Rodrigo1771 commited on
Commit
6bb1803
1 Parent(s): c20a4ac

Training in progress, epoch 1

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/symptemist-fasttext-9-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/symptemist-fasttext-9-ner
23
+ type: Rodrigo1771/symptemist-fasttext-9-ner
24
+ config: SympTEMIST NER
25
+ split: validation
26
+ args: SympTEMIST NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.6659969864389754
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.7257799671592775
34
+ - name: F1
35
+ type: f1
36
+ value: 0.6946045049764275
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.9496615226667522
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-fasttext-9-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.2450
50
+ - Precision: 0.6660
51
+ - Recall: 0.7258
52
+ - F1: 0.6946
53
+ - Accuracy: 0.9497
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | No log | 0.9968 | 155 | 0.1485 | 0.5669 | 0.6218 | 0.5931 | 0.9436 |
87
+ | No log | 2.0 | 311 | 0.1609 | 0.5623 | 0.7159 | 0.6299 | 0.9409 |
88
+ | No log | 2.9968 | 466 | 0.1635 | 0.6210 | 0.7219 | 0.6677 | 0.9487 |
89
+ | 0.1246 | 4.0 | 622 | 0.2047 | 0.6659 | 0.6765 | 0.6712 | 0.9493 |
90
+ | 0.1246 | 4.9968 | 777 | 0.2134 | 0.6562 | 0.7115 | 0.6828 | 0.9480 |
91
+ | 0.1246 | 6.0 | 933 | 0.2259 | 0.6518 | 0.7099 | 0.6796 | 0.9494 |
92
+ | 0.0242 | 6.9968 | 1088 | 0.2450 | 0.6660 | 0.7258 | 0.6946 | 0.9497 |
93
+ | 0.0242 | 8.0 | 1244 | 0.2650 | 0.6491 | 0.7230 | 0.6841 | 0.9491 |
94
+ | 0.0242 | 8.9968 | 1399 | 0.2745 | 0.6646 | 0.7126 | 0.6878 | 0.9498 |
95
+ | 0.0083 | 9.9678 | 1550 | 0.2774 | 0.6628 | 0.7187 | 0.6896 | 0.9503 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.967845659163988,
3
+ "eval_accuracy": 0.9496615226667522,
4
+ "eval_f1": 0.6946045049764275,
5
+ "eval_loss": 0.24502409994602203,
6
+ "eval_precision": 0.6659969864389754,
7
+ "eval_recall": 0.7257799671592775,
8
+ "eval_runtime": 5.9273,
9
+ "eval_samples": 2519,
10
+ "eval_samples_per_second": 424.981,
11
+ "eval_steps_per_second": 53.144,
12
+ "predict_accuracy": 0.9468015056363083,
13
+ "predict_f1": 0.6798307475317349,
14
+ "predict_loss": 0.26582667231559753,
15
+ "predict_precision": 0.6624923640806353,
16
+ "predict_recall": 0.6981010621177985,
17
+ "predict_runtime": 9.8107,
18
+ "predict_samples_per_second": 412.509,
19
+ "predict_steps_per_second": 51.576,
20
+ "total_flos": 4644619911314910.0,
21
+ "train_loss": 0.050868147861573,
22
+ "train_runtime": 855.1929,
23
+ "train_samples": 9929,
24
+ "train_samples_per_second": 116.102,
25
+ "train_steps_per_second": 1.812
26
+ }
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "michiyasunaga/BioLinkBERT-base",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "finetuning_task": "ner",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "O",
15
+ "1": "B-FARMACO",
16
+ "2": "I-FARMACO"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "B-FARMACO": 1,
22
+ "I-FARMACO": 2,
23
+ "O": 0
24
+ },
25
+ "layer_norm_eps": 1e-12,
26
+ "max_position_embeddings": 512,
27
+ "model_type": "bert",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 12,
30
+ "pad_token_id": 0,
31
+ "position_embedding_type": "absolute",
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.44.2",
34
+ "type_vocab_size": 2,
35
+ "use_cache": true,
36
+ "vocab_size": 28895
37
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.967845659163988,
3
+ "eval_accuracy": 0.9496615226667522,
4
+ "eval_f1": 0.6946045049764275,
5
+ "eval_loss": 0.24502409994602203,
6
+ "eval_precision": 0.6659969864389754,
7
+ "eval_recall": 0.7257799671592775,
8
+ "eval_runtime": 5.9273,
9
+ "eval_samples": 2519,
10
+ "eval_samples_per_second": 424.981,
11
+ "eval_steps_per_second": 53.144
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de24de8a8a2140ef151720c762b9aa1baa91d13e71b9e69e71c8fea44eb7f992
3
+ size 430601004
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9468015056363083,
3
+ "predict_f1": 0.6798307475317349,
4
+ "predict_loss": 0.26582667231559753,
5
+ "predict_precision": 0.6624923640806353,
6
+ "predict_recall": 0.6981010621177985,
7
+ "predict_runtime": 9.8107,
8
+ "predict_samples_per_second": 412.509,
9
+ "predict_steps_per_second": 51.576
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tb/events.out.tfevents.1725881335.0a1c9bec2a53.3232.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593e737686a00ae0f64a94f2ef02389ad7dff30c0ba6a6f2b1c65ac31e873867
3
+ size 11302
tb/events.out.tfevents.1725882696.0a1c9bec2a53.3232.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05ecdc6d00855fb66deb25a7b5be160aa0ebb2ebe07a43beb7d88fb0430fb141
3
+ size 560
tb/events.out.tfevents.1725882852.0a1c9bec2a53.9893.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:543df15001da008ba822f9c1ebf4f77259f803cbf1c5758f2da70bdbf003d86f
3
+ size 11091
tb/events.out.tfevents.1725883955.0a1c9bec2a53.9893.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b842d84c89f0d88706e31e98b113fae6b45879220115930147db648f848a8c24
3
+ size 560
tb/events.out.tfevents.1725884095.0a1c9bec2a53.15221.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a5eb73def06ef281d6c5abe9cbb6a47c633f2d7191b334dbe5cbead1c284e80
3
+ size 10880
tb/events.out.tfevents.1725885059.0a1c9bec2a53.15221.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c793a2eec8072a81c25e2f78d3ef7bcf74abbe37e32354df7dcda008aa71eda
3
+ size 560
tb/events.out.tfevents.1725885168.0a1c9bec2a53.19825.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0f9a2adaf22b0a47090405af62255c59f8c395faf6fe62ec62fa970d9063713
3
+ size 10880
tb/events.out.tfevents.1725886061.0a1c9bec2a53.19825.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa09451db71ecc3a737f5726105cdc310a150c4cd36e427e1f2dad13956046fd
3
+ size 560
tb/events.out.tfevents.1725886210.0a1c9bec2a53.24273.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e06bd26a7e6ecde5d6a27f3da6adb8e716555d4d754eaa26c925bf2c2b62de08
3
+ size 5804
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
train.log ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/5070 [00:00<?, ?it/s]
1
  0%| | 1/5070 [00:01<1:55:56, 1.37s/it]
2
  0%| | 2/5070 [00:01<1:01:02, 1.38it/s]
3
  0%| | 3/5070 [00:01<43:59, 1.92it/s]
4
  0%| | 4/5070 [00:02<37:03, 2.28it/s]
5
  0%| | 5/5070 [00:02<33:54, 2.49it/s]
6
  0%| | 6/5070 [00:02<29:56, 2.82it/s]
7
  0%| | 7/5070 [00:03<29:13, 2.89it/s]
8
  0%| | 8/5070 [00:03<29:19, 2.88it/s]
9
  0%| | 9/5070 [00:03<28:01, 3.01it/s]
10
  0%| | 10/5070 [00:04<29:27, 2.86it/s]
11
  0%| | 11/5070 [00:04<31:52, 2.65it/s]
12
  0%| | 12/5070 [00:04<31:16, 2.70it/s]
13
  0%| | 13/5070 [00:05<30:19, 2.78it/s]
14
  0%| | 14/5070 [00:05<32:35, 2.59it/s]
15
  0%| | 15/5070 [00:06<29:33, 2.85it/s]
16
  0%| | 16/5070 [00:06<29:08, 2.89it/s]
17
  0%| | 17/5070 [00:06<32:23, 2.60it/s]
18
  0%| | 18/5070 [00:07<32:56, 2.56it/s]
19
  0%| | 19/5070 [00:07<30:14, 2.78it/s]
20
  0%| | 20/5070 [00:07<31:25, 2.68it/s]
21
  0%| | 21/5070 [00:08<28:05, 3.00it/s]
22
  0%| | 22/5070 [00:08<27:40, 3.04it/s]
23
  0%| | 23/5070 [00:08<29:31, 2.85it/s]
24
  0%| | 24/5070 [00:09<27:57, 3.01it/s]
25
  0%| | 25/5070 [00:09<29:57, 2.81it/s]
26
  1%| | 26/5070 [00:09<30:14, 2.78it/s]
27
  1%| | 27/5070 [00:10<31:00, 2.71it/s]
28
  1%| | 28/5070 [00:10<33:13, 2.53it/s]
29
  1%| | 29/5070 [00:11<31:44, 2.65it/s]
30
  1%| | 30/5070 [00:11<34:06, 2.46it/s]
31
  1%| | 31/5070 [00:11<31:33, 2.66it/s]
32
  1%| | 32/5070 [00:12<30:32, 2.75it/s]
33
  1%| | 33/5070 [00:12<32:34, 2.58it/s]
34
  1%| | 34/5070 [00:13<33:22, 2.51it/s]
35
  1%| | 35/5070 [00:13<32:11, 2.61it/s]
36
  1%| | 36/5070 [00:13<29:47, 2.82it/s]
37
  1%| | 37/5070 [00:14<34:03, 2.46it/s]
38
  1%| | 38/5070 [00:14<33:12, 2.53it/s]
39
  1%| | 39/5070 [00:15<32:01, 2.62it/s]
40
  1%| | 40/5070 [00:15<32:04, 2.61it/s]
41
  1%| | 41/5070 [00:15<31:28, 2.66it/s]
42
  1%| | 42/5070 [00:16<29:43, 2.82it/s]
43
  1%| | 43/5070 [00:16<29:54, 2.80it/s]
44
  1%| | 44/5070 [00:16<30:08, 2.78it/s]
45
  1%| | 45/5070 [00:17<28:16, 2.96it/s]
46
  1%| | 46/5070 [00:17<28:34, 2.93it/s]
47
  1%| | 47/5070 [00:17<29:04, 2.88it/s]
48
  1%| | 48/5070 [00:18<30:31, 2.74it/s]
49
  1%| | 49/5070 [00:18<29:37, 2.82it/s]
50
  1%| | 50/5070 [00:19<33:53, 2.47it/s]
51
  1%| | 51/5070 [00:19<34:07, 2.45it/s]
52
  1%| | 52/5070 [00:19<34:08, 2.45it/s]
53
  1%| | 53/5070 [00:20<31:49, 2.63it/s]
54
  1%| | 54/5070 [00:20<31:13, 2.68it/s]
55
  1%| | 55/5070 [00:20<31:05, 2.69it/s]
56
  1%| | 56/5070 [00:21<30:58, 2.70it/s]
57
  1%| | 57/5070 [00:21<29:45, 2.81it/s]
58
  1%| | 58/5070 [00:21<30:11, 2.77it/s]
59
  1%| | 59/5070 [00:22<30:56, 2.70it/s]
60
  1%| | 60/5070 [00:22<31:45, 2.63it/s]
61
  1%| | 61/5070 [00:23<31:48, 2.63it/s]
62
  1%| | 62/5070 [00:23<31:35, 2.64it/s]
63
  1%| | 63/5070 [00:23<31:04, 2.69it/s]
64
  1%|▏ | 64/5070 [00:24<28:24, 2.94it/s]
65
  1%|▏ | 65/5070 [00:24<27:01, 3.09it/s]
66
  1%|▏ | 66/5070 [00:24<30:56, 2.70it/s]
67
  1%|▏ | 67/5070 [00:25<33:25, 2.50it/s]
68
  1%|▏ | 68/5070 [00:25<37:18, 2.23it/s]
69
  1%|▏ | 69/5070 [00:26<39:18, 2.12it/s]
70
  1%|▏ | 70/5070 [00:26<35:57, 2.32it/s]
71
  1%|▏ | 71/5070 [00:27<35:19, 2.36it/s]
72
  1%|▏ | 72/5070 [00:27<36:17, 2.30it/s]
73
  1%|▏ | 73/5070 [00:28<38:25, 2.17it/s]
74
  1%|▏ | 74/5070 [00:28<35:23, 2.35it/s]
75
  1%|▏ | 75/5070 [00:28<35:34, 2.34it/s]
76
  1%|▏ | 76/5070 [00:29<35:16, 2.36it/s]
77
  2%|▏ | 77/5070 [00:29<37:14, 2.23it/s]
78
  2%|▏ | 78/5070 [00:30<36:13, 2.30it/s]
79
  2%|▏ | 79/5070 [00:30<37:43, 2.20it/s]
80
  2%|▏ | 80/5070 [00:31<35:44, 2.33it/s]
81
  2%|▏ | 81/5070 [00:31<35:40, 2.33it/s]
82
  2%|▏ | 82/5070 [00:31<32:56, 2.52it/s]
