23<26:41, 2.87it/s]
|
428 |
4%|▍ | 215/4810 [01:24<27:15, 2.81it/s]
|
429 |
4%|▍ | 216/4810 [01:24<30:02, 2.55it/s]
|
430 |
5%|▍ | 217/4810 [01:25<29:03, 2.63it/s]
|
431 |
5%|▍ | 218/4810 [01:25<32:35, 2.35it/s]
|
432 |
5%|▍ | 219/4810 [01:25<31:01, 2.47it/s]
|
433 |
5%|▍ | 220/4810 [01:26<29:11, 2.62it/s]
|
434 |
5%|▍ | 221/4810 [01:26<28:58, 2.64it/s]
|
435 |
5%|▍ | 222/4810 [01:26<27:59, 2.73it/s]
|
436 |
5%|▍ | 223/4810 [01:27<34:27, 2.22it/s]
|
437 |
5%|▍ | 224/4810 [01:27<32:30, 2.35it/s]
|
438 |
5%|▍ | 225/4810 [01:28<31:09, 2.45it/s]
|
439 |
5%|▍ | 226/4810 [01:28<30:23, 2.51it/s]
|
440 |
5%|▍ | 227/4810 [01:29<30:04, 2.54it/s]
|
441 |
5%|▍ | 228/4810 [01:29<28:17, 2.70it/s]
|
442 |
5%|▍ | 229/4810 [01:29<26:56, 2.83it/s]
|
443 |
5%|▍ | 230/4810 [01:30<27:26, 2.78it/s]
|
444 |
5%|▍ | 231/4810 [01:30<30:19, 2.52it/s]
|
445 |
5%|▍ | 232/4810 [01:31<31:23, 2.43it/s]
|
446 |
5%|▍ | 233/4810 [01:31<29:54, 2.55it/s]
|
447 |
5%|▍ | 234/4810 [01:31<31:10, 2.45it/s]
|
448 |
5%|▍ | 235/4810 [01:32<31:06, 2.45it/s]
|
449 |
5%|▍ | 236/4810 [01:32<28:42, 2.66it/s]
|
450 |
5%|▍ | 237/4810 [01:32<29:53, 2.55it/s]
|
451 |
5%|▍ | 238/4810 [01:33<28:53, 2.64it/s]
|
452 |
5%|▍ | 239/4810 [01:33<30:33, 2.49it/s]
|
453 |
5%|▍ | 240/4810 [01:34<29:34, 2.58it/s]
|
454 |
5%|▌ | 241/4810 [01:34<29:38, 2.57it/s]
|
455 |
5%|▌ | 242/4810 [01:34<27:36, 2.76it/s]
|
456 |
5%|▌ | 243/4810 [01:35<29:01, 2.62it/s]
|
457 |
5%|▌ | 244/4810 [01:35<33:01, 2.30it/s]
|
458 |
5%|▌ | 245/4810 [01:36<32:23, 2.35it/s]
|
459 |
5%|▌ | 246/4810 [01:36<30:56, 2.46it/s]
|
460 |
5%|▌ | 247/4810 [01:36<29:16, 2.60it/s]
|
461 |
5%|▌ | 248/4810 [01:37<29:22, 2.59it/s]
|
462 |
5%|▌ | 249/4810 [01:37<27:23, 2.77it/s]
|
463 |
5%|▌ | 250/4810 [01:37<28:25, 2.67it/s]
|
464 |
5%|▌ | 251/4810 [01:38<28:59, 2.62it/s]
|
465 |
5%|▌ | 252/4810 [01:38<29:24, 2.58it/s]
|
466 |
5%|▌ | 253/4810 [01:39<28:13, 2.69it/s]
|
467 |
5%|▌ | 254/4810 [01:39<27:08, 2.80it/s]
|
468 |
5%|▌ | 255/4810 [01:39<27:09, 2.80it/s]
|
469 |
5%|▌ | 256/4810 [01:40<30:31, 2.49it/s]
|
470 |
5%|▌ | 257/4810 [01:40<30:16, 2.51it/s]
|
471 |
5%|▌ | 258/4810 [01:41<29:10, 2.60it/s]
|
472 |
5%|▌ | 259/4810 [01:41<29:35, 2.56it/s]
|
473 |
5%|▌ | 260/4810 [01:41<27:11, 2.79it/s]
|
474 |
5%|▌ | 261/4810 [01:42<27:33, 2.75it/s]
|
475 |
5%|▌ | 262/4810 [01:42<27:51, 2.72it/s]
|
476 |
5%|▌ | 263/4810 [01:42<27:09, 2.79it/s]
|
477 |
5%|▌ | 264/4810 [01:43<27:02, 2.80it/s]
|
478 |
6%|▌ | 265/4810 [01:43<26:53, 2.82it/s]
|
479 |
6%|▌ | 266/4810 [01:43<27:05, 2.79it/s]
|
480 |
6%|▌ | 267/4810 [01:44<26:04, 2.90it/s]
|
481 |
6%|▌ | 268/4810 [01:44<27:08, 2.79it/s]
|
482 |
6%|▌ | 269/4810 [01:44<26:02, 2.91it/s]
|
483 |
6%|▌ | 270/4810 [01:45<25:45, 2.94it/s]
|
484 |
6%|▌ | 271/4810 [01:45<29:55, 2.53it/s]
|
485 |
6%|▌ | 272/4810 [01:46<30:42, 2.46it/s]
|
486 |
6%|▌ | 273/4810 [01:46<29:45, 2.54it/s]
|
487 |
6%|▌ | 274/4810 [01:46<29:06, 2.60it/s]
|
488 |
6%|▌ | 275/4810 [01:47<29:01, 2.60it/s]
|
489 |
6%|▌ | 276/4810 [01:47<28:30, 2.65it/s]
|
490 |
6%|▌ | 277/4810 [01:47<26:49, 2.82it/s]
|
491 |
6%|▌ | 278/4810 [01:48<27:18, 2.77it/s]
|
492 |
6%|▌ | 279/4810 [01:48<30:42, 2.46it/s]
|
493 |
6%|▌ | 280/4810 [01:49<29:33, 2.55it/s]
|
494 |
6%|▌ | 281/4810 [01:49<28:53, 2.61it/s]
|
495 |
6%|▌ | 282/4810 [01:49<28:21, 2.66it/s]
|
496 |
6%|▌ | 283/4810 [01:50<28:06, 2.68it/s]
|
497 |
6%|▌ | 284/4810 [01:50<28:46, 2.62it/s]
|
498 |
6%|▌ | 285/4810 [01:51<29:19, 2.57it/s]
|
499 |
6%|▌ | 286/4810 [01:51<29:11, 2.58it/s]
|
500 |
6%|▌ | 287/4810 [01:51<27:13, 2.77it/s]
|
501 |
6%|▌ | 288/4810 [01:52<28:40, 2.63it/s]
|
502 |
6%|▌ | 289/4810 [01:52<27:42, 2.72it/s]
|
503 |
6%|▌ | 290/4810 [01:53<30:54, 2.44it/s]
|
504 |
6%|▌ | 291/4810 [01:53<31:21, 2.40it/s]
|
505 |
6%|▌ | 292/4810 [01:53<30:03, 2.51it/s]
|
506 |
6%|▌ | 293/4810 [01:54<31:26, 2.39it/s]
|
507 |
6%|▌ | 294/4810 [01:54<30:49, 2.44it/s]
|
508 |
6%|▌ | 295/4810 [01:55<29:47, 2.53it/s]
|
509 |
6%|▌ | 296/4810 [01:55<28:36, 2.63it/s]
|
510 |
6%|▌ | 297/4810 [01:55<30:04, 2.50it/s]
|
511 |
6%|▌ | 298/4810 [01:56<29:28, 2.55it/s]
|
512 |
6%|▌ | 299/4810 [01:56<32:33, 2.31it/s]
|
513 |
6%|▌ | 300/4810 [01:57<31:04, 2.42it/s]
|
514 |
6%|▋ | 301/4810 [01:57<28:36, 2.63it/s]
|
515 |
6%|▋ | 302/4810 [01:57<28:01, 2.68it/s]
|
516 |
6%|▋ | 303/4810 [01:58<27:12, 2.76it/s]
|
517 |
6%|▋ | 304/4810 [01:58<28:14, 2.66it/s]
|
518 |
6%|▋ | 305/4810 [01:58<28:00, 2.68it/s]