83
  2%|▏ | 83/5070 [00:32<32:34, 2.55it/s]
84
  2%|▏ | 84/5070 [00:32<36:48, 2.26it/s]
85
  2%|▏ | 85/5070 [00:33<34:40, 2.40it/s]
86
  2%|▏ | 86/5070 [00:33<35:53, 2.31it/s]
87
  2%|▏ | 87/5070 [00:34<38:14, 2.17it/s]
88
  2%|▏ | 88/5070 [00:34<37:25, 2.22it/s]
89
  2%|▏ | 89/5070 [00:34<33:37, 2.47it/s]
90
  2%|▏ | 90/5070 [00:35<32:47, 2.53it/s]
91
  2%|▏ | 91/5070 [00:35<30:14, 2.74it/s]
92
  2%|▏ | 92/5070 [00:36<34:18, 2.42it/s]
93
  2%|▏ | 93/5070 [00:36<33:53, 2.45it/s]
94
  2%|▏ | 94/5070 [00:36<34:27, 2.41it/s]
95
  2%|▏ | 95/5070 [00:37<32:28, 2.55it/s]
96
  2%|▏ | 96/5070 [00:37<31:05, 2.67it/s]
97
  2%|▏ | 97/5070 [00:37<28:50, 2.87it/s]
98
  2%|▏ | 98/5070 [00:38<32:59, 2.51it/s]
99
  2%|▏ | 99/5070 [00:38<31:29, 2.63it/s]
100
  2%|▏ | 100/5070 [00:39<31:13, 2.65it/s]
101
  2%|▏ | 101/5070 [00:39<34:40, 2.39it/s]
102
  2%|▏ | 102/5070 [00:39<31:42, 2.61it/s]
103
  2%|▏ | 103/5070 [00:40<32:17, 2.56it/s]
104
  2%|▏ | 104/5070 [00:40<30:58, 2.67it/s]
105
  2%|▏ | 105/5070 [00:41<29:59, 2.76it/s]
106
  2%|▏ | 106/5070 [00:41<36:53, 2.24it/s]
107
  2%|▏ | 107/5070 [00:42<34:40, 2.39it/s]
108
  2%|▏ | 108/5070 [00:42<33:38, 2.46it/s]
109
  2%|▏ | 109/5070 [00:42<33:31, 2.47it/s]
110
  2%|▏ | 110/5070 [00:43<31:03, 2.66it/s]
111
  2%|▏ | 111/5070 [00:43<31:56, 2.59it/s]
112
  2%|▏ | 112/5070 [00:43<31:17, 2.64it/s]
113
  2%|▏ | 113/5070 [00:44<31:57, 2.58it/s]
114
  2%|▏ | 114/5070 [00:44<29:33, 2.80it/s]
115
  2%|▏ | 115/5070 [00:45<31:12, 2.65it/s]
116
  2%|▏ | 116/5070 [00:45<31:17, 2.64it/s]
117
  2%|▏ | 117/5070 [00:45<33:04, 2.50it/s]
118
  2%|▏ | 118/5070 [00:46<36:26, 2.26it/s]
119
  2%|▏ | 119/5070 [00:47<42:31, 1.94it/s]
120
  2%|▏ | 120/5070 [00:47<37:20, 2.21it/s]
121
  2%|▏ | 121/5070 [00:47<35:21, 2.33it/s]
122
  2%|▏ | 122/5070 [00:48<34:00, 2.43it/s]
123
  2%|▏ | 123/5070 [00:48<32:01, 2.57it/s]
124
  2%|▏ | 124/5070 [00:48<31:24, 2.62it/s]
125
  2%|▏ | 125/5070 [00:49<29:14, 2.82it/s]
126
  2%|▏ | 126/5070 [00:49<31:42, 2.60it/s]
127
  3%|▎ | 127/5070 [00:50<36:51, 2.24it/s]
128
  3%|▎ | 128/5070 [00:50<35:05, 2.35it/s]
129
  3%|▎ | 129/5070 [00:50<32:31, 2.53it/s]
130
  3%|▎ | 130/5070 [00:51<33:29, 2.46it/s]
131
  3%|▎ | 131/5070 [00:51<34:54, 2.36it/s]
132
  3%|▎ | 132/5070 [00:52<32:01, 2.57it/s]
133
  3%|▎ | 133/5070 [00:52<30:11, 2.73it/s]
134
  3%|▎ | 134/5070 [00:52<27:55, 2.95it/s]
135
  3%|▎ | 135/5070 [00:53<27:47, 2.96it/s]
136
  3%|▎ | 136/5070 [00:53<34:07, 2.41it/s]
137
  3%|▎ | 137/5070 [00:54<36:48, 2.23it/s]
138
  3%|▎ | 138/5070 [00:54<34:08, 2.41it/s]
139
  3%|▎ | 139/5070 [00:54<32:28, 2.53it/s]
140
  3%|▎ | 140/5070 [00:55<32:32, 2.53it/s]
141
  3%|▎ | 141/5070 [00:55<34:10, 2.40it/s]
142
  3%|▎ | 142/5070 [00:56<33:01, 2.49it/s]
143
  3%|▎ | 143/5070 [00:56<34:43, 2.36it/s]
144
  3%|▎ | 144/5070 [00:56<32:40, 2.51it/s]
145
  3%|▎ | 145/5070 [00:57<34:42, 2.37it/s]
146
  3%|▎ | 146/5070 [00:57<33:20, 2.46it/s]
147
  3%|▎ | 147/5070 [00:58<38:03, 2.16it/s]
148
  3%|▎ | 148/5070 [00:58<38:10, 2.15it/s]
149
  3%|▎ | 149/5070 [00:59<39:25, 2.08it/s]
150
  3%|▎ | 150/5070 [00:59<37:15, 2.20it/s]
151
  3%|▎ | 151/5070 [01:00<35:10, 2.33it/s]
152
  3%|▎ | 152/5070 [01:00<35:57, 2.28it/s]
153
  3%|▎ | 153/5070 [01:00<32:39, 2.51it/s]
154
  3%|▎ | 154/5070 [01:01<31:50, 2.57it/s]
155
  3%|▎ | 155/5070 [01:01<30:24, 2.69it/s]
156
  3%|▎ | 156/5070 [01:01<29:07, 2.81it/s]
157
  3%|▎ | 157/5070 [01:02<27:52, 2.94it/s]
158
  3%|▎ | 158/5070 [01:02<26:45, 3.06it/s]
159
  3%|▎ | 159/5070 [01:02<27:09, 3.01it/s]
160
  3%|▎ | 160/5070 [01:03<28:05, 2.91it/s]
161
  3%|▎ | 161/5070 [01:03<28:55, 2.83it/s]
162
  3%|▎ | 162/5070 [01:04<32:05, 2.55it/s]
163
  3%|▎ | 163/5070 [01:04<32:59, 2.48it/s]
164
  3%|▎ | 164/5070 [01:04<33:29, 2.44it/s]
165
  3%|▎ | 165/5070 [01:05<38:00, 2.15it/s]
166
  3%|▎ | 166/5070 [01:05<37:31, 2.18it/s]
167
  3%|▎ | 167/5070 [01:06<34:33, 2.36it/s]
168
  3%|▎ | 168/5070 [01:06<30:48, 2.65it/s]
169
  3%|▎ | 169/5070 [01:06<29:41, 2.75it/s]
170
  3%|▎ | 170/5070 [01:07<28:36, 2.85it/s]
171
  3%|▎ | 171/5070 [01:07<29:44, 2.74it/s]
172
  3%|▎ | 172/5070 [01:07<29:24, 2.78it/s]
173
  3%|▎ | 173/5070 [01:08<30:28, 2.68it/s]
174
  3%|▎ | 174/5070 [01:08<31:08, 2.62it/s]
175
  3%|▎ | 175/5070 [01:09<30:05, 2.71it/s]
176
  3%|▎ | 176/5070 [01:09<31:47, 2.57it/s]
177
  3%|▎ | 177/5070 [01:09<30:57, 2.63it/s]
178
  4%|▎ | 178/5070 [01:10<30:51, 2.64it/s]
179
  4%|▎ | 179/5070 [01:10<32:25, 2.51it/s]
180
  4%|▎ | 180/5070 [01:11<32:40, 2.49it/s]
181
  4%|▎ | 181/5070 [01:11<30:53, 2.64it/s]
182
  4%|▎ | 182/5070 [01:11<29:51, 2.73it/s]
183
  4%|▎ | 183/5070 [01:12<30:08, 2.70it/s]
184
  4%|▎ | 184/5070 [01:12<29:08, 2.79it/s]
185
  4%|▎ | 185/5070 [01:12<27:38, 2.95it/s]
186
  4%|▎ | 186/5070 [01:13<29:08, 2.79it/s]
187
  4%|▎ | 187/5070 [01:13<30:50, 2.64it/s]
188
  4%|▎ | 188/5070 [01:13<29:46, 2.73it/s]
189
  4%|▎ | 189/5070 [01:14<27:02, 3.01it/s]
190
  4%|▎ | 190/5070 [01:14<32:28, 2.50it/s]
191
  4%|▍ | 191/5070 [01:15<33:35, 2.42it/s]
192
  4%|▍ | 192/5070 [01:15<33:34, 2.42it/s]
193
  4%|▍ | 193/5070 [01:16<39:01, 2.08it/s]
194
  4%|▍ | 194/5070 [01:16<38:27, 2.11it/s]
195
  4%|▍ | 195/5070 [01:17<35:38, 2.28it/s]
196
  4%|▍ | 196/5070 [01:17<33:20, 2.44it/s]
197
  4%|▍ | 197/5070 [01:17<31:14, 2.60it/s]
198
  4%|▍ | 198/5070 [01:18<32:57, 2.46it/s]
199
  4%|▍ | 199/5070 [01:18<30:26, 2.67it/s]
200
  4%|▍ | 200/5070 [01:19<34:45, 2.34it/s]
201
  4%|▍ | 201/5070 [01:19<31:49, 2.55it/s]
202
  4%|▍ | 202/5070 [01:19<32:15, 2.52it/s]
203
  4%|▍ | 203/5070 [01:20<36:02, 2.25it/s]
204
  4%|▍ | 204/5070 [01:20<36:30, 2.22it/s]
205
  4%|▍ | 205/5070 [01:21<39:03, 2.08it/s]
206
  4%|▍ | 206/5070 [01:21<36:32, 2.22it/s]
207
  4%|▍ | 207/5070 [01:22<34:56, 2.32it/s]
208
  4%|▍ | 208/5070 [01:22<34:18, 2.36it/s]
209
  4%|▍ | 209/5070 [01:22<32:08, 2.52it/s]
210
  4%|▍ | 210/5070 [01:23<31:17, 2.59it/s]
211
  4%|▍ | 211/5070 [01:23<29:35, 2.74it/s]
212
  4%|▍ | 212/5070 [01:23<33:09, 2.44it/s]
213
  4%|▍ | 213/5070 [01:24<32:48, 2.47it/s]
214
  4%|▍ | 214/5070 [01:24<36:04, 2.24it/s]
215
  4%|▍ | 215/5070 [01:25<33:15, 2.43it/s]
216
  4%|▍ | 216/5070 [01:25<32:15, 2.51it/s]
217
  4%|▍ | 217/5070 [01:26<32:45, 2.47it/s]
218
  4%|▍ | 218/5070 [01:26<32:25, 2.49it/s]
219
  4%|▍ | 219/5070 [01:26<34:45, 2.33it/s]
220
  4%|▍ | 220/5070 [01:27<37:32, 2.15it/s]
221
  4%|▍ | 221/5070 [01:27<38:50, 2.08it/s]
222
  4%|▍ | 222/5070 [01:28<34:44, 2.33it/s]
223
  4%|▍ | 223/5070 [01:28<34:06, 2.37it/s]
224
  4%|▍ | 224/5070 [01:29<34:41, 2.33it/s]
225
  4%|▍ | 225/5070 [01:29<34:43, 2.33it/s]
226
  4%|▍ | 226/5070 [01:30<34:36, 2.33it/s]
227
  4%|▍ | 227/5070 [01:30<35:31, 2.27it/s]
228
  4%|▍ | 228/5070 [01:30<35:10, 2.29it/s]
229
  5%|▍ | 229/5070 [01:31<31:33, 2.56it/s]
230
  5%|▍ | 230/5070 [01:31<29:53, 2.70it/s]
231
  5%|▍ | 231/5070 [01:31<27:03, 2.98it/s]
232
  5%|▍ | 232/5070 [01:32<27:04, 2.98it/s]
233
  5%|▍ | 233/5070 [01:32<28:05, 2.87it/s]
234
  5%|▍ | 234/5070 [01:32<27:50, 2.90it/s]
235
  5%|▍ | 235/5070 [01:33<29:12, 2.76it/s]
236
  5%|▍ | 236/5070 [01:33<29:10, 2.76it/s]
237
  5%|▍ | 237/5070 [01:33<29:14, 2.75it/s]
238
  5%|▍ | 238/5070 [01:34<28:12, 2.85it/s]
239
  5%|▍ | 239/5070 [01:34<28:52, 2.79it/s]
240
  5%|▍ | 240/5070 [01:35<28:58, 2.78it/s]
241
  5%|▍ | 241/5070 [01:35<30:33, 2.63it/s]
242
  5%|▍ | 242/5070 [01:35<27:48, 2.89it/s]
243
  5%|▍ | 243/5070 [01:36<27:25, 2.93it/s]
244
  5%|▍ | 244/5070 [01:36<26:48, 3.00it/s]
245
  5%|▍ | 245/5070 [01:36<29:15, 2.75it/s]
246
  5%|▍ | 246/5070 [01:37<27:55, 2.88it/s]
247
  5%|▍ | 247/5070 [01:37<28:18, 2.84it/s]
248
  5%|▍ | 248/5070 [01:37<30:50, 2.61it/s]
249
  5%|▍ | 249/5070 [01:38<31:34, 2.54it/s]
250
  5%|▍ | 250/5070 [01:38<30:21, 2.65it/s]
251
  5%|▍ | 251/5070 [01:39<29:52, 2.69it/s]
252
  5%|▍ | 252/5070 [01:39<32:46, 2.45it/s]
253
  5%|▍ | 253/5070 [01:39<31:44, 2.53it/s]
254
  5%|▌ | 254/5070 [01:40<31:13, 2.57it/s]
255
  5%|▌ | 255/5070 [01:40<31:48, 2.52it/s]
256
  5%|▌ | 256/5070 [01:41<31:07, 2.58it/s]
257
  5%|▌ | 257/5070 [01:41<31:06, 2.58it/s]
258
  5%|▌ | 258/5070 [01:41<30:15, 2.65it/s]
259
  5%|▌ | 259/5070 [01:42<29:15, 2.74it/s]
260
  5%|▌ | 260/5070 [01:42<31:19, 2.56it/s]
261
  5%|▌ | 261/5070 [01:43<36:08, 2.22it/s]
262
  5%|▌ | 262/5070 [01:43<33:22, 2.40it/s]
263
  5%|▌ | 263/5070 [01:43<32:11, 2.49it/s]
264
  5%|▌ | 264/5070 [01:44<29:48, 2.69it/s]
265
  5%|▌ | 265/5070 [01:44<28:33, 2.80it/s]
266
  5%|▌ | 266/5070 [01:44<28:52, 2.77it/s]
267
  5%|▌ | 267/5070 [01:45<32:16, 2.48it/s]
268
  5%|▌ | 268/5070 [01:45<33:51, 2.36it/s]
269
  5%|▌ | 269/5070 [01:46<33:57, 2.36it/s]
270
  5%|▌ | 270/5070 [01:46<31:25, 2.55it/s]
271
  5%|▌ | 271/5070 [01:46<31:23, 2.55it/s]
272
  5%|▌ | 272/5070 [01:47<32:46, 2.44it/s]
273
  5%|▌ | 273/5070 [01:47<32:44, 2.44it/s]
274
  5%|▌ | 274/5070 [01:48<33:13, 2.41it/s]
275
  5%|▌ | 275/5070 [01:48<32:30, 2.46it/s]
276
  5%|▌ | 276/5070 [01:49<32:22, 2.47it/s]
277
  5%|▌ | 277/5070 [01:49<31:44, 2.52it/s]
278
  5%|▌ | 278/5070 [01:49<31:56, 2.50it/s]
279
  6%|▌ | 279/5070 [01:50<31:59, 2.50it/s]
280
  6%|▌ | 280/5070 [01:50<30:52, 2.59it/s]
281
  6%|▌ | 281/5070 [01:50<29:44, 2.68it/s]
282
  6%|▌ | 282/5070 [01:51<31:30, 2.53it/s]
283
  6%|▌ | 283/5070 [01:51<33:37, 2.37it/s]
284
  6%|▌ | 284/5070 [01:52<32:58, 2.42it/s]
285
  6%|▌ | 285/5070 [01:52<32:31, 2.45it/s]
286
  6%|▌ | 286/5070 [01:53<31:45, 2.51it/s]
287
  6%|▌ | 287/5070 [01:53<30:22, 2.63it/s]
288
  6%|▌ | 288/5070 [01:53<28:53, 2.76it/s]
289
  6%|▌ | 289/5070 [01:54<29:05, 2.74it/s]
290
  6%|▌ | 290/5070 [01:54<29:51, 2.67it/s]
291
  6%|▌ | 291/5070 [01:54<29:46, 2.67it/s]
292
  6%|▌ | 292/5070 [01:55<28:56, 2.75it/s]
293
  6%|▌ | 293/5070 [01:55<27:36, 2.88it/s]
294
  6%|▌ | 294/5070 [01:55<27:28, 2.90it/s]
295
  6%|▌ | 295/5070 [01:56<29:02, 2.74it/s]
296
  6%|▌ | 296/5070 [01:56<34:38, 2.30it/s]
297
  6%|▌ | 297/5070 [01:57<33:12, 2.40it/s]
298
  6%|▌ | 298/5070 [01:57<30:01, 2.65it/s]
299
  6%|▌ | 299/5070 [01:58<35:52, 2.22it/s]
300
  6%|▌ | 300/5070 [01:58<32:11, 2.47it/s]
301
  6%|▌ | 301/5070 [01:58<30:00, 2.65it/s]
302
  6%|▌ | 302/5070 [01:59<32:15, 2.46it/s]
303
  6%|▌ | 303/5070 [01:59<36:24, 2.18it/s]
304
  6%|▌ | 304/5070 [02:00<32:07, 2.47it/s]
305
  6%|▌ | 305/5070 [02:00<33:30, 2.37it/s]
306
  6%|▌ | 306/5070 [02:00<33:06, 2.40it/s]
307
  6%|▌ | 307/5070 [02:01<29:43, 2.67it/s]
308
  6%|▌ | 308/5070 [02:01<34:19, 2.31it/s]
309
  6%|▌ | 309/5070 [02:02<31:41, 2.50it/s]
310
  6%|▌ | 310/5070 [02:02<32:56, 2.41it/s]
311
  6%|▌ | 311/5070 [02:02<29:29, 2.69it/s]
312
  6%|▌ | 312/5070 [02:03<33:51, 2.34it/s]
313
  6%|▌ | 313/5070 [02:03<31:25, 2.52it/s]
314
  6%|▌ | 314/5070 [02:04<33:19, 2.38it/s]
315
  6%|▌ | 315/5070 [02:04<32:28, 2.44it/s]
316
  6%|▌ | 316/5070 [02:04<31:52, 2.49it/s]
317
  6%|▋ | 317/5070 [02:05<30:42, 2.58it/s]
318
  6%|▋ | 318/5070 [02:05<29:19, 2.70it/s]
319
  6%|▋ | 319/5070 [02:05<28:40, 2.76it/s]
320
  6%|▋ | 320/5070 [02:06<27:29, 2.88it/s]
321
  6%|▋ | 321/5070 [02:06<29:14, 2.71it/s]
322
  6%|▋ | 322/5070 [02:07<28:11, 2.81it/s]
323
  6%|▋ | 323/5070 [02:07<27:18, 2.90it/s]
324
  6%|▋ | 324/5070 [02:07<29:24, 2.69it/s]
325
  6%|▋ | 325/5070 [02:08<28:57, 2.73it/s]
326
  6%|▋ | 326/5070 [02:08<28:15, 2.80it/s]
327
  6%|▋ | 327/5070 [02:08<27:16, 2.90it/s]
328
  6%|▋ | 328/5070 [02:09<28:10, 2.81it/s]
329
  6%|▋ | 329/5070 [02:09<25:59, 3.04it/s]
330
  7%|▋ | 330/5070 [02:09<26:56, 2.93it/s]
331
  7%|▋ | 331/5070 [02:10<41:18, 1.91it/s]
332
  7%|▋ | 332/5070 [02:11<37:36, 2.10it/s]
333
  7%|▋ | 333/5070 [02:11<35:17, 2.24it/s]
334
  7%|▋ | 334/5070 [02:11<30:48, 2.56it/s]
335
  7%|▋ | 335/5070 [02:12<32:01, 2.46it/s]
336
  7%|▋ | 336/5070 [02:12<30:39, 2.57it/s]
337
  7%|▋ | 337/5070 [02:12<31:04, 2.54it/s]
338
  7%|▋ | 338/5070 [02:13<31:22, 2.51it/s]
339
  7%|▋ | 339/5070 [02:13<29:31, 2.67it/s]
340
  7%|▋ | 340/5070 [02:14<32:09, 2.45it/s]
341
  7%|▋ | 341/5070 [02:14<32:00, 2.46it/s]
342
  7%|▋ | 342/5070 [02:14<31:12, 2.53it/s]
343
  7%|▋ | 343/5070 [02:15<31:17, 2.52it/s]
344
  7%|▋ | 344/5070 [02:15<31:32, 2.50it/s]
345
  7%|▋ | 345/5070 [02:16<34:21, 2.29it/s]
346
  7%|▋ | 346/5070 [02:16<31:52, 2.47it/s]
347
  7%|▋ | 347/5070 [02:16<30:24, 2.59it/s]
348
  7%|▋ | 348/5070 [02:17<29:56, 2.63it/s]
349
  7%|▋ | 349/5070 [02:17<32:38, 2.41it/s]
350
  7%|▋ | 350/5070 [02:18<31:33, 2.49it/s]
351
  7%|▋ | 351/5070 [02:18<29:10, 2.70it/s]
352
  7%|▋ | 352/5070 [02:18<29:07, 2.70it/s]
353
  7%|▋ | 353/5070 [02:19<29:14, 2.69it/s]
354
  7%|▋ | 354/5070 [02:19<31:25, 2.50it/s]
355
  7%|▋ | 355/5070 [02:19<29:31, 2.66it/s]
356
  7%|▋ | 356/5070 [02:20<27:26, 2.86it/s]
357
  7%|▋ | 357/5070 [02:20<25:35, 3.07it/s]
358
  7%|▋ | 358/5070 [02:20<27:36, 2.84it/s]
359
  7%|▋ | 359/5070 [02:21<28:06, 2.79it/s]
360
  7%|▋ | 360/5070 [02:21<28:07, 2.79it/s]
361
  7%|▋ | 361/5070 [02:21<26:24, 2.97it/s]
362
  7%|▋ | 362/5070 [02:22<28:17, 2.77it/s]
363
  7%|▋ | 363/5070 [02:22<29:25, 2.67it/s]
364
  7%|▋ | 364/5070 [02:23<26:55, 2.91it/s]
365
  7%|▋ | 365/5070 [02:23<32:24, 2.42it/s]
366
  7%|▋ | 366/5070 [02:24<31:13, 2.51it/s]
367
  7%|▋ | 367/5070 [02:24<29:52, 2.62it/s]
368
  7%|▋ | 368/5070 [02:24<28:41, 2.73it/s]
369
  7%|▋ | 369/5070 [02:25<27:59, 2.80it/s]
370
  7%|▋ | 370/5070 [02:25<28:45, 2.72it/s]
371
  7%|▋ | 371/5070 [02:25<31:32, 2.48it/s]
372
  7%|▋ | 372/5070 [02:26<28:45, 2.72it/s]
373
  7%|▋ | 373/5070 [02:26<28:16, 2.77it/s]
374
  7%|▋ | 374/5070 [02:26<29:23, 2.66it/s]
375
  7%|▋ | 375/5070 [02:27<32:17, 2.42it/s]
376
  7%|▋ | 376/5070 [02:27<30:05, 2.60it/s]
377
  7%|▋ | 377/5070 [02:28<32:03, 2.44it/s]
378
  7%|▋ | 378/5070 [02:28<31:05, 2.52it/s]
379
  7%|▋ | 379/5070 [02:28<30:05, 2.60it/s]
380
  7%|▋ | 380/5070 [02:29<32:30, 2.40it/s]
381
  8%|▊ | 381/5070 [02:29<31:32, 2.48it/s]
382
  8%|▊ | 382/5070 [02:30<34:09, 2.29it/s]
383
  8%|▊ | 383/5070 [02:30<33:53, 2.30it/s]
384
  8%|▊ | 384/5070 [02:31<32:36, 2.40it/s]
385
  8%|▊ | 385/5070 [02:31<32:58, 2.37it/s]
386
  8%|▊ | 386/5070 [02:32<33:49, 2.31it/s]
387
  8%|▊ | 387/5070 [02:32<34:36, 2.26it/s]
388
  8%|▊ | 388/5070 [02:32<30:40, 2.54it/s]
389
  8%|▊ | 389/5070 [02:33<33:50, 2.30it/s]
390
  8%|▊ | 390/5070 [02:33<34:57, 2.23it/s]
391
  8%|▊ | 391/5070 [02:34<31:32, 2.47it/s]
392
  8%|▊ | 392/5070 [02:34<29:57, 2.60it/s]
393
  8%|▊ | 393/5070 [02:34<28:23, 2.75it/s]
394
  8%|▊ | 394/5070 [02:35<28:33, 2.73it/s]
395
  8%|▊ | 395/5070 [02:35<29:05, 2.68it/s]
396
  8%|▊ | 396/5070 [02:35<29:46, 2.62it/s]
397
  8%|▊ | 397/5070 [02:36<27:19, 2.85it/s]
398
  8%|▊ | 398/5070 [02:36<28:19, 2.75it/s]
399
  8%|▊ | 399/5070 [02:36<28:51, 2.70it/s]
400
  8%|▊ | 400/5070 [02:37<28:11, 2.76it/s]
401
  8%|▊ | 401/5070 [02:37<29:33, 2.63it/s]
402
  8%|▊ | 402/5070 [02:38<31:49, 2.44it/s]
403
  8%|▊ | 403/5070 [02:38<31:43, 2.45it/s]
404
  8%|▊ | 404/5070 [02:39<31:30, 2.47it/s]
405
  8%|▊ | 405/5070 [02:39<29:03, 2.68it/s]
406
  8%|▊ | 406/5070 [02:39<29:03, 2.67it/s]
407
  8%|▊ | 407/5070 [02:40<30:11, 2.57it/s]
408
  8%|▊ | 408/5070 [02:40<30:14, 2.57it/s]
409
  8%|▊ | 409/5070 [02:41<33:16, 2.33it/s]
410
  8%|▊ | 410/5070 [02:41<30:50, 2.52it/s]
411
  8%|▊ | 411/5070 [02:41<30:26, 2.55it/s]
412
  8%|▊ | 412/5070 [02:42<30:50, 2.52it/s]
413
  8%|▊ | 413/5070 [02:42<33:27, 2.32it/s]
414
  8%|▊ | 414/5070 [02:43<32:54, 2.36it/s]
415
  8%|▊ | 415/5070 [02:43<30:43, 2.53it/s]
416
  8%|▊ | 416/5070 [02:43<27:35, 2.81it/s]
417
  8%|▊ | 417/5070 [02:43<27:18, 2.84it/s]
418
  8%|▊ | 418/5070 [02:44<28:26, 2.73it/s]
419
  8%|▊ | 419/5070 [02:44<28:17, 2.74it/s]
420
  8%|▊ | 420/5070 [02:45<27:58, 2.77it/s]
421
  8%|▊ | 421/5070 [02:45<26:19, 2.94it/s]
422
  8%|▊ | 422/5070 [02:45<24:50, 3.12it/s]
423
  8%|▊ | 423/5070 [02:46<26:30, 2.92it/s]
424
  8%|▊ | 424/5070 [02:46<26:57, 2.87it/s]
425
  8%|▊ | 425/5070 [02:46<29:17, 2.64it/s]
426
  8%|▊ | 426/5070 [02:47<29:36, 2.61it/s]
427
  8%|▊ | 427/5070 [02:47<30:52, 2.51it/s]
428
  8%|▊ | 428/5070 [02:48<29:51, 2.59it/s]
429
  8%|▊ | 429/5070 [02:48<28:39, 2.70it/s]
430
  8%|▊ | 430/5070 [02:48<28:36, 2.70it/s]
431
  9%|▊ | 431/5070 [02:49<28:34, 2.71it/s]
432
  9%|▊ | 432/5070 [02:49<28:04, 2.75it/s]
433
  9%|▊ | 433/5070 [02:49<27:33, 2.80it/s]
434
  9%|▊ | 434/5070 [02:50<26:46, 2.89it/s]
435
  9%|▊ | 435/5070 [02:50<30:11, 2.56it/s]
436
  9%|▊ | 436/5070 [02:50<27:57, 2.76it/s]
437
  9%|▊ | 437/5070 [02:51<27:25, 2.82it/s]
438
  9%|▊ | 438/5070 [02:51<28:27, 2.71it/s]
439
  9%|▊ | 439/5070 [02:52<29:18, 2.63it/s]
440
  9%|▊ | 440/5070 [02:52<29:07, 2.65it/s]
441
  9%|▊ | 441/5070 [02:52<29:23, 2.63it/s]
442
  9%|▊ | 442/5070 [02:53<28:21, 2.72it/s]
443
  9%|▊ | 443/5070 [02:53<26:46, 2.88it/s]
444
  9%|▉ | 444/5070 [02:53<27:21, 2.82it/s]
445
  9%|▉ | 445/5070 [02:54<27:35, 2.79it/s]
446
  9%|▉ | 446/5070 [02:54<31:53, 2.42it/s]
447
  9%|▉ | 447/5070 [02:55<29:38, 2.60it/s]
448
  9%|▉ | 448/5070 [02:55<32:06, 2.40it/s]
449
  9%|▉ | 449/5070 [02:55<30:18, 2.54it/s]
450
  9%|▉ | 450/5070 [02:56<30:30, 2.52it/s]
451
  9%|▉ | 451/5070 [02:56<35:58, 2.14it/s]
452
  9%|▉ | 452/5070 [02:57<31:53, 2.41it/s]
453
  9%|▉ | 453/5070 [02:57<30:16, 2.54it/s]
454
  9%|▉ | 454/5070 [02:58<32:03, 2.40it/s]
455
  9%|▉ | 455/5070 [02:58<32:14, 2.39it/s]
456
  9%|▉ | 456/5070 [02:58<30:19, 2.54it/s]
457
  9%|▉ | 457/5070 [02:59<29:53, 2.57it/s]
458
  9%|▉ | 458/5070 [02:59<29:59, 2.56it/s]
459
  9%|▉ | 459/5070 [02:59<29:36, 2.60it/s]
460
  9%|▉ | 460/5070 [03:00<32:30, 2.36it/s]
461
  9%|▉ | 461/5070 [03:00<31:48, 2.42it/s]
462
  9%|▉ | 462/5070 [03:01<30:53, 2.49it/s]
463
  9%|▉ | 463/5070 [03:01<29:15, 2.62it/s]
464
  9%|▉ | 464/5070 [03:01<26:44, 2.87it/s]
465
  9%|▉ | 465/5070 [03:02<28:36, 2.68it/s]
466
  9%|▉ | 466/5070 [03:02<28:37, 2.68it/s]
467
  9%|▉ | 467/5070 [03:02<27:06, 2.83it/s]
468
  9%|▉ | 468/5070 [03:03<26:37, 2.88it/s]
469
  9%|▉ | 469/5070 [03:03<26:46, 2.86it/s]
470
  9%|▉ | 470/5070 [03:03<27:13, 2.82it/s]
471
  9%|▉ | 471/5070 [03:04<27:24, 2.80it/s]
472
  9%|▉ | 472/5070 [03:04<27:36, 2.78it/s]
473
  9%|▉ | 473/5070 [03:05<26:50, 2.86it/s]
474
  9%|▉ | 474/5070 [03:05<28:13, 2.71it/s]
475
  9%|▉ | 475/5070 [03:05<28:49, 2.66it/s]
476
  9%|▉ | 476/5070 [03:06<29:09, 2.63it/s]
477
  9%|▉ | 477/5070 [03:06<27:36, 2.77it/s]
478
  9%|▉ | 478/5070 [03:07<29:31, 2.59it/s]
479
  9%|▉ | 479/5070 [03:07<27:13, 2.81it/s]
480
  9%|▉ | 480/5070 [03:07<27:09, 2.82it/s]
481
  9%|▉ | 481/5070 [03:07<24:54, 3.07it/s]
482
  10%|▉ | 482/5070 [03:08<28:23, 2.69it/s]
483
  10%|▉ | 483/5070 [03:08<27:57, 2.73it/s]
484
  10%|▉ | 484/5070 [03:08<25:38, 2.98it/s]
485
  10%|▉ | 485/5070 [03:09<25:07, 3.04it/s]
486
  10%|▉ | 486/5070 [03:09<26:52, 2.84it/s]
487
  10%|▉ | 487/5070 [03:10<29:34, 2.58it/s]
488
  10%|▉ | 488/5070 [03:10<30:52, 2.47it/s]
489
  10%|▉ | 489/5070 [03:10<28:52, 2.64it/s]
490
  10%|▉ | 490/5070 [03:11<28:11, 2.71it/s]
491
  10%|▉ | 491/5070 [03:11<28:24, 2.69it/s]
492
  10%|▉ | 492/5070 [03:12<30:32, 2.50it/s]
493
  10%|▉ | 493/5070 [03:12<30:43, 2.48it/s]
494
  10%|▉ | 494/5070 [03:12<29:25, 2.59it/s]
495
  10%|▉ | 495/5070 [03:13<26:43, 2.85it/s]
496
  10%|▉ | 496/5070 [03:13<27:07, 2.81it/s]
497
  10%|▉ | 497/5070 [03:13<29:10, 2.61it/s]
498
  10%|▉ | 498/5070 [03:14<30:41, 2.48it/s]
499
  10%|▉ | 499/5070 [03:14<29:46, 2.56it/s]
500
  10%|▉ | 500/5070 [03:15<29:14, 2.60it/s]
501
 