|
519 |
6%|▋ | 306/4810 [01:59<27:39, 2.71it/s]
|
520 |
6%|▋ | 307/4810 [01:59<29:00, 2.59it/s]
|
521 |
6%|▋ | 308/4810 [02:00<28:37, 2.62it/s]
|
522 |
6%|▋ | 309/4810 [02:00<28:04, 2.67it/s]
|
523 |
6%|▋ | 310/4810 [02:00<30:18, 2.47it/s]
|
524 |
6%|▋ | 311/4810 [02:01<28:53, 2.59it/s]
|
525 |
6%|▋ | 312/4810 [02:01<30:52, 2.43it/s]
|
526 |
7%|▋ | 313/4810 [02:02<31:32, 2.38it/s]
|
527 |
7%|▋ | 314/4810 [02:02<27:08, 2.76it/s]
|
528 |
7%|▋ | 315/4810 [02:02<26:03, 2.87it/s]
|
529 |
7%|▋ | 316/4810 [02:03<25:47, 2.90it/s]
|
530 |
7%|▋ | 317/4810 [02:03<34:04, 2.20it/s]
|
531 |
7%|▋ | 318/4810 [02:04<32:38, 2.29it/s]
|
532 |
7%|▋ | 319/4810 [02:04<28:40, 2.61it/s]
|
533 |
7%|▋ | 320/4810 [02:04<29:58, 2.50it/s]
|
534 |
7%|▋ | 321/4810 [02:05<29:03, 2.58it/s]
|
535 |
7%|▋ | 322/4810 [02:05<27:43, 2.70it/s]
|
536 |
7%|▋ | 323/4810 [02:05<28:43, 2.60it/s]
|
537 |
7%|▋ | 324/4810 [02:06<26:28, 2.82it/s]
|
538 |
7%|▋ | 325/4810 [02:06<25:34, 2.92it/s]
|
539 |
7%|▋ | 326/4810 [02:06<25:07, 2.97it/s]
|
540 |
7%|▋ | 327/4810 [02:07<25:27, 2.94it/s]
|
541 |
7%|▋ | 328/4810 [02:07<24:49, 3.01it/s]
|
542 |
7%|▋ | 329/4810 [02:07<25:59, 2.87it/s]
|
543 |
7%|▋ | 330/4810 [02:08<23:20, 3.20it/s]
|
544 |
7%|▋ | 331/4810 [02:08<24:01, 3.11it/s]
|
545 |
7%|▋ | 332/4810 [02:08<25:07, 2.97it/s]
|
546 |
7%|▋ | 333/4810 [02:09<29:22, 2.54it/s]
|
547 |
7%|▋ | 334/4810 [02:09<32:33, 2.29it/s]
|
548 |
7%|▋ | 335/4810 [02:10<36:50, 2.02it/s]
|
549 |
7%|▋ | 336/4810 [02:10<35:06, 2.12it/s]
|
550 |
7%|▋ | 337/4810 [02:11<36:42, 2.03it/s]
|
551 |
7%|▋ | 338/4810 [02:11<31:47, 2.34it/s]
|
552 |
7%|▋ | 339/4810 [02:12<34:39, 2.15it/s]
|
553 |
7%|▋ | 340/4810 [02:12<32:47, 2.27it/s]
|
554 |
7%|▋ | 341/4810 [02:13<30:18, 2.46it/s]
|
555 |
7%|▋ | 342/4810 [02:13<30:40, 2.43it/s]
|
556 |
7%|▋ | 343/4810 [02:13<33:24, 2.23it/s]
|
557 |
7%|▋ | 344/4810 [02:14<32:55, 2.26it/s]
|
558 |
7%|▋ | 345/4810 [02:14<30:49, 2.41it/s]
|
559 |
7%|▋ | 346/4810 [02:15<31:02, 2.40it/s]
|
560 |
7%|▋ | 347/4810 [02:15<32:49, 2.27it/s]
|
561 |
7%|▋ | 348/4810 [02:16<30:06, 2.47it/s]
|
562 |
7%|▋ | 349/4810 [02:16<30:08, 2.47it/s]
|
563 |
7%|▋ | 350/4810 [02:16<31:01, 2.40it/s]
|
564 |
7%|▋ | 351/4810 [02:17<27:48, 2.67it/s]
|
565 |
7%|▋ | 352/4810 [02:17<25:57, 2.86it/s]
|
566 |
7%|▋ | 353/4810 [02:17<25:06, 2.96it/s]
|
567 |
7%|▋ | 354/4810 [02:18<26:49, 2.77it/s]
|
568 |
7%|▋ | 355/4810 [02:18<26:23, 2.81it/s]
|
569 |
7%|▋ | 356/4810 [02:18<25:07, 2.96it/s]
|
570 |
7%|▋ | 357/4810 [02:19<24:14, 3.06it/s]
|
571 |
7%|▋ | 358/4810 [02:19<28:40, 2.59it/s]
|
572 |
7%|▋ | 359/4810 [02:19<26:46, 2.77it/s]
|
573 |
7%|▋ | 360/4810 [02:20<29:52, 2.48it/s]
|
574 |
8%|▊ | 361/4810 [02:20<28:24, 2.61it/s]
|
575 |
8%|▊ | 362/4810 [02:21<27:07, 2.73it/s]
|
576 |
8%|▊ | 363/4810 [02:21<26:22, 2.81it/s]
|
577 |
8%|▊ | 364/4810 [02:21<24:42, 3.00it/s]
|
578 |
8%|▊ | 365/4810 [02:22<26:20, 2.81it/s]
|
579 |
8%|▊ | 366/4810 [02:22<29:28, 2.51it/s]
|
580 |
8%|▊ | 367/4810 [02:22<26:11, 2.83it/s]
|
581 |
8%|▊ | 368/4810 [02:23<26:59, 2.74it/s]
|
582 |
8%|▊ | 369/4810 [02:23<27:51, 2.66it/s]
|
583 |
8%|▊ | 370/4810 [02:24<28:42, 2.58it/s]
|
584 |
8%|▊ | 371/4810 [02:24<28:57, 2.55it/s]
|
585 |
8%|▊ | 372/4810 [02:24<26:58, 2.74it/s]
|
586 |
8%|▊ | 373/4810 [02:25<27:13, 2.72it/s]
|
587 |
8%|▊ | 374/4810 [02:25<28:23, 2.60it/s]
|
588 |
8%|▊ | 375/4810 [02:25<29:07, 2.54it/s]
|
589 |
8%|▊ | 376/4810 [02:26<30:17, 2.44it/s]
|
590 |
8%|▊ | 377/4810 [02:26<28:21, 2.60it/s]
|
591 |
8%|▊ | 378/4810 [02:27<27:30, 2.69it/s]
|
592 |
8%|▊ | 379/4810 [02:27<27:09, 2.72it/s]
|
593 |
8%|▊ | 380/4810 [02:27<27:03, 2.73it/s]
|
594 |
8%|▊ | 381/4810 [02:28<24:59, 2.95it/s]
|
595 |
8%|▊ | 382/4810 [02:28<24:59, 2.95it/s]
|
596 |
8%|▊ | 383/4810 [02:28<23:45, 3.11it/s]
|
597 |
8%|▊ | 384/4810 [02:29<24:11, 3.05it/s]
|
598 |
8%|▊ | 385/4810 [02:29<25:05, 2.94it/s]
|
599 |
8%|▊ | 386/4810 [02:29<23:06, 3.19it/s]
|
600 |
8%|▊ | 387/4810 [02:29<22:49, 3.23it/s]
|
601 |
8%|▊ | 388/4810 [02:30<27:13, 2.71it/s]
|
602 |
8%|▊ | 389/4810 [02:30<26:54, 2.74it/s]
|
603 |
8%|▊ | 390/4810 [02:31<26:20, 2.80it/s]
|
604 |
8%|▊ | 391/4810 [02:31<26:46, 2.75it/s]
|
605 |
8%|▊ | 392/4810 [02:31<27:22, 2.69it/s]
|
606 |
8%|▊ | 393/4810 [02:32<28:41, 2.57it/s]
|
607 |
8%|▊ | 394/4810 [02:32<28:18, 2.60it/s]
|
608 |
8%|▊ | 395/4810 [02:33<26:25, 2.78it/s]
|
609 |
8%|▊ | 396/4810 [02:33<29:17, 2.51it/s]