502
  10%|▉ | 500/5070 [03:15<29:14, 2.60it/s]
503
  10%|▉ | 501/5070 [03:15<31:12, 2.44it/s]
504
  10%|▉ | 502/5070 [03:16<31:45, 2.40it/s]
505
  10%|▉ | 503/5070 [03:16<34:48, 2.19it/s]
506
  10%|▉ | 504/5070 [03:17<35:06, 2.17it/s]
507
  10%|▉ | 505/5070 [03:17<34:39, 2.20it/s]
508
  10%|▉ | 506/5070 [03:17<31:02, 2.45it/s]
509
  10%|█ | 507/5070 [03:18<27:23, 2.78it/s][INFO|trainer.py:811] 2024-09-09 12:53:28,785 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
 
510
  0%| | 0/869 [00:00<?, ?it/s]
 
511
  1%| | 10/869 [00:00<00:09, 91.31it/s]
 
512
  2%|▏ | 20/869 [00:00<00:10, 79.28it/s]
 
513
  3%|▎ | 29/869 [00:00<00:10, 77.60it/s]
 
514
  4%|▍ | 37/869 [00:00<00:11, 74.43it/s]
 
515
  5%|▌ | 46/869 [00:00<00:10, 78.18it/s]
 
516
  6%|▋ | 55/869 [00:00<00:10, 80.86it/s]
 
517
  7%|▋ | 64/869 [00:00<00:10, 77.08it/s]
 
518
  8%|▊ | 72/869 [00:00<00:10, 76.17it/s]
 
519
  9%|▉ | 82/869 [00:01<00:09, 80.57it/s]
 
520
  11%|█ | 92/869 [00:01<00:09, 83.71it/s]
 
521
  12%|█▏ | 102/869 [00:01<00:09, 84.98it/s]
 
522
  13%|█▎ | 111/869 [00:01<00:09, 82.02it/s]
 
523
  14%|█▍ | 120/869 [00:01<00:09, 80.94it/s]
 
524
  15%|█▍ | 129/869 [00:01<00:09, 78.76it/s]
 
525
  16%|█▌ | 138/869 [00:01<00:08, 81.75it/s]
 
526
  17%|█▋ | 147/869 [00:01<00:09, 77.19it/s]
 
527
  18%|█▊ | 156/869 [00:01<00:09, 78.39it/s]
 
528
  19%|█▉ | 164/869 [00:02<00:08, 78.36it/s]
 
529
  20%|█▉ | 172/869 [00:02<00:09, 76.45it/s]
 
530
  21%|██ | 180/869 [00:02<00:09, 75.56it/s]
 
531
  22%|██▏ | 189/869 [00:02<00:08, 77.85it/s]
 
532
  23%|██▎ | 197/869 [00:02<00:08, 74.92it/s]
 
533
  24%|██▎ | 206/869 [00:02<00:08, 77.53it/s]
 
534
  25%|██▍ | 215/869 [00:02<00:08, 79.20it/s]
 
535
  26%|██▌ | 224/869 [00:02<00:08, 80.25it/s]
 
536
  27%|██▋ | 233/869 [00:02<00:08, 76.55it/s]
 
537
  28%|██▊ | 241/869 [00:03<00:08, 71.54it/s]
 
538
  29%|██▉ | 250/869 [00:03<00:08, 74.36it/s]
 
539
  30%|██▉ | 259/869 [00:03<00:07, 76.53it/s]
 
540
  31%|███ | 267/869 [00:03<00:07, 75.31it/s]
 
541
  32%|███▏ | 275/869 [00:03<00:07, 74.63it/s]
 
542
  33%|███▎ | 283/869 [00:03<00:07, 73.75it/s]
 
543
  33%|███▎ | 291/869 [00:03<00:07, 74.15it/s]
 
544
  34%|███▍ | 299/869 [00:03<00:07, 71.68it/s]
 
545
  35%|███▌ | 307/869 [00:03<00:07, 72.22it/s]
 
546
  36%|███▌ | 315/869 [00:04<00:07, 72.79it/s]
 
547
  37%|███▋ | 323/869 [00:04<00:07, 72.47it/s]
 
548
  38%|███▊ | 333/869 [00:04<00:06, 78.26it/s]
 
549
  39%|███▉ | 341/869 [00:04<00:06, 77.41it/s]
 
550
  40%|████ | 349/869 [00:04<00:07, 71.93it/s]
 
551
  41%|████ | 358/869 [00:04<00:06, 74.83it/s]
 
552
  42%|████▏ | 367/869 [00:04<00:06, 78.08it/s]
 
553
  43%|████▎ | 375/869 [00:04<00:06, 74.02it/s]
 
554
  44%|████▍ | 383/869 [00:04<00:06, 74.40it/s]
 
555
  45%|████▍ | 391/869 [00:05<00:06, 71.69it/s]
 
556
  46%|████▌ | 399/869 [00:05<00:06, 73.08it/s]
 
557
  47%|████▋ | 408/869 [00:05<00:06, 76.09it/s]
 
558
  48%|████▊ | 417/869 [00:05<00:05, 78.91it/s]
 
559
  49%|████▉ | 425/869 [00:05<00:05, 79.05it/s]
 
560
  50%|████▉ | 434/869 [00:05<00:05, 79.59it/s]
 
561
  51%|█████ | 442/869 [00:05<00:05, 76.14it/s]
 
562
  52%|█████▏ | 450/869 [00:05<00:05, 77.00it/s]
 
563
  53%|█████▎ | 459/869 [00:05<00:05, 77.04it/s]
 
564
  54%|█████▎ | 467/869 [00:06<00:05, 76.09it/s]
 
565
  55%|█████▍ | 477/869 [00:06<00:04, 81.01it/s]
 
566
  56%|█████▌ | 486/869 [00:06<00:04, 82.35it/s]
 
567
  57%|█████▋ | 495/869 [00:06<00:04, 76.40it/s]
 
568
  58%|█████▊ | 503/869 [00:06<00:04, 74.27it/s]
 
569
  59%|█████▉ | 511/869 [00:06<00:04, 75.21it/s]
 
570
  60%|█████▉ | 520/869 [00:06<00:04, 78.71it/s]
 
571
  61%|██████ | 528/869 [00:06<00:04, 72.74it/s]
 
572
  62%|██████▏ | 536/869 [00:06<00:04, 73.74it/s]
 
573
  63%|██████▎ | 544/869 [00:07<00:04, 70.86it/s]
 
574
  64%|██████▎ | 553/869 [00:07<00:04, 73.98it/s]
 
575
  65%|██████▍ | 561/869 [00:07<00:04, 75.50it/s]
 
576
  65%|██████▌ | 569/869 [00:07<00:04, 73.18it/s]
 
577
  67%|██████▋ | 578/869 [00:07<00:03, 75.98it/s]
 
578
  67%|██████▋ | 586/869 [00:07<00:03, 73.37it/s]
 
579
  68%|██████▊ | 594/869 [00:07<00:03, 74.99it/s]
 
580
  69%|██████▉ | 603/869 [00:07<00:03, 78.26it/s]
 
581
  70%|███████ | 611/869 [00:07<00:03, 77.04it/s]
 
582
  71%|███████ | 619/869 [00:08<00:03, 77.37it/s]
 
583
  72%|███████▏ | 627/869 [00:08<00:03, 75.86it/s]
 
584
  73%|███████▎ | 635/869 [00:08<00:03, 73.79it/s]
 
585
  74%|███████▍ | 644/869 [00:08<00:02, 77.27it/s]
 
586
  75%|███████▌ | 653/869 [00:08<00:02, 79.43it/s]
 
587
  76%|███████▌ | 661/869 [00:08<00:02, 76.75it/s]
 
588
  77%|███████▋ | 670/869 [00:08<00:02, 79.36it/s]
 
589
  78%|███████▊ | 679/869 [00:08<00:02, 82.14it/s]
 
590
  79%|███████▉ | 688/869 [00:09<00:02, 70.58it/s]
 
591
  80%|████████ | 696/869 [00:09<00:02, 72.95it/s]
 
592
  81%|████████ | 704/869 [00:09<00:02, 72.45it/s]
 
593
  82%|████████▏ | 713/869 [00:09<00:02, 76.22it/s]
 
594
  83%|████████▎ | 721/869 [00:09<00:01, 76.48it/s]
 
595
  84%|████████▍ | 730/869 [00:09<00:01, 78.48it/s]
 
596
  85%|████████▍ | 738/869 [00:09<00:01, 77.62it/s]
 
597
  86%|████████▌ | 746/869 [00:09<00:01, 78.12it/s]
 
598
  87%|████████▋ | 754/869 [00:09<00:01, 75.65it/s]
 
599
  88%|████████▊ | 763/869 [00:09<00:01, 78.80it/s]
 
600
  89%|████████▊ | 771/869 [00:10<00:01, 73.95it/s]
 
601
  90%|████████▉ | 779/869 [00:10<00:01, 65.06it/s]
 
602
  91%|█████████ | 788/869 [00:10<00:01, 69.56it/s]
 
603
  92%|█████████▏| 797/869 [00:10<00:00, 73.01it/s]
 
604
  93%|█████████▎| 805/869 [00:10<00:00, 73.73it/s]
 
605
  94%|█████████▎| 814/869 [00:10<00:00, 75.79it/s]
 
606
  95%|█████████▍| 822/869 [00:10<00:00, 75.50it/s]
 
607
  96%|█████████▌| 831/869 [00:10<00:00, 75.78it/s]
 
608
  97%|█████████▋| 840/869 [00:11<00:00, 77.68it/s]
 
609
  98%|█████████▊| 849/869 [00:11<00:00, 79.00it/s]
 
610
  99%|█████████▊| 857/869 [00:11<00:00, 79.09it/s]
 
611
 
 
612
 
613
  10%|█ | 507/5070 [03:33<27:23, 2.78it/s]
 
 
614
  [INFO|trainer.py:3503] 2024-09-09 12:53:44,013 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-507
 
 
 
 
 
 
 
615
  10%|█ | 508/5070 [03:38<7:59:31, 6.31s/it]
616
  10%|█ | 509/5070 [03:38<5:43:00, 4.51s/it]
617
  10%|█ | 510/5070 [03:39<4:09:49, 3.29s/it]
618
  10%|█ | 511/5070 [03:39<3:02:23, 2.40s/it]
619
  10%|█ | 512/5070 [03:39<2:14:43, 1.77s/it]
620
  10%|█ | 513/5070 [03:40<1:43:58, 1.37s/it]
621
  10%|█ | 514/5070 [03:40<1:22:41, 1.09s/it]
622
  10%|█ | 515/5070 [03:40<1:04:22, 1.18it/s]
623
  10%|█ | 516/5070 [03:41<52:24, 1.45it/s]
624
  10%|█ | 517/5070 [03:41<48:49, 1.55it/s]
625
  10%|█ | 518/5070 [03:42<46:44, 1.62it/s]
626
  10%|█ | 519/5070 [03:42<39:54, 1.90it/s]
627
  10%|█ | 520/5070 [03:42<34:40, 2.19it/s]
628
  10%|█ | 521/5070 [03:43<32:48, 2.31it/s]
629
  10%|█ | 522/5070 [03:43<31:00, 2.44it/s]
630
  10%|█ | 523/5070 [03:43<27:25, 2.76it/s]
631
  10%|█ | 524/5070 [03:44<26:38, 2.84it/s]
632
  10%|█ | 525/5070 [03:44<27:04, 2.80it/s]
633
  10%|█ | 526/5070 [03:44<27:18, 2.77it/s]
634
  10%|█ | 527/5070 [03:45<27:06, 2.79it/s]
635
  10%|█ | 528/5070 [03:45<27:34, 2.75it/s]
636
  10%|█ | 529/5070 [03:45<25:33, 2.96it/s]
637
  10%|█ | 530/5070 [03:46<27:32, 2.75it/s]
638
  10%|█ | 531/5070 [03:46<28:24, 2.66it/s]
639
  10%|█ | 532/5070 [03:47<26:56, 2.81it/s]
640
  11%|█ | 533/5070 [03:47<26:50, 2.82it/s]
641
  11%|█ | 534/5070 [03:47<25:43, 2.94it/s]
642
  11%|█ | 535/5070 [03:48<27:07, 2.79it/s]
643
  11%|█ | 536/5070 [03:48<27:33, 2.74it/s]
644
  11%|█ | 537/5070 [03:48<29:37, 2.55it/s]
645
  11%|█ | 538/5070 [03:49<32:00, 2.36it/s]
646
  11%|█ | 539/5070 [03:49<29:10, 2.59it/s]
647
  11%|█ | 540/5070 [03:50<28:23, 2.66it/s]
648
  11%|█ | 541/5070 [03:50<28:24, 2.66it/s]
649
  11%|█ | 542/5070 [03:50<29:45, 2.54it/s]
650
  11%|█ | 543/5070 [03:51<32:20, 2.33it/s]
651
  11%|█ | 544/5070 [03:51<32:47, 2.30it/s]
652
  11%|█ | 545/5070 [03:52<32:17, 2.34it/s]
653
  11%|█ | 546/5070 [03:52<29:43, 2.54it/s]
654
  11%|█ | 547/5070 [03:52<29:53, 2.52it/s]
655
  11%|█ | 548/5070 [03:53<28:05, 2.68it/s]
656
  11%|█ | 549/5070 [03:53<27:40, 2.72it/s]
657
  11%|█ | 550/5070 [03:53<25:17, 2.98it/s]
658
  11%|█ | 551/5070 [03:54<26:11, 2.87it/s]
659
  11%|█ | 552/5070 [03:54<26:47, 2.81it/s]
660
  11%|█ | 553/5070 [03:55<27:54, 2.70it/s]
661
  11%|█ | 554/5070 [03:55<31:30, 2.39it/s]
662
  11%|█ | 555/5070 [03:55<31:08, 2.42it/s]
663
  11%|█ | 556/5070 [03:56<28:54, 2.60it/s]
664
  11%|█ | 557/5070 [03:56<28:31, 2.64it/s]
665
  11%|█ | 558/5070 [03:56<27:29, 2.74it/s]
666
  11%|█ | 559/5070 [03:57<30:01, 2.50it/s]
667
  11%|█ | 560/5070 [03:57<28:51, 2.60it/s]
668
  11%|█ | 561/5070 [03:58<27:48, 2.70it/s]
669
  11%|█ | 562/5070 [03:58<27:04, 2.78it/s]
670
  11%|█ | 563/5070 [03:58<28:37, 2.62it/s]
671
  11%|█ | 564/5070 [03:59<32:25, 2.32it/s]
672
  11%|█ | 565/5070 [03:59<32:00, 2.35it/s]
673
  11%|█ | 566/5070 [04:00<32:54, 2.28it/s]
674
  11%|█ | 567/5070 [04:00<32:14, 2.33it/s]
675
  11%|█ | 568/5070 [04:01<31:07, 2.41it/s]
676
  11%|█ | 569/5070 [04:01<30:28, 2.46it/s]
677
  11%|█ | 570/5070 [04:01<28:51, 2.60it/s]
678
  11%|█▏ | 571/5070 [04:02<27:02, 2.77it/s]
679
  11%|█▏ | 572/5070 [04:02<27:49, 2.69it/s]
680
  11%|█▏ | 573/5070 [04:03<29:30, 2.54it/s]
681
  11%|█▏ | 574/5070 [04:03<29:06, 2.57it/s]
682
  11%|█▏ | 575/5070 [04:03<27:59, 2.68it/s]
683
  11%|█▏ | 576/5070 [04:04<27:40, 2.71it/s]
684
  11%|█▏ | 577/5070 [04:04<26:59, 2.78it/s]
685
  11%|█▏ | 578/5070 [04:04<27:13, 2.75it/s]
686
  11%|█▏ | 579/5070 [04:05<27:11, 2.75it/s]
687
  11%|█▏ | 580/5070 [04:05<27:55, 2.68it/s]
688
  11%|█▏ | 581/5070 [04:05<27:12, 2.75it/s]
689
  11%|█▏ | 582/5070 [04:06<25:46, 2.90it/s]
690
  11%|█▏ | 583/5070 [04:06<26:23, 2.83it/s]
691
  12%|█▏ | 584/5070 [04:06<26:58, 2.77it/s]
692
  12%|█▏ | 585/5070 [04:07<28:33, 2.62it/s]
693
  12%|█▏ | 586/5070 [04:07<28:31, 2.62it/s]
694
  12%|█▏ | 587/5070 [04:08<26:37, 2.81it/s]
695
  12%|█▏ | 588/5070 [04:08<26:51, 2.78it/s]
696
  12%|█▏ | 589/5070 [04:08<28:01, 2.66it/s]
697
  12%|█▏ | 590/5070 [04:09<31:48, 2.35it/s]
698
  12%|█▏ | 591/5070 [04:09<28:30, 2.62it/s]
699
  12%|█▏ | 592/5070 [04:10<29:37, 2.52it/s]
700
  12%|█▏ | 593/5070 [04:10<28:26, 2.62it/s]
701
  12%|█▏ | 594/5070 [04:10<28:30, 2.62it/s]
702
  12%|█▏ | 595/5070 [04:11<26:28, 2.82it/s]
703
  12%|█▏ | 596/5070 [04:11<24:56, 2.99it/s]
704
  12%|█▏ | 597/5070 [04:11<26:43, 2.79it/s]
705
  12%|█▏ | 598/5070 [04:12<26:47, 2.78it/s]
706
  12%|█▏ | 599/5070 [04:12<28:46, 2.59it/s]
707
  12%|█▏ | 600/5070 [04:12<28:04, 2.65it/s]
708
  12%|█▏ | 601/5070 [04:13<27:50, 2.68it/s]
709
  12%|█▏ | 602/5070 [04:13<28:36, 2.60it/s]
710
  12%|█▏ | 603/5070 [04:14<31:30, 2.36it/s]
711
  12%|█▏ | 604/5070 [04:14<30:04, 2.48it/s]
712
  12%|█▏ | 605/5070 [04:15<29:27, 2.53it/s]
713
  12%|█▏ | 606/5070 [04:15<27:32, 2.70it/s]
714
  12%|█▏ | 607/5070 [04:15<26:02, 2.86it/s]
715
  12%|█▏ | 608/5070 [04:15<24:33, 3.03it/s]
716
  12%|█▏ | 609/5070 [04:16<27:46, 2.68it/s]
717
  12%|█▏ | 610/5070 [04:16<27:02, 2.75it/s]
718
  12%|█▏ | 611/5070 [04:17<27:23, 2.71it/s]
719
  12%|█▏ | 612/5070 [04:17<26:46, 2.78it/s]
720
  12%|█▏ | 613/5070 [04:17<27:05, 2.74it/s]
721
  12%|█▏ | 614/5070 [04:18<27:24, 2.71it/s]
722
  12%|█▏ | 615/5070 [04:18<27:54, 2.66it/s]
723
  12%|█▏ | 616/5070 [04:18<28:24, 2.61it/s]
724
  12%|█▏ | 617/5070 [04:19<27:37, 2.69it/s]
725
  12%|█▏ | 618/5070 [04:19<27:37, 2.69it/s]
726
  12%|█▏ | 619/5070 [04:20<27:19, 2.71it/s]
727
  12%|█▏ | 620/5070 [04:20<32:19, 2.29it/s]
728
  12%|█▏ | 621/5070 [04:21<33:26, 2.22it/s]
 
1
+ 2024-09-09 12:49:35.169739: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-09 12:49:35.188435: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-09 12:49:35.210470: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-09 12:49:35.217107: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-09 12:49:35.233109: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-09 12:49:36.523400: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/09/2024 12:49:38 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/09/2024 12:49:38 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-09 12:49:56,508 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-09 12:49:56,512 >> Model config BertConfig {
149
+ "_name_or_path": "michiyasunaga/BioLinkBERT-base",
150
+ "architectures": [
151
+ "BertModel"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "classifier_dropout": null,
155
+ "finetuning_task": "ner",
156
+ "gradient_checkpointing": false,
157
+ "hidden_act": "gelu",
158
+ "hidden_dropout_prob": 0.1,
159
+ "hidden_size": 768,
160
+ "id2label": {
161
+ "0": "O",
162
+ "1": "B-FARMACO",
163
+ "2": "I-FARMACO"
164
+ },
165
+ "initializer_range": 0.02,
166
+ "intermediate_size": 3072,
167
+ "label2id": {
168
+ "B-FARMACO": 1,
169
+ "I-FARMACO": 2,
170
+ "O": 0
171
+ },
172
+ "layer_norm_eps": 1e-12,
173
+ "max_position_embeddings": 512,
174
+ "model_type": "bert",
175
+ "num_attention_heads": 12,
176
+ "num_hidden_layers": 12,
177
+ "pad_token_id": 0,
178
+ "position_embedding_type": "absolute",
179
+ "transformers_version": "4.44.2",
180
+ "type_vocab_size": 2,
181
+ "use_cache": true,
182
+ "vocab_size": 28895
183
+ }
184
+
185
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/vocab.txt
186
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer.json
187
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file added_tokens.json from cache at None
188
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/special_tokens_map.json
189
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:49:58,923 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/tokenizer_config.json
190
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
191
+ warnings.warn(
192
+ [INFO|modeling_utils.py:3678] 2024-09-09 12:50:02,660 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--michiyasunaga--BioLinkBERT-base/snapshots/b71f5d70f063d1c8f1124070ce86f1ee463ca1fe/pytorch_model.bin
193
+ [INFO|modeling_utils.py:4497] 2024-09-09 12:50:02,740 >> Some weights of the model checkpoint at michiyasunaga/BioLinkBERT-base were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']
194
+ - This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
195
+ - This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
196
+ [WARNING|modeling_utils.py:4509] 2024-09-09 12:50:02,740 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at michiyasunaga/BioLinkBERT-base and are newly initialized: ['classifier.bias', 'classifier.weight']
197
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
198
+
199
+
200
+
201
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
202
+ metric = load_metric("seqeval", trust_remote_code=True)
203
+ [INFO|trainer.py:811] 2024-09-09 12:50:10,148 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
204
+ [INFO|trainer.py:2134] 2024-09-09 12:50:10,704 >> ***** Running training *****
205
+ [INFO|trainer.py:2135] 2024-09-09 12:50:10,704 >> Num examples = 32,447
206
+ [INFO|trainer.py:2136] 2024-09-09 12:50:10,704 >> Num Epochs = 10
207
+ [INFO|trainer.py:2137] 2024-09-09 12:50:10,704 >> Instantaneous batch size per device = 32
208
+ [INFO|trainer.py:2140] 2024-09-09 12:50:10,704 >> Total train batch size (w. parallel, distributed & accumulation) = 64
209
+ [INFO|trainer.py:2141] 2024-09-09 12:50:10,704 >> Gradient Accumulation steps = 2
210
+ [INFO|trainer.py:2142] 2024-09-09 12:50:10,704 >> Total optimization steps = 5,070
211
+ [INFO|trainer.py:2143] 2024-09-09 12:50:10,705 >> Number of trainable parameters = 107,644,419
212
+
213
  0%| | 0/5070 [00:00<?, ?it/s]
214
  0%| | 1/5070 [00:01<1:55:56, 1.37s/it]
215
  0%| | 2/5070 [00:01<1:01:02, 1.38it/s]
216
  0%| | 3/5070 [00:01<43:59, 1.92it/s]
217
  0%| | 4/5070 [00:02<37:03, 2.28it/s]
218
  0%| | 5/5070 [00:02<33:54, 2.49it/s]
219
  0%| | 6/5070 [00:02<29:56, 2.82it/s]
220
  0%| | 7/5070 [00:03<29:13, 2.89it/s]
221
  0%| | 8/5070 [00:03<29:19, 2.88it/s]
222
  0%| | 9/5070 [00:03<28:01, 3.01it/s]
223
  0%| | 10/5070 [00:04<29:27, 2.86it/s]
224
  0%| | 11/5070 [00:04<31:52, 2.65it/s]
225
  0%| | 12/5070 [00:04<31:16, 2.70it/s]
226
  0%| | 13/5070 [00:05<30:19, 2.78it/s]
227
  0%| | 14/5070 [00:05<32:35, 2.59it/s]
228
  0%| | 15/5070 [00:06<29:33, 2.85it/s]
229
  0%| | 16/5070 [00:06<29:08, 2.89it/s]
230
  0%| | 17/5070 [00:06<32:23, 2.60it/s]
231
  0%| | 18/5070 [00:07<32:56, 2.56it/s]
232
  0%| | 19/5070 [00:07<30:14, 2.78it/s]
233
  0%| | 20/5070 [00:07<31:25, 2.68it/s]
234
  0%| | 21/5070 [00:08<28:05, 3.00it/s]
235
  0%| | 22/5070 [00:08<27:40, 3.04it/s]
236
  0%| | 23/5070 [00:08<29:31, 2.85it/s]
237
  0%| | 24/5070 [00:09<27:57, 3.01it/s]
238
  0%| | 25/5070 [00:09<29:57, 2.81it/s]
239
  1%| | 26/5070 [00:09<30:14, 2.78it/s]
240
  1%| | 27/5070 [00:10<31:00, 2.71it/s]
241
  1%| | 28/5070 [00:10<33:13, 2.53it/s]
242
  1%| | 29/5070 [00:11<31:44, 2.65it/s]
243
  1%| | 30/5070 [00:11<34:06, 2.46it/s]
244
  1%| | 31/5070 [00:11<31:33, 2.66it/s]
245
  1%| | 32/5070 [00:12<30:32, 2.75it/s]
246
  1%| | 33/5070 [00:12<32:34, 2.58it/s]
247
  1%| | 34/5070 [00:13<33:22, 2.51it/s]
248
  1%| | 35/5070 [00:13<32:11, 2.61it/s]
249
  1%| | 36/5070 [00:13<29:47, 2.82it/s]
250
  1%| | 37/5070 [00:14<34:03, 2.46it/s]
251
  1%| | 38/5070 [00:14<33:12, 2.53it/s]
252
  1%| | 39/5070 [00:15<32:01, 2.62it/s]
253
  1%| | 40/5070 [00:15<32:04, 2.61it/s]
254
  1%| | 41/5070 [00:15<31:28, 2.66it/s]
255
  1%| | 42/5070 [00:16<29:43, 2.82it/s]
256
  1%| | 43/5070 [00:16<29:54, 2.80it/s]
257
  1%| | 44/5070 [00:16<30:08, 2.78it/s]
258
  1%| | 45/5070 [00:17<28:16, 2.96it/s]
259
  1%| | 46/5070 [00:17<28:34, 2.93it/s]
260
  1%| | 47/5070 [00:17<29:04, 2.88it/s]
261
  1%| | 48/5070 [00:18<30:31, 2.74it/s]
262
  1%| | 49/5070 [00:18<29:37, 2.82it/s]
263
  1%| | 50/5070 [00:19<33:53, 2.47it/s]
264
  1%| | 51/5070 [00:19<34:07, 2.45it/s]
265
  1%| | 52/5070 [00:19<34:08, 2.45it/s]
266
  1%| | 53/5070 [00:20<31:49, 2.63it/s]
267
  1%| | 54/5070 [00:20<31:13, 2.68it/s]
268
  1%| | 55/5070 [00:20<31:05, 2.69it/s]
269
  1%| | 56/5070 [00:21<30:58, 2.70it/s]
270
  1%| | 57/5070 [00:21<29:45, 2.81it/s]
271
  1%| | 58/5070 [00:21<30:11, 2.77it/s]
272
  1%| | 59/5070 [00:22<30:56, 2.70it/s]
273
  1%| | 60/5070 [00:22<31:45, 2.63it/s]
274
  1%| | 61/5070 [00:23<31:48, 2.63it/s]
275
  1%| | 62/5070 [00:23<31:35, 2.64it/s]
276
  1%| | 63/5070 [00:23<31:04, 2.69it/s]
277
  1%|▏ | 64/5070 [00:24<28:24, 2.94it/s]
278
  1%|▏ | 65/5070 [00:24<27:01, 3.09it/s]
279
  1%|▏ | 66/5070 [00:24<30:56, 2.70it/s]
280
  1%|▏ | 67/5070 [00:25<33:25, 2.50it/s]
281
  1%|▏ | 68/5070 [00:25<37:18, 2.23it/s]
282
  1%|▏ | 69/5070 [00:26<39:18, 2.12it/s]
283
  1%|▏ | 70/5070 [00:26<35:57, 2.32it/s]
284
  1%|▏ | 71/5070 [00:27<35:19, 2.36it/s]
285
  1%|▏ | 72/5070 [00:27<36:17, 2.30it/s]
286
  1%|▏ | 73/5070 [00:28<38:25, 2.17it/s]
287
  1%|▏ | 74/5070 [00:28<35:23, 2.35it/s]
288
  1%|▏ | 75/5070 [00:28<35:34, 2.34it/s]
289
  1%|▏ | 76/5070 [00:29<35:16, 2.36it/s]
290
  2%|▏ | 77/5070 [00:29<37:14, 2.23it/s]
291
  2%|▏ | 78/5070 [00:30<36:13, 2.30it/s]
292
  2%|▏ | 79/5070 [00:30<37:43, 2.20it/s]
293
  2%|▏ | 80/5070 [00:31<35:44, 2.33it/s]
294
  2%|▏ | 81/5070 [00:31<35:40, 2.33it/s]
295
  2%|▏ | 82/5070 [00:31<32:56, 2.52it/s]
296
  2%|▏ | 83/5070 [00:32<32:34, 2.55it/s]
297
  2%|▏ | 84/5070 [00:32<36:48, 2.26it/s]
298
  2%|▏ | 85/5070 [00:33<34:40, 2.40it/s]
299
  2%|▏ | 86/5070 [00:33<35:53, 2.31it/s]
300
  2%|▏ | 87/5070 [00:34<38:14, 2.17it/s]
301
  2%|▏ | 88/5070 [00:34<37:25, 2.22it/s]
302
  2%|▏ | 89/5070 [00:34<33:37, 2.47it/s]
303
  2%|▏ | 90/5070 [00:35<32:47, 2.53it/s]
304
  2%|▏ | 91/5070 [00:35<30:14, 2.74it/s]
305
  2%|▏ | 92/5070 [00:36<34:18, 2.42it/s]
306
  2%|▏ | 93/5070 [00:36<33:53, 2.45it/s]
307
  2%|▏ | 94/5070 [00:36<34:27, 2.41it/s]
308
  2%|▏ | 95/5070 [00:37<32:28, 2.55it/s]
309
  2%|▏ | 96/5070 [00:37<31:05, 2.67it/s]
310
  2%|▏ | 97/5070 [00:37<28:50, 2.87it/s]
311
  2%|▏ | 98/5070 [00:38<32:59, 2.51it/s]
312
  2%|▏ | 99/5070 [00:38<31:29, 2.63it/s]
313
  2%|▏ | 100/5070 [00:39<31:13, 2.65it/s]
314
  2%|▏ | 101/5070 [00:39<34:40, 2.39it/s]
315
  2%|▏ | 102/5070 [00:39<31:42, 2.61it/s]
316
  2%|▏ | 103/5070 [00:40<32:17, 2.56it/s]
317
  2%|▏ | 104/5070 [00:40<30:58, 2.67it/s]
318
  2%|▏ | 105/5070 [00:41<29:59, 2.76it/s]
319
  2%|▏ | 106/5070 [00:41<36:53, 2.24it/s]
320
  2%|▏ | 107/5070 [00:42<34:40, 2.39it/s]
321
  2%|▏ | 108/5070 [00:42<33:38, 2.46it/s]
322
  2%|▏ | 109/5070 [00:42<33:31, 2.47it/s]
323
  2%|▏ | 110/5070 [00:43<31:03, 2.66it/s]
324
  2%|▏ | 111/5070 [00:43<31:56, 2.59it/s]
325
  2%|▏ | 112/5070 [00:43<31:17, 2.64it/s]
326
  2%|▏ | 113/5070 [00:44<31:57, 2.58it/s]
327
  2%|▏ | 114/5070 [00:44<29:33, 2.80it/s]
328
  2%|▏ | 115/5070 [00:45<31:12, 2.65it/s]
329
  2%|▏ | 116/5070 [00:45<31:17, 2.64it/s]
330
  2%|▏ | 117/5070 [00:45<33:04, 2.50it/s]
331
  2%|▏ | 118/5070 [00:46<36:26, 2.26it/s]
332
  2%|▏ | 119/5070 [00:47<42:31, 1.94it/s]
333
  2%|▏ | 120/5070 [00:47<37:20, 2.21it/s]
334
  2%|▏ | 121/5070 [00:47<35:21, 2.33it/s]
335
  2%|▏ | 122/5070 [00:48<34:00, 2.43it/s]
336
  2%|▏ | 123/5070 [00:48<32:01, 2.57it/s]
337
  2%|▏ | 124/5070 [00:48<31:24, 2.62it/s]
338
  2%|▏ | 125/5070 [00:49<29:14, 2.82it/s]
339
  2%|▏ | 126/5070 [00:49<31:42, 2.60it/s]
340
  3%|▎ | 127/5070 [00:50<36:51, 2.24it/s]
341
  3%|▎ | 128/5070 [00:50<35:05, 2.35it/s]
342
  3%|▎ | 129/5070 [00:50<32:31, 2.53it/s]
343
  3%|▎ | 130/5070 [00:51<33:29, 2.46it/s]
344
  3%|▎ | 131/5070 [00:51<34:54, 2.36it/s]
345
  3%|▎ | 132/5070 [00:52<32:01, 2.57it/s]
346
  3%|▎ | 133/5070 [00:52<30:11, 2.73it/s]
347
  3%|▎ | 134/5070 [00:52<27:55, 2.95it/s]
348
  3%|▎ | 135/5070 [00:53<27:47, 2.96it/s]
349
  3%|▎ | 136/5070 [00:53<34:07, 2.41it/s]
350
  3%|▎ | 137/5070 [00:54<36:48, 2.23it/s]
351
  3%|▎ | 138/5070 [00:54<34:08, 2.41it/s]
352
  3%|▎ | 139/5070 [00:54<32:28, 2.53it/s]
353
  3%|▎ | 140/5070 [00:55<32:32, 2.53it/s]
354
  3%|▎ | 141/5070 [00:55<34:10, 2.40it/s]
355
  3%|▎ | 142/5070 [00:56<33:01, 2.49it/s]
356
  3%|▎ | 143/5070 [00:56<34:43, 2.36it/s]
357
  3%|▎ | 144/5070 [00:56<32:40, 2.51it/s]
358
  3%|▎ | 145/5070 [00:57<34:42, 2.37it/s]
359
  3%|▎ | 146/5070 [00:57<33:20, 2.46it/s]
360
  3%|▎ | 147/5070 [00:58<38:03, 2.16it/s]
361
  3%|▎ | 148/5070 [00:58<38:10, 2.15it/s]
362
  3%|▎ | 149/5070 [00:59<39:25, 2.08it/s]
363
  3%|▎ | 150/5070 [00:59<37:15, 2.20it/s]
364
  3%|▎ | 151/5070 [01:00<35:10, 2.33it/s]
365
  3%|▎ | 152/5070 [01:00<35:57, 2.28it/s]
366
  3%|▎ | 153/5070 [01:00<32:39, 2.51it/s]
367
  3%|▎ | 154/5070 [01:01<31:50, 2.57it/s]
368
  3%|▎ | 155/5070 [01:01<30:24, 2.69it/s]
369
  3%|▎ | 156/5070 [01:01<29:07, 2.81it/s]
370
  3%|▎ | 157/5070 [01:02<27:52, 2.94it/s]
371
  3%|▎ | 158/5070 [01:02<26:45, 3.06it/s]
372
  3%|▎ | 159/5070 [01:02<27:09, 3.01it/s]
373
  3%|▎ | 160/5070 [01:03<28:05, 2.91it/s]
374
  3%|▎ | 161/5070 [01:03<28:55, 2.83it/s]
375
  3%|▎ | 162/5070 [01:04<32:05, 2.55it/s]
376
  3%|▎ | 163/5070 [01:04<32:59, 2.48it/s]
377
  3%|▎ | 164/5070 [01:04<33:29, 2.44it/s]
378
  3%|▎ | 165/5070 [01:05<38:00, 2.15it/s]
379
  3%|▎ | 166/5070 [01:05<37:31, 2.18it/s]
380
  3%|▎ | 167/5070 [01:06<34:33, 2.36it/s]
381
  3%|▎ | 168/5070 [01:06<30:48, 2.65it/s]
382
  3%|▎ | 169/5070 [01:06<29:41, 2.75it/s]
383
  3%|▎ | 170/5070 [01:07<28:36, 2.85it/s]
384
  3%|▎ | 171/5070 [01:07<29:44, 2.74it/s]
385
  3%|▎ | 172/5070 [01:07<29:24, 2.78it/s]
386
  3%|▎ | 173/5070 [01:08<30:28, 2.68it/s]
387
  3%|▎ | 174/5070 [01:08<31:08, 2.62it/s]
388
  3%|▎ | 175/5070 [01:09<30:05, 2.71it/s]
389
  3%|▎ | 176/5070 [01:09<31:47, 2.57it/s]
390
  3%|▎ | 177/5070 [01:09<30:57, 2.63it/s]
391
  4%|▎ | 178/5070 [01:10<30:51, 2.64it/s]
392
  4%|▎ | 179/5070 [01:10<32:25, 2.51it/s]
393
  4%|▎ | 180/5070 [01:11<32:40, 2.49it/s]
394
  4%|▎ | 181/5070 [01:11<30:53, 2.64it/s]
395
  4%|▎ | 182/5070 [01:11<29:51, 2.73it/s]
396
  4%|▎ | 183/5070 [01:12<30:08, 2.70it/s]
397
  4%|▎ | 184/5070 [01:12<29:08, 2.79it/s]
398
  4%|▎ | 185/5070 [01:12<27:38, 2.95it/s]
399
  4%|▎ | 186/5070 [01:13<29:08, 2.79it/s]
400
  4%|▎ | 187/5070 [01:13<30:50, 2.64it/s]
401
  4%|▎ | 188/5070 [01:13<29:46, 2.73it/s]
402
  4%|▎ | 189/5070 [01:14<27:02, 3.01it/s]
403
  4%|▎ | 190/5070 [01:14<32:28, 2.50it/s]
404
  4%|▍ | 191/5070 [01:15<33:35, 2.42it/s]
405
  4%|▍ | 192/5070 [01:15<33:34, 2.42it/s]
406
  4%|▍ | 193/5070 [01:16<39:01, 2.08it/s]
407
  4%|▍ | 194/5070 [01:16<38:27, 2.11it/s]
408
  4%|▍ | 195/5070 [01:17<35:38, 2.28it/s]
409
  4%|▍ | 196/5070 [01:17<33:20, 2.44it/s]
410
  4%|▍ | 197/5070 [01:17<31:14, 2.60it/s]
411
  4%|▍ | 198/5070 [01:18<32:57, 2.46it/s]
412
  4%|▍ | 199/5070 [01:18<30:26, 2.67it/s]
413
  4%|▍ | 200/5070 [01:19<34:45, 2.34it/s]
414
  4%|▍ | 201/5070 [01:19<31:49, 2.55it/s]
415
  4%|▍ | 202/5070 [01:19<32:15, 2.52it/s]
416
  4%|▍ | 203/5070 [01:20<36:02, 2.25it/s]
417
  4%|▍ | 204/5070 [01:20<36:30, 2.22it/s]
418
  4%|▍ | 205/5070 [01:21<39:03, 2.08it/s]
419
  4%|▍ | 206/5070 [01:21<36:32, 2.22it/s]
420
  4%|▍ | 207/5070 [01:22<34:56, 2.32it/s]
421
  4%|▍ | 208/5070 [01:22<34:18, 2.36it/s]
422