|
610 |
8%|▊ | 397/4810 [02:33<26:01, 2.83it/s]
|
611 |
8%|▊ | 398/4810 [02:34<27:15, 2.70it/s]
|
612 |
8%|▊ | 399/4810 [02:34<26:54, 2.73it/s]
|
613 |
8%|▊ | 400/4810 [02:34<27:43, 2.65it/s]
|
614 |
8%|▊ | 401/4810 [02:35<26:36, 2.76it/s]
|
615 |
8%|▊ | 402/4810 [02:35<27:11, 2.70it/s]
|
616 |
8%|▊ | 403/4810 [02:36<27:37, 2.66it/s]
|
617 |
8%|▊ | 404/4810 [02:36<28:51, 2.55it/s]
|
618 |
8%|▊ | 405/4810 [02:36<29:45, 2.47it/s]
|
619 |
8%|▊ | 406/4810 [02:37<29:24, 2.50it/s]
|
620 |
8%|▊ | 407/4810 [02:37<27:26, 2.67it/s]
|
621 |
8%|▊ | 408/4810 [02:37<26:00, 2.82it/s]
|
622 |
9%|▊ | 409/4810 [02:38<28:09, 2.60it/s]
|
623 |
9%|▊ | 410/4810 [02:38<26:20, 2.78it/s]
|
624 |
9%|▊ | 411/4810 [02:39<26:25, 2.77it/s]
|
625 |
9%|▊ | 412/4810 [02:39<30:02, 2.44it/s]
|
626 |
9%|▊ | 413/4810 [02:40<30:37, 2.39it/s]
|
627 |
9%|▊ | 414/4810 [02:40<30:07, 2.43it/s]
|
628 |
9%|▊ | 415/4810 [02:40<27:50, 2.63it/s]
|
629 |
9%|▊ | 416/4810 [02:41<28:19, 2.58it/s]
|
630 |
9%|▊ | 417/4810 [02:41<30:27, 2.40it/s]
|
631 |
9%|▊ | 418/4810 [02:42<30:23, 2.41it/s]
|
632 |
9%|▊ | 419/4810 [02:42<28:35, 2.56it/s]
|
633 |
9%|▊ | 420/4810 [02:42<25:52, 2.83it/s]
|
634 |
9%|▉ | 421/4810 [02:43<26:48, 2.73it/s]
|
635 |
9%|▉ | 422/4810 [02:43<26:00, 2.81it/s]
|
636 |
9%|▉ | 423/4810 [02:43<25:20, 2.88it/s]
|
637 |
9%|▉ | 424/4810 [02:44<27:16, 2.68it/s]
|
638 |
9%|▉ | 425/4810 [02:44<30:23, 2.41it/s]
|
639 |
9%|▉ | 426/4810 [02:44<28:17, 2.58it/s]
|
640 |
9%|▉ | 427/4810 [02:45<25:29, 2.87it/s]
|
641 |
9%|▉ | 428/4810 [02:45<25:15, 2.89it/s]
|
642 |
9%|▉ | 429/4810 [02:45<25:40, 2.84it/s]
|
643 |
9%|▉ | 430/4810 [02:46<25:50, 2.83it/s]
|
644 |
9%|▉ | 431/4810 [02:46<24:59, 2.92it/s]
|
645 |
9%|▉ | 432/4810 [02:46<25:20, 2.88it/s]
|
646 |
9%|▉ | 433/4810 [02:47<31:15, 2.33it/s]
|
647 |
9%|▉ | 434/4810 [02:47<30:38, 2.38it/s]
|
648 |
9%|▉ | 435/4810 [02:48<28:38, 2.55it/s]
|
649 |
9%|▉ | 436/4810 [02:48<29:22, 2.48it/s]
|
650 |
9%|▉ | 437/4810 [02:49<28:07, 2.59it/s]
|
651 |
9%|▉ | 438/4810 [02:49<26:12, 2.78it/s]
|
652 |
9%|▉ | 439/4810 [02:49<26:50, 2.71it/s]
|
653 |
9%|▉ | 440/4810 [02:50<28:16, 2.58it/s]
|
654 |
9%|▉ | 441/4810 [02:50<30:12, 2.41it/s]
|
655 |
9%|▉ | 442/4810 [02:50<27:43, 2.63it/s]
|
656 |
9%|▉ | 443/4810 [02:51<30:29, 2.39it/s]
|
657 |
9%|▉ | 444/4810 [02:51<27:15, 2.67it/s]
|
658 |
9%|▉ | 445/4810 [02:52<27:41, 2.63it/s]
|
659 |
9%|▉ | 446/4810 [02:52<27:59, 2.60it/s]
|
660 |
9%|▉ | 447/4810 [02:52<26:47, 2.71it/s]
|
661 |
9%|▉ | 448/4810 [02:53<28:18, 2.57it/s]
|
662 |
9%|▉ | 449/4810 [02:53<26:22, 2.76it/s]
|
663 |
9%|▉ | 450/4810 [02:53<27:10, 2.67it/s]
|
664 |
9%|▉ | 451/4810 [02:54<28:25, 2.56it/s]
|
665 |
9%|▉ | 452/4810 [02:54<29:26, 2.47it/s]
|
666 |
9%|▉ | 453/4810 [02:55<29:47, 2.44it/s]
|
667 |
9%|▉ | 454/4810 [02:55<29:00, 2.50it/s]
|
668 |
9%|▉ | 455/4810 [02:55<27:33, 2.63it/s]
|
669 |
9%|▉ | 456/4810 [02:56<25:53, 2.80it/s]
|
670 |
10%|▉ | 457/4810 [02:56<25:26, 2.85it/s]
|
671 |
10%|▉ | 458/4810 [02:57<31:06, 2.33it/s]
|
672 |
10%|▉ | 459/4810 [02:57<28:31, 2.54it/s]
|
673 |
10%|▉ | 460/4810 [02:57<27:59, 2.59it/s]
|
674 |
10%|▉ | 461/4810 [02:58<26:21, 2.75it/s]
|
675 |
10%|▉ | 462/4810 [02:58<25:31, 2.84it/s]
|
676 |
10%|▉ | 463/4810 [02:58<26:30, 2.73it/s]
|
677 |
10%|▉ | 464/4810 [02:59<28:33, 2.54it/s]
|
678 |
10%|▉ | 465/4810 [02:59<27:38, 2.62it/s]
|
679 |
10%|▉ | 466/4810 [03:00<27:10, 2.66it/s]
|
680 |
10%|▉ | 467/4810 [03:00<27:59, 2.59it/s]
|
681 |
10%|▉ | 468/4810 [03:01<29:44, 2.43it/s]
|
682 |
10%|▉ | 469/4810 [03:01<31:15, 2.31it/s]
|
683 |
10%|▉ | 470/4810 [03:01<28:21, 2.55it/s]
|
684 |
10%|▉ | 471/4810 [03:02<28:01, 2.58it/s]
|
685 |
10%|▉ | 472/4810 [03:02<28:24, 2.54it/s]
|
686 |
10%|▉ | 473/4810 [03:02<27:27, 2.63it/s]
|
687 |
10%|▉ | 474/4810 [03:03<29:38, 2.44it/s]
|
688 |
10%|▉ | 475/4810 [03:03<27:15, 2.65it/s]
|
689 |
10%|▉ | 476/4810 [03:04<27:16, 2.65it/s]
|
690 |
10%|▉ | 477/4810 [03:04<27:36, 2.62it/s]
|
691 |
10%|▉ | 478/4810 [03:04<28:57, 2.49it/s]
|
692 |
10%|▉ | 479/4810 [03:05<27:11, 2.65it/s]
|
693 |
10%|▉ | 480/4810 [03:05<25:54, 2.79it/s]
|
694 |
10%|█ | 481/4810 [03:05<25:13, 2.86it/s][INFO|trainer.py:811] 2024-09-09 13:35:02,425 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
695 |
+
[INFO|trainer.py:3819] 2024-09-09 13:35:02,428 >>
|
696 |
+
***** Running Evaluation *****
|
697 |
+
[INFO|trainer.py:3821] 2024-09-09 13:35:02,428 >> Num examples = 6946