  4%|▍ | 209/5070 [01:22<32:08, 2.52it/s]
423
  4%|▍ | 210/5070 [01:23<31:17, 2.59it/s]
424
  4%|▍ | 211/5070 [01:23<29:35, 2.74it/s]
425
  4%|▍ | 212/5070 [01:23<33:09, 2.44it/s]
426
  4%|▍ | 213/5070 [01:24<32:48, 2.47it/s]
427
  4%|▍ | 214/5070 [01:24<36:04, 2.24it/s]
428
  4%|▍ | 215/5070 [01:25<33:15, 2.43it/s]
429
  4%|▍ | 216/5070 [01:25<32:15, 2.51it/s]
430
  4%|▍ | 217/5070 [01:26<32:45, 2.47it/s]
431
  4%|▍ | 218/5070 [01:26<32:25, 2.49it/s]
432
  4%|▍ | 219/5070 [01:26<34:45, 2.33it/s]
433
  4%|▍ | 220/5070 [01:27<37:32, 2.15it/s]
434
  4%|▍ | 221/5070 [01:27<38:50, 2.08it/s]
435
  4%|▍ | 222/5070 [01:28<34:44, 2.33it/s]
436
  4%|▍ | 223/5070 [01:28<34:06, 2.37it/s]
437
  4%|▍ | 224/5070 [01:29<34:41, 2.33it/s]
438
  4%|▍ | 225/5070 [01:29<34:43, 2.33it/s]
439
  4%|▍ | 226/5070 [01:30<34:36, 2.33it/s]
440
  4%|▍ | 227/5070 [01:30<35:31, 2.27it/s]
441
  4%|▍ | 228/5070 [01:30<35:10, 2.29it/s]
442
  5%|▍ | 229/5070 [01:31<31:33, 2.56it/s]
443
  5%|▍ | 230/5070 [01:31<29:53, 2.70it/s]
444
  5%|▍ | 231/5070 [01:31<27:03, 2.98it/s]
445
  5%|▍ | 232/5070 [01:32<27:04, 2.98it/s]
446
  5%|▍ | 233/5070 [01:32<28:05, 2.87it/s]
447
  5%|▍ | 234/5070 [01:32<27:50, 2.90it/s]
448
  5%|▍ | 235/5070 [01:33<29:12, 2.76it/s]
449
  5%|▍ | 236/5070 [01:33<29:10, 2.76it/s]
450
  5%|▍ | 237/5070 [01:33<29:14, 2.75it/s]
451
  5%|▍ | 238/5070 [01:34<28:12, 2.85it/s]
452
  5%|▍ | 239/5070 [01:34<28:52, 2.79it/s]
453
  5%|▍ | 240/5070 [01:35<28:58, 2.78it/s]
454
  5%|▍ | 241/5070 [01:35<30:33, 2.63it/s]
455
  5%|▍ | 242/5070 [01:35<27:48, 2.89it/s]
456
  5%|▍ | 243/5070 [01:36<27:25, 2.93it/s]
457
  5%|▍ | 244/5070 [01:36<26:48, 3.00it/s]
458
  5%|▍ | 245/5070 [01:36<29:15, 2.75it/s]
459
  5%|▍ | 246/5070 [01:37<27:55, 2.88it/s]
460
  5%|▍ | 247/5070 [01:37<28:18, 2.84it/s]
461
  5%|▍ | 248/5070 [01:37<30:50, 2.61it/s]
462
  5%|▍ | 249/5070 [01:38<31:34, 2.54it/s]
463
  5%|▍ | 250/5070 [01:38<30:21, 2.65it/s]
464
  5%|▍ | 251/5070 [01:39<29:52, 2.69it/s]
465
  5%|▍ | 252/5070 [01:39<32:46, 2.45it/s]
466
  5%|▍ | 253/5070 [01:39<31:44, 2.53it/s]
467
  5%|▌ | 254/5070 [01:40<31:13, 2.57it/s]
468
  5%|▌ | 255/5070 [01:40<31:48, 2.52it/s]
469
  5%|▌ | 256/5070 [01:41<31:07, 2.58it/s]
470
  5%|▌ | 257/5070 [01:41<31:06, 2.58it/s]
471
  5%|▌ | 258/5070 [01:41<30:15, 2.65it/s]
472
  5%|▌ | 259/5070 [01:42<29:15, 2.74it/s]
473
  5%|▌ | 260/5070 [01:42<31:19, 2.56it/s]
474
  5%|▌ | 261/5070 [01:43<36:08, 2.22it/s]
475
  5%|▌ | 262/5070 [01:43<33:22, 2.40it/s]
476
  5%|▌ | 263/5070 [01:43<32:11, 2.49it/s]
477
  5%|▌ | 264/5070 [01:44<29:48, 2.69it/s]
478
  5%|▌ | 265/5070 [01:44<28:33, 2.80it/s]
479
  5%|▌ | 266/5070 [01:44<28:52, 2.77it/s]
480
  5%|▌ | 267/5070 [01:45<32:16, 2.48it/s]
481
  5%|▌ | 268/5070 [01:45<33:51, 2.36it/s]
482
  5%|▌ | 269/5070 [01:46<33:57, 2.36it/s]
483
  5%|▌ | 270/5070 [01:46<31:25, 2.55it/s]
484
  5%|▌ | 271/5070 [01:46<31:23, 2.55it/s]
485
  5%|▌ | 272/5070 [01:47<32:46, 2.44it/s]
486
  5%|▌ | 273/5070 [01:47<32:44, 2.44it/s]
487
  5%|▌ | 274/5070 [01:48<33:13, 2.41it/s]
488
  5%|▌ | 275/5070 [01:48<32:30, 2.46it/s]
489
  5%|▌ | 276/5070 [01:49<32:22, 2.47it/s]
490
  5%|▌ | 277/5070 [01:49<31:44, 2.52it/s]
491
  5%|▌ | 278/5070 [01:49<31:56, 2.50it/s]
492
  6%|▌ | 279/5070 [01:50<31:59, 2.50it/s]
493
  6%|▌ | 280/5070 [01:50<30:52, 2.59it/s]
494
  6%|▌ | 281/5070 [01:50<29:44, 2.68it/s]
495
  6%|▌ | 282/5070 [01:51<31:30, 2.53it/s]
496
  6%|▌ | 283/5070 [01:51<33:37, 2.37it/s]
497
  6%|▌ | 284/5070 [01:52<32:58, 2.42it/s]
498
  6%|▌ | 285/5070 [01:52<32:31, 2.45it/s]
499
  6%|▌ | 286/5070 [01:53<31:45, 2.51it/s]
500
  6%|▌ | 287/5070 [01:53<30:22, 2.63it/s]
501
  6%|▌ | 288/5070 [01:53<28:53, 2.76it/s]
502
  6%|▌ | 289/5070 [01:54<29:05, 2.74it/s]
503
  6%|▌ | 290/5070 [01:54<29:51, 2.67it/s]
504
  6%|▌ | 291/5070 [01:54<29:46, 2.67it/s]
505
  6%|▌ | 292/5070 [01:55<28:56, 2.75it/s]
506
  6%|▌ | 293/5070 [01:55<27:36, 2.88it/s]
507
  6%|▌ | 294/5070 [01:55<27:28, 2.90it/s]
508
  6%|▌ | 295/5070 [01:56<29:02, 2.74it/s]
509
  6%|▌ | 296/5070 [01:56<34:38, 2.30it/s]
510
  6%|▌ | 297/5070 [01:57<33:12, 2.40it/s]
511
  6%|▌ | 298/5070 [01:57<30:01, 2.65it/s]
512
  6%|▌ | 299/5070 [01:58<35:52, 2.22it/s]
513
  6%|▌ | 300/5070 [01:58<32:11, 2.47it/s]
514
  6%|▌ | 301/5070 [01:58<30:00, 2.65it/s]
515
  6%|▌ | 302/5070 [01:59<32:15, 2.46it/s]
516
  6%|▌ | 303/5070 [01:59<36:24, 2.18it/s]
517
  6%|▌ | 304/5070 [02:00<32:07, 2.47it/s]
518
  6%|▌ | 305/5070 [02:00<33:30, 2.37it/s]
519
  6%|▌ | 306/5070 [02:00<33:06, 2.40it/s]
520
  6%|▌ | 307/5070 [02:01<29:43, 2.67it/s]
521
  6%|▌ | 308/5070 [02:01<34:19, 2.31it/s]
522
  6%|▌ | 309/5070 [02:02<31:41, 2.50it/s]
523
  6%|▌ | 310/5070 [02:02<32:56, 2.41it/s]
524
  6%|▌ | 311/5070 [02:02<29:29, 2.69it/s]
525
  6%|▌ | 312/5070 [02:03<33:51, 2.34it/s]
526
  6%|▌ | 313/5070 [02:03<31:25, 2.52it/s]
527
  6%|▌ | 314/5070 [02:04<33:19, 2.38it/s]
528
  6%|▌ | 315/5070 [02:04<32:28, 2.44it/s]
529
  6%|▌ | 316/5070 [02:04<31:52, 2.49it/s]
530
  6%|▋ | 317/5070 [02:05<30:42, 2.58it/s]
531
  6%|▋ | 318/5070 [02:05<29:19, 2.70it/s]
532
  6%|▋ | 319/5070 [02:05<28:40, 2.76it/s]
533
  6%|▋ | 320/5070 [02:06<27:29, 2.88it/s]
534
  6%|▋ | 321/5070 [02:06<29:14, 2.71it/s]
535
  6%|▋ | 322/5070 [02:07<28:11, 2.81it/s]
536
  6%|▋ | 323/5070 [02:07<27:18, 2.90it/s]
537
  6%|▋ | 324/5070 [02:07<29:24, 2.69it/s]
538
  6%|▋ | 325/5070 [02:08<28:57, 2.73it/s]
539
  6%|▋ | 326/5070 [02:08<28:15, 2.80it/s]
540
  6%|▋ | 327/5070 [02:08<27:16, 2.90it/s]
541
  6%|▋ | 328/5070 [02:09<28:10, 2.81it/s]
542
  6%|▋ | 329/5070 [02:09<25:59, 3.04it/s]
543
  7%|▋ | 330/5070 [02:09<26:56, 2.93it/s]
544
  7%|▋ | 331/5070 [02:10<41:18, 1.91it/s]
545
  7%|▋ | 332/5070 [02:11<37:36, 2.10it/s]
546
  7%|▋ | 333/5070 [02:11<35:17, 2.24it/s]
547
  7%|▋ | 334/5070 [02:11<30:48, 2.56it/s]
548
  7%|▋ | 335/5070 [02:12<32:01, 2.46it/s]
549
  7%|▋ | 336/5070 [02:12<30:39, 2.57it/s]
550
  7%|▋ | 337/5070 [02:12<31:04, 2.54it/s]
551
  7%|▋ | 338/5070 [02:13<31:22, 2.51it/s]
552
  7%|▋ | 339/5070 [02:13<29:31, 2.67it/s]
553
  7%|▋ | 340/5070 [02:14<32:09, 2.45it/s]
554
  7%|▋ | 341/5070 [02:14<32:00, 2.46it/s]
555
  7%|▋ | 342/5070 [02:14<31:12, 2.53it/s]
556
  7%|▋ | 343/5070 [02:15<31:17, 2.52it/s]
557
  7%|▋ | 344/5070 [02:15<31:32, 2.50it/s]
558
  7%|▋ | 345/5070 [02:16<34:21, 2.29it/s]
559
  7%|▋ | 346/5070 [02:16<31:52, 2.47it/s]
560
  7%|▋ | 347/5070 [02:16<30:24, 2.59it/s]
561
  7%|▋ | 348/5070 [02:17<29:56, 2.63it/s]
562
  7%|▋ | 349/5070 [02:17<32:38, 2.41it/s]
563
  7%|▋ | 350/5070 [02:18<31:33, 2.49it/s]
564
  7%|▋ | 351/5070 [02:18<29:10, 2.70it/s]
565
  7%|▋ | 352/5070 [02:18<29:07, 2.70it/s]
566
  7%|▋ | 353/5070 [02:19<29:14, 2.69it/s]
567
  7%|▋ | 354/5070 [02:19<31:25, 2.50it/s]
568
  7%|▋ | 355/5070 [02:19<29:31, 2.66it/s]
569
  7%|▋ | 356/5070 [02:20<27:26, 2.86it/s]
570
  7%|▋ | 357/5070 [02:20<25:35, 3.07it/s]
571
  7%|▋ | 358/5070 [02:20<27:36, 2.84it/s]
572
  7%|▋ | 359/5070 [02:21<28:06, 2.79it/s]
573
  7%|▋ | 360/5070 [02:21<28:07, 2.79it/s]
574
  7%|▋ | 361/5070 [02:21<26:24, 2.97it/s]
575
  7%|▋ | 362/5070 [02:22<28:17, 2.77it/s]
576
  7%|▋ | 363/5070 [02:22<29:25, 2.67it/s]
577
  7%|▋ | 364/5070 [02:23<26:55, 2.91it/s]
578
  7%|▋ | 365/5070 [02:23<32:24, 2.42it/s]
579
  7%|▋ | 366/5070 [02:24<31:13, 2.51it/s]
580
  7%|▋ | 367/5070 [02:24<29:52, 2.62it/s]
581
  7%|▋ | 368/5070 [02:24<28:41, 2.73it/s]
582
  7%|▋ | 369/5070 [02:25<27:59, 2.80it/s]
583
  7%|▋ | 370/5070 [02:25<28:45, 2.72it/s]
584
  7%|▋ | 371/5070 [02:25<31:32, 2.48it/s]
585
  7%|▋ | 372/5070 [02:26<28:45, 2.72it/s]
586
  7%|▋ | 373/5070 [02:26<28:16, 2.77it/s]
587
  7%|▋ | 374/5070 [02:26<29:23, 2.66it/s]
588
  7%|▋ | 375/5070 [02:27<32:17, 2.42it/s]
589
  7%|▋ | 376/5070 [02:27<30:05, 2.60it/s]
590
  7%|▋ | 377/5070 [02:28<32:03, 2.44it/s]
591
  7%|▋ | 378/5070 [02:28<31:05, 2.52it/s]
592
  7%|▋ | 379/5070 [02:28<30:05, 2.60it/s]
593
  7%|▋ | 380/5070 [02:29<32:30, 2.40it/s]
594
  8%|▊ | 381/5070 [02:29<31:32, 2.48it/s]
595
  8%|▊ | 382/5070 [02:30<34:09, 2.29it/s]
596
  8%|▊ | 383/5070 [02:30<33:53, 2.30it/s]
597
  8%|▊ | 384/5070 [02:31<32:36, 2.40it/s]
598
  8%|▊ | 385/5070 [02:31<32:58, 2.37it/s]
599
  8%|▊ | 386/5070 [02:32<33:49, 2.31it/s]
600
  8%|▊ | 387/5070 [02:32<34:36, 2.26it/s]
601
  8%|▊ | 388/5070 [02:32<30:40, 2.54it/s]
602
  8%|▊ | 389/5070 [02:33<33:50, 2.30it/s]
603
  8%|▊ | 390/5070 [02:33<34:57, 2.23it/s]
604
  8%|▊ | 391/5070 [02:34<31:32, 2.47it/s]
605
  8%|▊ | 392/5070 [02:34<29:57, 2.60it/s]
606
  8%|▊ | 393/5070 [02:34<28:23, 2.75it/s]
607
  8%|▊ | 394/5070 [02:35<28:33, 2.73it/s]
608
  8%|▊ | 395/5070 [02:35<29:05, 2.68it/s]
609
  8%|▊ | 396/5070 [02:35<29:46, 2.62it/s]
610
  8%|▊ | 397/5070 [02:36<27:19, 2.85it/s]
611
  8%|▊ | 398/5070 [02:36<28:19, 2.75it/s]
612
  8%|▊ | 399/5070 [02:36<28:51, 2.70it/s]
613
  8%|▊ | 400/5070 [02:37<28:11, 2.76it/s]
614
  8%|▊ | 401/5070 [02:37<29:33, 2.63it/s]
615
  8%|▊ | 402/5070 [02:38<31:49, 2.44it/s]
616
  8%|▊ | 403/5070 [02:38<31:43, 2.45it/s]
617
  8%|▊ | 404/5070 [02:39<31:30, 2.47it/s]
618
  8%|▊ | 405/5070 [02:39<29:03, 2.68it/s]
619
  8%|▊ | 406/5070 [02:39<29:03, 2.67it/s]
620
  8%|▊ | 407/5070 [02:40<30:11, 2.57it/s]
621
  8%|▊ | 408/5070 [02:40<30:14, 2.57it/s]
622
  8%|▊ | 409/5070 [02:41<33:16, 2.33it/s]
623
  8%|▊ | 410/5070 [02:41<30:50, 2.52it/s]
624
  8%|▊ | 411/5070 [02:41<30:26, 2.55it/s]
625
  8%|▊ | 412/5070 [02:42<30:50, 2.52it/s]
626
  8%|▊ | 413/5070 [02:42<33:27, 2.32it/s]
627
  8%|▊ | 414/5070 [02:43<32:54, 2.36it/s]
628
  8%|▊ | 415/5070 [02:43<30:43, 2.53it/s]
629
  8%|▊ | 416/5070 [02:43<27:35, 2.81it/s]
630
  8%|▊ | 417/5070 [02:43<27:18, 2.84it/s]
631
  8%|▊ | 418/5070 [02:44<28:26, 2.73it/s]
632
  8%|▊ | 419/5070 [02:44<28:17, 2.74it/s]
633
  8%|▊ | 420/5070 [02:45<27:58, 2.77it/s]
634
  8%|▊ | 421/5070 [02:45<26:19, 2.94it/s]
635
  8%|▊ | 422/5070 [02:45<24:50, 3.12it/s]
636
  8%|▊ | 423/5070 [02:46<26:30, 2.92it/s]
637
  8%|▊ | 424/5070 [02:46<26:57, 2.87it/s]
638
  8%|▊ | 425/5070 [02:46<29:17, 2.64it/s]
639
  8%|▊ | 426/5070 [02:47<29:36, 2.61it/s]
640
  8%|▊ | 427/5070 [02:47<30:52, 2.51it/s]
641
  8%|▊ | 428/5070 [02:48<29:51, 2.59it/s]
642
  8%|▊ | 429/5070 [02:48<28:39, 2.70it/s]
643
  8%|▊ | 430/5070 [02:48<28:36, 2.70it/s]
644
  9%|▊ | 431/5070 [02:49<28:34, 2.71it/s]
645
  9%|▊ | 432/5070 [02:49<28:04, 2.75it/s]
646
  9%|▊ | 433/5070 [02:49<27:33, 2.80it/s]
647
  9%|▊ | 434/5070 [02:50<26:46, 2.89it/s]
648
  9%|▊ | 435/5070 [02:50<30:11, 2.56it/s]
649
  9%|▊ | 436/5070 [02:50<27:57, 2.76it/s]
650
  9%|▊ | 437/5070 [02:51<27:25, 2.82it/s]
651
  9%|▊ | 438/5070 [02:51<28:27, 2.71it/s]
652
  9%|▊ | 439/5070 [02:52<29:18, 2.63it/s]
653
  9%|▊ | 440/5070 [02:52<29:07, 2.65it/s]
654
  9%|▊ | 441/5070 [02:52<29:23, 2.63it/s]
655
  9%|▊ | 442/5070 [02:53<28:21, 2.72it/s]
656
  9%|▊ | 443/5070 [02:53<26:46, 2.88it/s]
657
  9%|▉ | 444/5070 [02:53<27:21, 2.82it/s]
658
  9%|▉ | 445/5070 [02:54<27:35, 2.79it/s]
659
  9%|▉ | 446/5070 [02:54<31:53, 2.42it/s]
660
  9%|▉ | 447/5070 [02:55<29:38, 2.60it/s]
661
  9%|▉ | 448/5070 [02:55<32:06, 2.40it/s]
662
  9%|▉ | 449/5070 [02:55<30:18, 2.54it/s]
663
  9%|▉ | 450/5070 [02:56<30:30, 2.52it/s]
664
  9%|▉ | 451/5070 [02:56<35:58, 2.14it/s]
665
  9%|▉ | 452/5070 [02:57<31:53, 2.41it/s]
666
  9%|▉ | 453/5070 [02:57<30:16, 2.54it/s]
667
  9%|▉ | 454/5070 [02:58<32:03, 2.40it/s]
668
  9%|▉ | 455/5070 [02:58<32:14, 2.39it/s]
669
  9%|▉ | 456/5070 [02:58<30:19, 2.54it/s]
670
  9%|▉ | 457/5070 [02:59<29:53, 2.57it/s]
671
  9%|▉ | 458/5070 [02:59<29:59, 2.56it/s]
672
  9%|▉ | 459/5070 [02:59<29:36, 2.60it/s]
673
  9%|▉ | 460/5070 [03:00<32:30, 2.36it/s]
674
  9%|▉ | 461/5070 [03:00<31:48, 2.42it/s]
675
  9%|▉ | 462/5070 [03:01<30:53, 2.49it/s]
676
  9%|▉ | 463/5070 [03:01<29:15, 2.62it/s]
677
  9%|▉ | 464/5070 [03:01<26:44, 2.87it/s]
678
  9%|▉ | 465/5070 [03:02<28:36, 2.68it/s]
679
  9%|▉ | 466/5070 [03:02<28:37, 2.68it/s]
680
  9%|▉ | 467/5070 [03:02<27:06, 2.83it/s]
681
  9%|▉ | 468/5070 [03:03<26:37, 2.88it/s]
682
  9%|▉ | 469/5070 [03:03<26:46, 2.86it/s]
683
  9%|▉ | 470/5070 [03:03<27:13, 2.82it/s]
684
  9%|▉ | 471/5070 [03:04<27:24, 2.80it/s]
685
  9%|▉ | 472/5070 [03:04<27:36, 2.78it/s]
686
  9%|▉ | 473/5070 [03:05<26:50, 2.86it/s]
687
  9%|▉ | 474/5070 [03:05<28:13, 2.71it/s]
688
  9%|▉ | 475/5070 [03:05<28:49, 2.66it/s]
689
  9%|▉ | 476/5070 [03:06<29:09, 2.63it/s]
690
  9%|▉ | 477/5070 [03:06<27:36, 2.77it/s]
691
  9%|▉ | 478/5070 [03:07<29:31, 2.59it/s]
692
  9%|▉ | 479/5070 [03:07<27:13, 2.81it/s]
693
  9%|▉ | 480/5070 [03:07<27:09, 2.82it/s]
694
  9%|▉ | 481/5070 [03:07<24:54, 3.07it/s]
695
  10%|▉ | 482/5070 [03:08<28:23, 2.69it/s]
696
  10%|▉ | 483/5070 [03:08<27:57, 2.73it/s]
697
  10%|▉ | 484/5070 [03:08<25:38, 2.98it/s]
698
  10%|▉ | 485/5070 [03:09<25:07, 3.04it/s]
699
  10%|▉ | 486/5070 [03:09<26:52, 2.84it/s]
700
  10%|▉ | 487/5070 [03:10<29:34, 2.58it/s]
701
  10%|▉ | 488/5070 [03:10<30:52, 2.47it/s]
702
  10%|▉ | 489/5070 [03:10<28:52, 2.64it/s]
703
  10%|▉ | 490/5070 [03:11<28:11, 2.71it/s]
704
  10%|▉ | 491/5070 [03:11<28:24, 2.69it/s]
705
  10%|▉ | 492/5070 [03:12<30:32, 2.50it/s]
706
  10%|▉ | 493/5070 [03:12<30:43, 2.48it/s]
707
  10%|▉ | 494/5070 [03:12<29:25, 2.59it/s]
708
  10%|▉ | 495/5070 [03:13<26:43, 2.85it/s]
709
  10%|▉ | 496/5070 [03:13<27:07, 2.81it/s]
710
  10%|▉ | 497/5070 [03:13<29:10, 2.61it/s]
711
  10%|▉ | 498/5070 [03:14<30:41, 2.48it/s]
712
  10%|▉ | 499/5070 [03:14<29:46, 2.56it/s]
713
  10%|▉ | 500/5070 [03:15<29:14, 2.60it/s]
714
 
715
  10%|▉ | 500/5070 [03:15<29:14, 2.60it/s]
716
  10%|▉ | 501/5070 [03:15<31:12, 2.44it/s]
717
  10%|▉ | 502/5070 [03:16<31:45, 2.40it/s]
718
  10%|▉ | 503/5070 [03:16<34:48, 2.19it/s]
719
  10%|▉ | 504/5070 [03:17<35:06, 2.17it/s]
720
  10%|▉ | 505/5070 [03:17<34:39, 2.20it/s]
721
  10%|▉ | 506/5070 [03:17<31:02, 2.45it/s]
722
  10%|█ | 507/5070 [03:18<27:23, 2.78it/s][INFO|trainer.py:811] 2024-09-09 12:53:28,785 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
723
+ [INFO|trainer.py:3819] 2024-09-09 12:53:28,787 >>
724
+ ***** Running Evaluation *****
725
+ [INFO|trainer.py:3821] 2024-09-09 12:53:28,787 >> Num examples = 6946
726
+ [INFO|trainer.py:3824] 2024-09-09 12:53:28,787 >> Batch size = 8
727
+ {'loss': 0.0183, 'grad_norm': 0.16175590455532074, 'learning_rate': 4.5069033530571994e-05, 'epoch': 0.99}
728
+
729
+
730
  0%| | 0/869 [00:00<?, ?it/s]
731
+
732
  1%| | 10/869 [00:00<00:09, 91.31it/s]
733
+
734
  2%|▏ | 20/869 [00:00<00:10, 79.28it/s]
735
+
736
  3%|▎ | 29/869 [00:00<00:10, 77.60it/s]
737
+
738
  4%|▍ | 37/869 [00:00<00:11, 74.43it/s]
739
+
740
  5%|▌ | 46/869 [00:00<00:10, 78.18it/s]
741
+
742
  6%|▋ | 55/869 [00:00<00:10, 80.86it/s]
743
+
744
  7%|▋ | 64/869 [00:00<00:10, 77.08it/s]
745
+
746
  8%|▊ | 72/869 [00:00<00:10, 76.17it/s]
747
+
748
  9%|▉ | 82/869 [00:01<00:09, 80.57it/s]
749
+
750
  11%|█ | 92/869 [00:01<00:09, 83.71it/s]
751
+
752
  12%|█▏ | 102/869 [00:01<00:09, 84.98it/s]
753
+
754
  13%|█▎ | 111/869 [00:01<00:09, 82.02it/s]
755
+
756
  14%|█▍ | 120/869 [00:01<00:09, 80.94it/s]
757
+
758
  15%|█▍ | 129/869 [00:01<00:09, 78.76it/s]
759
+
760
  16%|█▌ | 138/869 [00:01<00:08, 81.75it/s]
761
+
762
  17%|█▋ | 147/869 [00:01<00:09, 77.19it/s]
763
+
764
  18%|█▊ | 156/869 [00:01<00:09, 78.39it/s]
765
+
766
  19%|█▉ | 164/869 [00:02<00:08, 78.36it/s]
767
+
768
  20%|█▉ | 172/869 [00:02<00:09, 76.45it/s]
769
+
770
  21%|██ | 180/869 [00:02<00:09, 75.56it/s]
771
+
772
  22%|██▏ | 189/869 [00:02<00:08, 77.85it/s]
773
+
774
  23%|██▎ | 197/869 [00:02<00:08, 74.92it/s]
775
+
776
  24%|██▎ | 206/869 [00:02<00:08, 77.53it/s]
777
+
778
  25%|██▍ | 215/869 [00:02<00:08, 79.20it/s]
779
+
780
  26%|██▌ | 224/869 [00:02<00:08, 80.25it/s]
781
+
782
  27%|██▋ | 233/869 [00:02<00:08, 76.55it/s]
783
+
784
  28%|██▊ | 241/869 [00:03<00:08, 71.54it/s]
785
+
786
  29%|██▉ | 250/869 [00:03<00:08, 74.36it/s]
787
+
788
  30%|██▉ | 259/869 [00:03<00:07, 76.53it/s]
789
+
790
  31%|███ | 267/869 [00:03<00:07, 75.31it/s]
791
+
792
  32%|███▏ | 275/869 [00:03<00:07, 74.63it/s]
793
+
794
  33%|███▎ | 283/869 [00:03<00:07, 73.75it/s]
795
+
796
  33%|███▎ | 291/869 [00:03<00:07, 74.15it/s]
797
+
798
  34%|███▍ | 299/869 [00:03<00:07, 71.68it/s]
799
+
800
  35%|███▌ | 307/869 [00:03<00:07, 72.22it/s]
801
+
802
  36%|███▌ | 315/869 [00:04<00:07, 72.79it/s]
803
+
804
  37%|███▋ | 323/869 [00:04<00:07, 72.47it/s]
805
+
806
  38%|███▊ | 333/869 [00:04<00:06, 78.26it/s]
807
+
808
  39%|███▉ | 341/869 [00:04<00:06, 77.41it/s]
809
+
810
  40%|████ | 349/869 [00:04<00:07, 71.93it/s]
811
+
812
  41%|████ | 358/869 [00:04<00:06, 74.83it/s]
813
+
814
  42%|████▏ | 367/869 [00:04<00:06, 78.08it/s]
815
+
816
  43%|████▎ | 375/869 [00:04<00:06, 74.02it/s]
817
+
818
  44%|████▍ | 383/869 [00:04<00:06, 74.40it/s]
819
+
820
  45%|████▍ | 391/869 [00:05<00:06, 71.69it/s]
821
+
822
  46%|████▌ | 399/869 [00:05<00:06, 73.08it/s]
823
+
824
  47%|████▋ | 408/869 [00:05<00:06, 76.09it/s]
825
+
826
  48%|████▊ | 417/869 [00:05<00:05, 78.91it/s]
827
+
828
  49%|████▉ | 425/869 [00:05<00:05, 79.05it/s]
829
+
830
  50%|████▉ | 434/869 [00:05<00:05, 79.59it/s]
831
+
832
  51%|█████ | 442/869 [00:05<00:05, 76.14it/s]
833
+
834
  52%|█████▏ | 450/869 [00:05<00:05, 77.00it/s]
835
+
836
  53%|█████▎ | 459/869 [00:05<00:05, 77.04it/s]
837
+
838
  54%|█████▎ | 467/869 [00:06<00:05, 76.09it/s]
839
+
840
  55%|█████▍ | 477/869 [00:06<00:04, 81.01it/s]
841
+
842
  56%|█████▌ | 486/869 [00:06<00:04, 82.35it/s]
843
+
844
  57%|█████▋ | 495/869 [00:06<00:04, 76.40it/s]
845
+
846
  58%|█████▊ | 503/869 [00:06<00:04, 74.27it/s]
847
+
848
  59%|█████▉ | 511/869 [00:06<00:04, 75.21it/s]
849
+
850
  60%|█████▉ | 520/869 [00:06<00:04, 78.71it/s]
851
+
852
  61%|██████ | 528/869 [00:06<00:04, 72.74it/s]
853
+
854
  62%|██████▏ | 536/869 [00:06<00:04, 73.74it/s]
855
+
856
  63%|██████▎ | 544/869 [00:07<00:04, 70.86it/s]
857
+
858
  64%|██████▎ | 553/869 [00:07<00:04, 73.98it/s]
859
+
860
  65%|██████▍ | 561/869 [00:07<00:04, 75.50it/s]
861
+
862
  65%|██████▌ | 569/869 [00:07<00:04, 73.18it/s]
863
+
864
  67%|██████▋ | 578/869 [00:07<00:03, 75.98it/s]
865
+
866
  67%|██████▋ | 586/869 [00:07<00:03, 73.37it/s]
867
+
868
  68%|██████▊ | 594/869 [00:07<00:03, 74.99it/s]
869
+
870
  69%|██████▉ | 603/869 [00:07<00:03, 78.26it/s]
871
+
872
  70%|███████ | 611/869 [00:07<00:03, 77.04it/s]
873
+
874
  71%|███████ | 619/869 [00:08<00:03, 77.37it/s]
875
+
876
  72%|███████▏ | 627/869 [00:08<00:03, 75.86it/s]
877
+
878
  73%|███████▎ | 635/869 [00:08<00:03, 73.79it/s]
879
+
880
  74%|███████▍ | 644/869 [00:08<00:02, 77.27it/s]
881
+
882
  75%|███████▌ | 653/869 [00:08<00:02, 79.43it/s]
883
+
884
  76%|███████▌ | 661/869 [00:08<00:02, 76.75it/s]
885
+
886
  77%|███████▋ | 670/869 [00:08<00:02, 79.36it/s]
887
+
888
  78%|███████▊ | 679/869 [00:08<00:02, 82.14it/s]
889
+
890
  79%|███████▉ | 688/869 [00:09<00:02, 70.58it/s]
891
+
892
  80%|████████ | 696/869 [00:09<00:02, 72.95it/s]
893
+
894
  81%|████████ | 704/869 [00:09<00:02, 72.45it/s]
895
+
896
  82%|████████▏ | 713/869 [00:09<00:02, 76.22it/s]
897
+
898
  83%|████████▎ | 721/869 [00:09<00:01, 76.48it/s]
899
+
900
  84%|████████▍ | 730/869 [00:09<00:01, 78.48it/s]
901
+
902
  85%|████████▍ | 738/869 [00:09<00:01, 77.62it/s]
903
+
904
  86%|████████▌ | 746/869 [00:09<00:01, 78.12it/s]
905
+
906
  87%|████████▋ | 754/869 [00:09<00:01, 75.65it/s]
907
+
908
  88%|████████▊ | 763/869 [00:09<00:01, 78.80it/s]
909
+
910
  89%|████████▊ | 771/869 [00:10<00:01, 73.95it/s]
911
+
912
  90%|████████▉ | 779/869 [00:10<00:01, 65.06it/s]
913
+
914
  91%|█████████ | 788/869 [00:10<00:01, 69.56it/s]
915
+
916
  92%|█████████▏| 797/869 [00:10<00:00, 73.01it/s]
917
+
918
  93%|█████████▎| 805/869 [00:10<00:00, 73.73it/s]
919
+
920
  94%|█████████▎| 814/869 [00:10<00:00, 75.79it/s]
921
+
922
  95%|█████████▍| 822/869 [00:10<00:00, 75.50it/s]
923
+
924
  96%|█████████▌| 831/869 [00:10<00:00, 75.78it/s]
925
+
926
  97%|█████████▋| 840/869 [00:11<00:00, 77.68it/s]
927
+
928
  98%|█████████▊| 849/869 [00:11<00:00, 79.00it/s]
929
+
930
  99%|█████████▊| 857/869 [00:11<00:00, 79.09it/s]
931
+
932
 