|
698 |
+
[INFO|trainer.py:3824] 2024-09-09 13:35:02,428 >> Batch size = 8
|
699 |
+
|
700 |
+
|
701 |
0%| | 0/869 [00:00<?, ?it/s][A
|
702 |
+
|
703 |
1%| | 10/869 [00:00<00:09, 92.74it/s][A
|
704 |
+
|
705 |
2%|▏ | 20/869 [00:00<00:10, 79.64it/s][A
|
706 |
+
|
707 |
3%|▎ | 29/869 [00:00<00:10, 77.94it/s][A
|
708 |
+
|
709 |
4%|▍ | 37/869 [00:00<00:11, 75.24it/s][A
|
710 |
+
|
711 |
5%|▌ | 46/869 [00:00<00:10, 79.07it/s][A
|
712 |
+
|
713 |
6%|▋ | 55/869 [00:00<00:10, 81.38it/s][A
|
714 |
+
|
715 |
7%|▋ | 64/869 [00:00<00:10, 76.89it/s][A
|
716 |
+
|
717 |
8%|▊ | 72/869 [00:00<00:10, 76.42it/s][A
|
718 |
+
|
719 |
9%|▉ | 81/869 [00:01<00:09, 80.05it/s][A
|
720 |
+
|
721 |
10%|█ | 90/869 [00:01<00:09, 82.34it/s][A
|
722 |
+
|
723 |
12%|█▏ | 100/869 [00:01<00:09, 85.08it/s][A
|
724 |
+
|
725 |
13%|█▎ | 109/869 [00:01<00:09, 81.57it/s][A
|
726 |
+
|
727 |
14%|█▎ | 118/869 [00:01<00:09, 80.97it/s][A
|
728 |
+
|
729 |
15%|█▍ | 127/869 [00:01<00:09, 78.77it/s][A
|
730 |
+
|
731 |
16%|█▌ | 136/869 [00:01<00:09, 80.72it/s][A
|
732 |
+
|
733 |
17%|█▋ | 145/869 [00:01<00:09, 75.58it/s][A
|
734 |
+
|
735 |
18%|█▊ | 154/869 [00:01<00:09, 77.65it/s][A
|
736 |
+
|
737 |
19%|█▉ | 163/869 [00:02<00:09, 78.21it/s][A
|
738 |
+
|
739 |
20%|█▉ | 171/869 [00:02<00:09, 76.35it/s][A
|
740 |
+
|
741 |
21%|██ | 179/869 [00:02<00:09, 75.47it/s][A
|
742 |
+
|
743 |
22%|██▏ | 188/869 [00:02<00:08, 77.48it/s][A
|
744 |
+
|
745 |
23%|██▎ | 196/869 [00:02<00:08, 74.82it/s][A
|
746 |
+
|
747 |
24%|██▎ | 205/869 [00:02<00:08, 77.33it/s][A
|
748 |
+
|
749 |
25%|██▍ | 214/869 [00:02<00:08, 78.96it/s][A
|
750 |
+
|
751 |
26%|██▌ | 223/869 [00:02<00:08, 80.11it/s][A
|
752 |
+
|
753 |
27%|██▋ | 232/869 [00:02<00:08, 77.00it/s][A
|
754 |
+
|
755 |
28%|██▊ | 240/869 [00:03<00:08, 77.05it/s][A
|
756 |
+
|
757 |
29%|██▊ | 248/869 [00:03<00:08, 71.60it/s][A
|
758 |
+
|
759 |
30%|██▉ | 257/869 [00:03<00:08, 74.38it/s][A
|
760 |
+
|
761 |
30%|███ | 265/869 [00:03<00:08, 74.11it/s][A
|
762 |
+
|
763 |
31%|███▏ | 273/869 [00:03<00:07, 74.77it/s][A
|
764 |
+
|
765 |
32%|███▏ | 281/869 [00:03<00:07, 74.24it/s][A
|
766 |
+
|
767 |
33%|███▎ | 289/869 [00:03<00:07, 73.58it/s][A
|
768 |
+
|
769 |
34%|███▍ | 297/869 [00:03<00:07, 74.51it/s][A
|
770 |
+
|
771 |
35%|███▌ | 305/869 [00:03<00:07, 71.14it/s][A
|
772 |
+
|
773 |
36%|███▌ | 313/869 [00:04<00:07, 72.91it/s][A
|
774 |
+
|
775 |
37%|███▋ | 321/869 [00:04<00:07, 72.67it/s][A
|
776 |
+
|
777 |
38%|███▊ | 330/869 [00:04<00:07, 76.39it/s][A
|
778 |
+
|
779 |
39%|███▉ | 339/869 [00:04<00:06, 78.05it/s][A
|
780 |
+
|
781 |
40%|███▉ | 347/869 [00:04<00:07, 72.56it/s][A
|
782 |
+
|
783 |
41%|████ | 355/869 [00:04<00:07, 73.35it/s][A
|
784 |
+
|
785 |
42%|████▏ | 364/869 [00:04<00:06, 77.21it/s][A
|
786 |
+
|
787 |
43%|████▎ | 373/869 [00:04<00:06, 75.08it/s][A
|
788 |
+
|
789 |
44%|████▍ | 381/869 [00:04<00:06, 76.23it/s][A
|
790 |
+
|
791 |
45%|████▍ | 389/869 [00:05<00:06, 70.89it/s][A
|
792 |
+
|
793 |
46%|████▌ | 398/869 [00:05<00:06, 73.47it/s][A
|
794 |
+
|
795 |
47%|████▋ | 407/869 [00:05<00:06, 75.80it/s][A
|
796 |
+
|
797 |
48%|████▊ | 416/869 [00:05<00:05, 78.55it/s][A
|
798 |
+
|
799 |
49%|████▉ | 424/869 [00:05<00:05, 78.67it/s][A
|
800 |
+
|
801 |
50%|████▉ | 433/869 [00:05<00:05, 79.63it/s][A
|
802 |
+
|
803 |
51%|█████ | 441/869 [00:05<00:05, 76.93it/s][A
|
804 |
+
|
805 |
52%|█████▏ | 449/869 [00:05<00:05, 76.43it/s][A
|
806 |
+
|
807 |
53%|█████▎ | 457/869 [00:05<00:05, 77.15it/s][A
|
808 |
+
|
809 |
54%|█████▎ | 465/869 [00:06<00:05, 75.70it/s][A
|
810 |
+
|
811 |
55%|█████▍ | 475/869 [00:06<00:04, 80.70it/s][A
|
812 |
+
|
813 |
56%|█████▌ | 484/869 [00:06<00:04, 82.99it/s][A
|
814 |
+
|
815 |
57%|█████▋ | 493/869 [00:06<00:04, 76.39it/s][A
|
816 |
+
|
817 |
58%|█████▊ | 501/869 [00:06<00:04, 76.83it/s][A
|
818 |
+
|
819 |
59%|█████▊ | 509/869 [00:06<00:04, 74.69it/s][A
|
820 |
+
|
821 |
60%|█████▉ | 518/869 [00:06<00:04, 78.00it/s][A
|
822 |
+
|
823 |
61%|██████ | 526/869 [00:06<00:04, 72.48it/s][A
|
824 |
+
|
825 |
61%|██████▏ | 534/869 [00:06<00:04, 74.17it/s][A
|
826 |
+
|
827 |
62%|██████▏ | 542/869 [00:07<00:04, 71.10it/s][A
|
828 |
+
|
829 |
63%|██████▎ | 551/869 [00:07<00:04, 74.51it/s][A
|
830 |
+
|
831 |
64%|██████▍ | 559/869 [00:07<00:04, 75.26it/s][A
|
832 |
+
|
833 |
65%|██████▌ | 567/869 [00:07<00:04, 74.55it/s][A
|
834 |
+
|
835 |
66%|██████▌ | 575/869 [00:07<00:03, 75.60it/s][A
|
836 |
+
|
837 |
67%|██████▋ | 583/869 [00:07<00:03, 74.19it/s][A
|
838 |
+
|
839 |
68%|██████▊ | 591/869 [00:07<00:03, 74.92it/s][A
|
840 |
+
|
841 |
69%|██████▉ | 600/869 [00:07<00:03, 78.05it/s][A
|
842 |
+
|
843 |
70%|███████ | 609/869 [00:07<00:03, 79.24it/s][A
|
844 |
+
|
845 |
71%|███████ | 617/869 [00:08<00:03, 77.66it/s][A
|
846 |
+
|
847 |
72%|███████▏ | 625/869 [00:08<00:03, 76.47it/s][A
|
848 |
+
|
849 |
73%|███████▎ | 633/869 [00:08<00:03, 76.47it/s][A
|
850 |
+
|
851 |
74%|███████▍ | 641/869 [00:08<00:03, 75.89it/s][A
|
852 |
+
|
853 |
75%|███████▍ | 650/869 [00:08<00:02, 79.01it/s][A
|
854 |
+
|
855 |
76%|███████▌ | 658/869 [00:08<00:02, 77.60it/s][A
|
856 |
+
|
857 |
77%|███████▋ | 667/869 [00:08<00:02, 78.98it/s][A
|
858 |
+
|
859 |
78%|███████▊ | 677/869 [00:08<00:02, 82.51it/s][A
|
860 |
+
|
861 |
79%|███████▉ | 686/869 [00:08<00:02, 70.80it/s][A
|
862 |
+
|
863 |
80%|███████▉ | 695/869 [00:09<00:02, 73.91it/s][A
|
864 |
+
|
865 |
81%|████████ | 703/869 [00:09<00:02, 73.34it/s][A
|
866 |
+
|
867 |
82%|████████▏ | 712/869 [00:09<00:02, 76.08it/s][A
|
868 |
+
|
869 |
83%|████████▎ | 720/869 [00:09<00:01, 76.70it/s][A
|
870 |
+
|
871 |
84%|████████▍ | 729/869 [00:09<00:01, 78.48it/s][A
|
872 |
+
|
873 |
85%|████████▍ | 737/869 [00:09<00:01, 77.75it/s][A
|
874 |
+
|
875 |
86%|████████▌ | 746/869 [00:09<00:01, 79.14it/s][A
|
876 |
+
|
877 |
87%|████████▋ | 754/869 [00:09<00:01, 76.52it/s][A
|
878 |
+
|
879 |
88%|████████▊ | 763/869 [00:09<00:01, 79.30it/s][A
|
880 |
+
|
881 |
89%|████████▊ | 771/869 [00:10<00:01, 73.38it/s][A
|
882 |
+
|
883 |
90%|████████▉ | 779/869 [00:10<00:01, 64.34it/s][A
|
884 |
+
|
885 |
91%|█████████ | 788/869 [00:10<00:01, 68.97it/s][A
|
886 |
+
|
887 |
92%|█████████▏| 797/869 [00:10<00:00, 72.75it/s][A
|
888 |
+
|
889 |
93%|█████████▎| 805/869 [00:10<00:00, 73.42it/s][A
|
890 |
+
|
891 |
94%|█████████▎| 814/869 [00:10<00:00, 75.70it/s][A
|
892 |
+
|
893 |
95%|█████████▍| 822/869 [00:10<00:00, 75.50it/s][A
|
894 |
+
|
895 |
96%|█████████▌| 831/869 [00:10<00:00, 76.45it/s][A
|
896 |
+
|
897 |
97%|█████████▋| 840/869 [00:11<00:00, 78.28it/s][A
|
898 |
+
|
899 |
98%|█████████▊| 849/869 [00:11<00:00, 80.11it/s][A
|
900 |
+
|
901 |
99%|█████████▊| 858/869 [00:11<00:00, 79.41it/s][A
|
902 |
+
|
903 |
|
904 |
+
|
905 |
|
906 |
10%|█ | 481/4810 [03:21<25:13, 2.86it/s]
|
907 |
+
|
908 |
+
|
909 |
[A[INFO|trainer.py:3503] 2024-09-09 13:35:17,601 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-481
|
910 |
+
[INFO|configuration_utils.py:472] 2024-09-09 13:35:17,602 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-481/config.json
|
911 |
+
[INFO|modeling_utils.py:2799] 2024-09-09 13:35:18,488 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-481/model.safetensors
|
912 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 13:35:18,489 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-481/tokenizer_config.json
|
913 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 13:35:18,489 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-481/special_tokens_map.json
|
914 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 13:35:24,962 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
915 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 13:35:24,963 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
916 |
+
|
917 |
10%|█ | 482/4810 [03:28<8:32:10, 7.10s/it]
|
918 |
10%|█ | 483/4810 [03:29<6:06:12, 5.08s/it]
|
919 |
10%|█ | 484/4810 [03:29<4:21:49, 3.63s/it]
|
920 |
10%|█ | 485/4810 [03:29<3:14:36, 2.70s/it]
|
921 |
10%|█ | 486/4810 [03:30<2:25:03, 2.01s/it]
|
922 |
10%|█ | 487/4810 [03:30<1:48:43, 1.51s/it]
|
923 |
10%|█ | 488/4810 [03:30<1:22:33, 1.15s/it]
|
924 |
10%|█ | 489/4810 [03:31<1:04:51, 1.11it/s]
|
925 |
10%|█ | 490/4810 [03:31<54:32, 1.32it/s]
|
926 |
10%|█ | 491/4810 [03:32<46:15, 1.56it/s]
|
927 |
10%|█ | 492/4810 [03:32<40:57, 1.76it/s]
|
928 |
10%|█ | 493/4810 [03:32<36:38, 1.96it/s]
|
929 |
10%|█ | 494/4810 [03:33<34:17, 2.10it/s]
|
930 |
10%|█ | 495/4810 [03:33<31:53, 2.25it/s]
|
931 |
10%|█ | 496/4810 [03:33<28:30, 2.52it/s]
|
932 |
10%|█ | 497/4810 [03:34<28:31, 2.52it/s]
|
933 |
10%|█ | 498/4810 [03:34<27:10, 2.64it/s]
|
934 |
10%|█ | 499/4810 [03:34<26:54, 2.67it/s]
|
935 |
10%|█ | 500/4810 [03:35<28:10, 2.55it/s]
|
936 |
|
937 |
10%|█ | 500/4810 [03:35<28:10, 2.55it/s]
|
938 |
10%|█ | 501/4810 [03:35<27:27, 2.62it/s]
|
939 |
10%|█ | 502/4810 [03:36<26:55, 2.67it/s]
|
940 |
10%|█ | 503/4810 [03:36<26:11, 2.74it/s]
|
941 |
10%|█ | 504/4810 [03:36<26:10, 2.74it/s]
|
942 |
10%|█ | 505/4810 [03:37<25:42, 2.79it/s]
|
943 |
11%|█ | 506/4810 [03:37<27:21, 2.62it/s]
|
944 |
11%|█ | 507/4810 [03:37<24:50, 2.89it/s]
|
945 |
11%|█ | 508/4810 [03:38<25:28, 2.81it/s]
|
946 |
11%|█ | 509/4810 [03:38<24:06, 2.97it/s]
|
947 |
11%|█ | 510/4810 [03:39<27:18, 2.62it/s]
|
948 |
11%|█ | 511/4810 [03:39<26:28, 2.71it/s]
|
949 |
11%|█ | 512/4810 [03:39<25:25, 2.82it/s]
|
950 |
11%|█ | 513/4810 [03:40<24:40, 2.90it/s]
|
951 |
11%|█ | 514/4810 [03:40<26:48, 2.67it/s]
|
952 |
11%|█ | 515/4810 [03:40<24:31, 2.92it/s]
|
953 |
11%|█ | 516/4810 [03:41<25:35, 2.80it/s]
|
954 |
11%|█ | 517/4810 [03:41<25:27, 2.81it/s]
|
955 |
11%|█ | 518/4810 [03:41<24:42, 2.89it/s]
|
956 |
11%|█ | 519/4810 [03:42<23:42, 3.02it/s]
|
957 |
11%|█ | 520/4810 [03:42<23:05, 3.10it/s]
|
958 |
11%|█ | 521/4810 [03:42<25:27, 2.81it/s]
|
959 |
11%|█ | 522/4810 [03:43<23:58, 2.98it/s]
|
960 |
11%|█ | 523/4810 [03:43<24:47, 2.88it/s]
|
961 |
11%|█ | 524/4810 [03:43<26:35, 2.69it/s]
|
962 |
11%|█ | 525/4810 [03:44<24:52, 2.87it/s]
|
963 |
11%|█ | 526/4810 [03:44<24:17, 2.94it/s]
|
964 |
11%|█ | 527/4810 [03:44<23:41, 3.01it/s]
|
965 |
11%|█ | 528/4810 [03:45<24:21, 2.93it/s]
|
966 |
11%|█ | 529/4810 [03:45<25:23, 2.81it/s]
|
967 |
11%|█ | 530/4810 [03:45<25:01, 2.85it/s]
|
968 |
11%|█ | 531/4810 [03:46<24:55, 2.86it/s]
|
969 |
11%|█ | 532/4810 [03:46<29:22, 2.43it/s]
|
970 |
11%|█ | 533/4810 [03:47<29:50, 2.39it/s]
|
971 |
11%|█ | 534/4810 [03:47<29:57, 2.38it/s]
|
972 |
11%|█ | 535/4810 [03:48<30:36, 2.33it/s]
|
973 |
11%|█ | 536/4810 [03:48<30:49, 2.31it/s]
|
974 |
11%|█ | 537/4810 [03:49<31:31, 2.26it/s]
|
975 |
11%|█ | 538/4810 [03:49<32:24, 2.20it/s]
|
976 |
11%|█ | 539/4810 [03:49<30:31, 2.33it/s]
|
977 |
11%|█ | 540/4810 [03:50<28:20, 2.51it/s]
|
978 |
11%|█ | 541/4810 [03:50<27:45, 2.56it/s]
|
979 |
11%|█▏ | 542/4810 [03:51<29:57, 2.38it/s]
|
980 |
11%|█▏ | 543/4810 [03:51<30:35, 2.32it/s]
|
981 |
11%|█▏ | 544/4810 [03:51<30:38, 2.32it/s]
|
982 |
11%|█▏ | 545/4810 [03:52<27:32, 2.58it/s]
|
983 |
11%|█▏ | 546/4810 [03:52<30:06, 2.36it/s]
|
984 |
11%|█▏ | 547/4810 [03:53<28:32, 2.49it/s]
|
985 |
11%|█▏ | 548/4810 [03:53<26:05, 2.72it/s]
|
986 |
11%|█▏ | 549/4810 [03:53<25:07, 2.83it/s]
|
987 |
11%|█▏ | 550/4810 [03:54<29:02, 2.45it/s]
|
988 |
11%|█▏ | 551/4810 [03:54<28:36, 2.48it/s]
|
989 |
11%|█▏ | 552/4810 [03:54<25:48, 2.75it/s]
|
990 |
11%|█▏ | 553/4810 [03:55<26:58, 2.63it/s]
|
991 |
12%|█▏ | 554/4810 [03:55<24:59, 2.84it/s]
|
992 |
12%|█▏ | 555/4810 [03:55<25:05, 2.83it/s]
|
993 |
12%|█▏ | 556/4810 [03:56<26:10, 2.71it/s]
|
994 |
12%|█▏ | 557/4810 [03:56<25:34, 2.77it/s]
|
995 |
12%|█▏ | 558/4810 [03:57<24:47, 2.86it/s]
|
996 |
12%|█▏ | 559/4810 [03:57<23:59, 2.95it/s]
|
997 |
12%|█▏ | 560/4810 [03:57<22:49, 3.10it/s]
|
998 |
12%|█▏ | 561/4810 [03:58<27:17, 2.59it/s]
|
999 |
12%|█▏ | 562/4810 [03:58<26:24, 2.68it/s]
|
1000 |
12%|█▏ | 563/4810 [03:58<25:16, 2.80it/s]
|
1001 |
12%|█▏ | 564/4810 [03:59<26:56, 2.63it/s]
|
1002 |
12%|█▏ | 565/4810 [03:59<26:47, 2.64it/s]
|
1003 |
12%|█▏ | 566/4810 [03:59<24:55, 2.84it/s]
|
1004 |
12%|█▏ | 567/4810 [04:00<27:34, 2.56it/s]
|
1005 |
12%|█▏ | 568/4810 [04:00<26:34, 2.66it/s]
|
1006 |
12%|█▏ | 569/4810 [04:01<25:54, 2.73it/s]
|
1007 |
12%|█▏ | 570/4810 [04:01<29:03, 2.43it/s]
|
1008 |
12%|█▏ | 571/4810 [04:02<28:38, 2.47it/s]
|
1009 |
12%|█▏ | 572/4810 [04:02<26:48, 2.63it/s]
|
1010 |
12%|█▏ | 573/4810 [04:02<27:52, 2.53it/s]
|
1011 |
12%|█▏ | 574/4810 [04:03<26:19, 2.68it/s]
|
1012 |
12%|█▏ | 575/4810 [04:03<26:38, 2.65it/s]
|
1013 |
12%|█▏ | 576/4810 [04:04<29:45, 2.37it/s]
|
1014 |
12%|█▏ | 577/4810 [04:04<29:36, 2.38it/s]
|
1015 |
12%|█▏ | 578/4810 [04:04<27:07, 2.60it/s]
|
1016 |
12%|█▏ | 579/4810 [04:05<29:07, 2.42it/s]
|
1017 |
12%|█▏ | 580/4810 [04:05<28:08, 2.51it/s]
|
1018 |
12%|█▏ | 581/4810 [04:05<27:40, 2.55it/s]
|
1019 |
12%|█▏ | 582/4810 [04:06<27:42, 2.54it/s]
|
1020 |
12%|█▏ | 583/4810 [04:06<26:15, 2.68it/s]
|
1021 |
12%|█▏ | 584/4810 [04:07<25:43, 2.74it/s]
|
1022 |
12%|█▏ | 585/4810 [04:07<25:24, 2.77it/s]
|
1023 |
12%|█▏ | 586/4810 [04:07<26:19, 2.67it/s]
|
1024 |
12%|█▏ | 587/4810 [04:08<25:39, 2.74it/s]
|
1025 |
12%|█▏ | 588/4810 [04:08<25:44, 2.73it/s]
|
1026 |
12%|█▏ | 589/4810 [04:08<25:51, 2.72it/s]
|
1027 |
12%|█▏ | 590/4810 [04:09<24:15, 2.90it/s]
|
1028 |
12%|█▏ | 591/4810 [04:09<26:16, 2.68it/s]
|
1029 |
12%|█▏ | 592/4810 [04:09<25:49, 2.72it/s]
|
1030 |
12%|█▏ | 593/4810 [04:10<27:03, 2.60it/s]
|
1031 |
12%|█▏ | 594/4810 [04:10<27:41, 2.54it/s]
|
1032 |
12%|█▏ | 595/4810 [04:11<28:42, 2.45it/s]
|
1033 |
12%|█▏ | 596/4810 [04:11<28:15, 2.49it/s]
|
1034 |
12%|█▏ | 597/4810 [04:12<28:12, 2.49it/s]
|
1035 |
12%|█▏ | 598/4810 [04:12<26:42, 2.63it/s]
|
1036 |
12%|█▏ | 599/4810 [04:12<25:00, 2.81it/s]
|
1037 |
12%|█▏ | 600/4810 [04:13<25:04, 2.80it/s]
|
1038 |
12%|█▏ | 601/4810 [04:13<26:47, 2.62it/s]
|
1039 |
13%|█▎ | 602/4810 [04:13<26:45, 2.62it/s]
|
1040 |
13%|█▎ | 603/4810 [04:14<26:32, 2.64it/s]
|
1041 |
13%|█▎ | 604/4810 [04:14<27:59, 2.50it/s]
|
1042 |
13%|█▎ | 605/4810 [04:15<27:25, 2.55it/s]
|
1043 |
13%|█▎ | 606/4810 [04:15<25:56, 2.70it/s]
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"total_flos": 1.394810359803495e+16,
|
4 |
+
"train_loss": 0.0028968164414402532,
|
5 |
+
"train_runtime": 2196.5741,
|
6 |
+
"train_samples": 32447,
|
7 |
+
"train_samples_per_second": 147.716,
|
8 |
+
"train_steps_per_second": 2.308
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9335180055401663,
|
3 |
+
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-4056",
|
4 |
+
"epoch": 10.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 5070,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.9861932938856016,
|
13 |
+
"grad_norm": 0.16175590455532074,
|
14 |
+
"learning_rate": 4.5069033530571994e-05,
|
15 |
+
"loss": 0.0183,
|
16 |
+
"step": 500
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.0,
|
20 |
+
"eval_accuracy": 0.9985418469009014,
|
21 |
+
"eval_f1": 0.9170464904284412,
|
22 |
+
"eval_loss": 0.005470008589327335,
|
23 |
+
"eval_precision": 0.8974130240856378,
|
24 |
+
"eval_recall": 0.9375582479030755,
|
25 |
+
"eval_runtime": 15.2218,
|
26 |
+
"eval_samples_per_second": 456.319,
|
27 |
+
"eval_steps_per_second": 57.089,
|
28 |
+
"step": 507
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 1.972386587771203,
|
32 |
+
"grad_norm": 0.13494741916656494,
|
33 |
+
"learning_rate": 4.0138067061143986e-05,
|
34 |
+
"loss": 0.0043,
|
35 |
+
"step": 1000
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.9985976613735942,
|
40 |
+
"eval_f1": 0.9208103130755064,
|
41 |
+
"eval_loss": 0.005941031500697136,
|
42 |
+
"eval_precision": 0.9099181073703366,
|
43 |
+
"eval_recall": 0.9319664492078286,
|
44 |
+
"eval_runtime": 15.129,
|
45 |
+
"eval_samples_per_second": 459.117,
|
46 |
+
"eval_steps_per_second": 57.439,
|
47 |
+
"step": 1014
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 2.9585798816568047,
|
51 |
+
"grad_norm": 0.14869354665279388,
|
52 |
+
"learning_rate": 3.520710059171598e-05,
|
53 |
+
"loss": 0.0022,
|
54 |
+
"step": 1500
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.998513939664555,
|
59 |
+
"eval_f1": 0.9155963302752294,
|
60 |
+
"eval_loss": 0.005716267507523298,
|
61 |
+
"eval_precision": 0.9015356820234869,
|
62 |
+
"eval_recall": 0.9301025163094129,
|
63 |
+
"eval_runtime": 15.1542,
|
64 |
+
"eval_samples_per_second": 458.356,
|
65 |
+
"eval_steps_per_second": 57.344,
|
66 |
+
"step": 1521
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 3.9447731755424065,
|
70 |
+
"grad_norm": 0.15148845314979553,
|
71 |
+
"learning_rate": 3.027613412228797e-05,
|
72 |
+
"loss": 0.0018,
|
73 |
+
"step": 2000
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.9985767309463344,
|
78 |
+
"eval_f1": 0.9227166276346604,
|
79 |
+
"eval_loss": 0.0072021945379674435,
|
80 |
+
"eval_precision": 0.9274952919020716,
|
81 |
+
"eval_recall": 0.9179869524697111,
|
82 |
+
"eval_runtime": 15.3453,
|
83 |
+
"eval_samples_per_second": 452.646,
|
84 |
+
"eval_steps_per_second": 56.63,
|
85 |
+
"step": 2028
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 4.930966469428008,
|
89 |
+
"grad_norm": 0.17791983485221863,
|
90 |
+
"learning_rate": 2.5345167652859964e-05,
|
91 |
+
"loss": 0.0009,
|
92 |
+
"step": 2500
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.9986604526553735,
|
97 |
+
"eval_f1": 0.9215236346948141,
|
98 |
+
"eval_loss": 0.0063728527165949345,
|
99 |
+
"eval_precision": 0.9077757685352622,
|
100 |
+
"eval_recall": 0.9356943150046598,
|
101 |
+
"eval_runtime": 15.1945,
|
102 |
+
"eval_samples_per_second": 457.14,
|
103 |
+
"eval_steps_per_second": 57.192,
|
104 |
+
"step": 2535
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 5.9171597633136095,
|
108 |
+
"grad_norm": 0.027111981064081192,
|
109 |
+
"learning_rate": 2.0414201183431952e-05,
|
110 |
+
"loss": 0.0007,
|
111 |
+
"step": 3000
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 6.0,
|
115 |
+
"eval_accuracy": 0.9987302207462395,
|
116 |
+
"eval_f1": 0.9274826789838336,
|
117 |
+
"eval_loss": 0.006401057820767164,
|
118 |
+
"eval_precision": 0.9194139194139194,
|
119 |
+
"eval_recall": 0.9356943150046598,
|
120 |
+
"eval_runtime": 15.0971,
|
121 |
+
"eval_samples_per_second": 460.088,
|
122 |
+
"eval_steps_per_second": 57.561,
|
123 |
+
"step": 3042
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 6.903353057199211,
|
127 |
+
"grad_norm": 0.0044996230863034725,
|
128 |
+
"learning_rate": 1.5483234714003947e-05,
|
129 |
+
"loss": 0.0004,
|
130 |
+
"step": 3500
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 7.0,
|
134 |
+
"eval_accuracy": 0.9987651047916725,
|
135 |
+
"eval_f1": 0.9332096474953618,
|
136 |
+
"eval_loss": 0.00720419455319643,
|
137 |
+
"eval_precision": 0.9289012003693444,
|
138 |
+
"eval_recall": 0.9375582479030755,
|
139 |
+
"eval_runtime": 15.1686,
|
140 |
+
"eval_samples_per_second": 457.919,
|
141 |
+
"eval_steps_per_second": 57.289,
|
142 |
+
"step": 3549
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 7.889546351084813,
|
146 |
+
"grad_norm": 0.0005134351667948067,
|
147 |
+
"learning_rate": 1.0552268244575937e-05,
|
148 |
+
"loss": 0.0004,
|
149 |
+
"step": 4000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.998772081600759,
|
154 |
+
"eval_f1": 0.9335180055401663,
|
155 |
+
"eval_loss": 0.007628325838595629,
|
156 |
+
"eval_precision": 0.9249771271729186,
|
157 |
+
"eval_recall": 0.9422180801491147,
|
158 |
+
"eval_runtime": 15.1289,
|
159 |
+
"eval_samples_per_second": 459.122,
|
160 |
+
"eval_steps_per_second": 57.44,
|
161 |
+
"step": 4056
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 8.875739644970414,
|
165 |
+
"grad_norm": 0.0011633747490122914,
|
166 |
+
"learning_rate": 5.621301775147929e-06,
|
167 |
+
"loss": 0.0003,
|
168 |
+
"step": 4500
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.9987162671280663,
|
173 |
+
"eval_f1": 0.9262672811059908,
|
174 |
+
"eval_loss": 0.00773056922480464,
|
175 |
+
"eval_precision": 0.9161349134001823,
|
176 |
+
"eval_recall": 0.9366262814538676,
|
177 |
+
"eval_runtime": 15.3347,
|
178 |
+
"eval_samples_per_second": 452.96,
|
179 |
+
"eval_steps_per_second": 56.669,
|
180 |
+
"step": 4563
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 9.861932938856016,
|
184 |
+
"grad_norm": 0.001042825635522604,
|
185 |
+
"learning_rate": 6.903353057199211e-07,
|
186 |
+
"loss": 0.0002,
|
187 |
+
"step": 5000
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 10.0,
|
191 |
+
"eval_accuracy": 0.9987511511734993,
|
192 |
+
"eval_f1": 0.92797783933518,
|
193 |
+
"eval_loss": 0.00769586768001318,
|
194 |
+
"eval_precision": 0.9194876486733761,
|
195 |
+
"eval_recall": 0.9366262814538676,
|
196 |
+
"eval_runtime": 15.2047,
|
197 |
+
"eval_samples_per_second": 456.832,
|
198 |
+
"eval_steps_per_second": 57.153,
|
199 |
+
"step": 5070
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 10.0,
|
203 |
+
"step": 5070,
|
204 |
+
"total_flos": 1.394810359803495e+16,
|
205 |
+
"train_loss": 0.0028968164414402532,
|
206 |
+
"train_runtime": 2196.5741,
|
207 |
+
"train_samples_per_second": 147.716,
|
208 |
+
"train_steps_per_second": 2.308
|
209 |
+
}
|
210 |
+
],
|
211 |
+
"logging_steps": 500,
|
212 |
+
"max_steps": 5070,
|
213 |
+
"num_input_tokens_seen": 0,
|
214 |
+
"num_train_epochs": 10,
|
215 |
+
"save_steps": 500,
|
216 |
+
"stateful_callbacks": {
|
217 |
+
"TrainerControl": {
|
218 |
+
"args": {
|
219 |
+
"should_epoch_stop": false,
|
220 |
+
"should_evaluate": false,
|
221 |
+
"should_log": false,
|
222 |
+
"should_save": true,
|
223 |
+
"should_training_stop": true
|
224 |
+
},
|
225 |
+
"attributes": {}
|
226 |
+
}
|
227 |
+
},
|
228 |
+
"total_flos": 1.394810359803495e+16,
|
229 |
+
"train_batch_size": 32,
|
230 |
+
"trial_name": null,
|
231 |
+
"trial_params": null
|
232 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
|
3 |
+
size 5240
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|