933
+
934
 
935
  10%|█ | 507/5070 [03:33<27:23, 2.78it/s]
936
+
937
+
938
  [INFO|trainer.py:3503] 2024-09-09 12:53:44,013 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-507
939
+ [INFO|configuration_utils.py:472] 2024-09-09 12:53:44,015 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-507/config.json
940
+ [INFO|modeling_utils.py:2799] 2024-09-09 12:53:44,902 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-507/model.safetensors
941
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 12:53:44,903 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-507/tokenizer_config.json
942
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 12:53:44,903 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-507/special_tokens_map.json
943
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 12:53:48,529 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
944
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 12:53:48,529 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
945
+
946
  10%|█ | 508/5070 [03:38<7:59:31, 6.31s/it]
947
  10%|█ | 509/5070 [03:38<5:43:00, 4.51s/it]
948
  10%|█ | 510/5070 [03:39<4:09:49, 3.29s/it]
949
  10%|█ | 511/5070 [03:39<3:02:23, 2.40s/it]
950
  10%|█ | 512/5070 [03:39<2:14:43, 1.77s/it]
951
  10%|█ | 513/5070 [03:40<1:43:58, 1.37s/it]
952
  10%|█ | 514/5070 [03:40<1:22:41, 1.09s/it]
953
  10%|█ | 515/5070 [03:40<1:04:22, 1.18it/s]
954
  10%|█ | 516/5070 [03:41<52:24, 1.45it/s]
955
  10%|█ | 517/5070 [03:41<48:49, 1.55it/s]
956
  10%|█ | 518/5070 [03:42<46:44, 1.62it/s]
957
  10%|█ | 519/5070 [03:42<39:54, 1.90it/s]
958
  10%|█ | 520/5070 [03:42<34:40, 2.19it/s]
959
  10%|█ | 521/5070 [03:43<32:48, 2.31it/s]
960
  10%|█ | 522/5070 [03:43<31:00, 2.44it/s]
961
  10%|█ | 523/5070 [03:43<27:25, 2.76it/s]
962
  10%|█ | 524/5070 [03:44<26:38, 2.84it/s]
963
  10%|█ | 525/5070 [03:44<27:04, 2.80it/s]
964
  10%|█ | 526/5070 [03:44<27:18, 2.77it/s]
965
  10%|█ | 527/5070 [03:45<27:06, 2.79it/s]
966
  10%|█ | 528/5070 [03:45<27:34, 2.75it/s]
967
  10%|█ | 529/5070 [03:45<25:33, 2.96it/s]
968
  10%|█ | 530/5070 [03:46<27:32, 2.75it/s]
969
  10%|█ | 531/5070 [03:46<28:24, 2.66it/s]
970
  10%|█ | 532/5070 [03:47<26:56, 2.81it/s]
971
  11%|█ | 533/5070 [03:47<26:50, 2.82it/s]
972
  11%|█ | 534/5070 [03:47<25:43, 2.94it/s]
973
  11%|█ | 535/5070 [03:48<27:07, 2.79it/s]
974
  11%|█ | 536/5070 [03:48<27:33, 2.74it/s]
975
  11%|█ | 537/5070 [03:48<29:37, 2.55it/s]
976
  11%|█ | 538/5070 [03:49<32:00, 2.36it/s]
977
  11%|█ | 539/5070 [03:49<29:10, 2.59it/s]
978
  11%|█ | 540/5070 [03:50<28:23, 2.66it/s]
979
  11%|█ | 541/5070 [03:50<28:24, 2.66it/s]
980
  11%|█ | 542/5070 [03:50<29:45, 2.54it/s]
981
  11%|█ | 543/5070 [03:51<32:20, 2.33it/s]
982
  11%|█ | 544/5070 [03:51<32:47, 2.30it/s]
983
  11%|█ | 545/5070 [03:52<32:17, 2.34it/s]
984
  11%|█ | 546/5070 [03:52<29:43, 2.54it/s]
985
  11%|█ | 547/5070 [03:52<29:53, 2.52it/s]
986
  11%|█ | 548/5070 [03:53<28:05, 2.68it/s]
987
  11%|█ | 549/5070 [03:53<27:40, 2.72it/s]
988
  11%|█ | 550/5070 [03:53<25:17, 2.98it/s]
989
  11%|█ | 551/5070 [03:54<26:11, 2.87it/s]
990
  11%|█ | 552/5070 [03:54<26:47, 2.81it/s]
991
  11%|█ | 553/5070 [03:55<27:54, 2.70it/s]
992
  11%|█ | 554/5070 [03:55<31:30, 2.39it/s]
993
  11%|█ | 555/5070 [03:55<31:08, 2.42it/s]
994
  11%|█ | 556/5070 [03:56<28:54, 2.60it/s]
995
  11%|█ | 557/5070 [03:56<28:31, 2.64it/s]
996
  11%|█ | 558/5070 [03:56<27:29, 2.74it/s]
997
  11%|█ | 559/5070 [03:57<30:01, 2.50it/s]
998
  11%|█ | 560/5070 [03:57<28:51, 2.60it/s]
999
  11%|█ | 561/5070 [03:58<27:48, 2.70it/s]
1000
  11%|█ | 562/5070 [03:58<27:04, 2.78it/s]
1001
  11%|█ | 563/5070 [03:58<28:37, 2.62it/s]
1002
  11%|█ | 564/5070 [03:59<32:25, 2.32it/s]
1003
  11%|█ | 565/5070 [03:59<32:00, 2.35it/s]
1004
  11%|█ | 566/5070 [04:00<32:54, 2.28it/s]
1005
  11%|█ | 567/5070 [04:00<32:14, 2.33it/s]
1006
  11%|█ | 568/5070 [04:01<31:07, 2.41it/s]
1007
  11%|█ | 569/5070 [04:01<30:28, 2.46it/s]
1008
  11%|█ | 570/5070 [04:01<28:51, 2.60it/s]
1009
  11%|█▏ | 571/5070 [04:02<27:02, 2.77it/s]
1010
  11%|█▏ | 572/5070 [04:02<27:49, 2.69it/s]
1011
  11%|█▏ | 573/5070 [04:03<29:30, 2.54it/s]
1012
  11%|█▏ | 574/5070 [04:03<29:06, 2.57it/s]
1013
  11%|█▏ | 575/5070 [04:03<27:59, 2.68it/s]
1014
  11%|█▏ | 576/5070 [04:04<27:40, 2.71it/s]
1015
  11%|█▏ | 577/5070 [04:04<26:59, 2.78it/s]
1016
  11%|█▏ | 578/5070 [04:04<27:13, 2.75it/s]
1017
  11%|█▏ | 579/5070 [04:05<27:11, 2.75it/s]
1018
  11%|█▏ | 580/5070 [04:05<27:55, 2.68it/s]
1019
  11%|█▏ | 581/5070 [04:05<27:12, 2.75it/s]
1020
  11%|█▏ | 582/5070 [04:06<25:46, 2.90it/s]
1021
  11%|█▏ | 583/5070 [04:06<26:23, 2.83it/s]
1022
  12%|█▏ | 584/5070 [04:06<26:58, 2.77it/s]
1023
  12%|█▏ | 585/5070 [04:07<28:33, 2.62it/s]
1024
  12%|█▏ | 586/5070 [04:07<28:31, 2.62it/s]
1025
  12%|█▏ | 587/5070 [04:08<26:37, 2.81it/s]
1026
  12%|█▏ | 588/5070 [04:08<26:51, 2.78it/s]
1027
  12%|█▏ | 589/5070 [04:08<28:01, 2.66it/s]
1028
  12%|█▏ | 590/5070 [04:09<31:48, 2.35it/s]
1029
  12%|█▏ | 591/5070 [04:09<28:30, 2.62it/s]
1030
  12%|█▏ | 592/5070 [04:10<29:37, 2.52it/s]
1031
  12%|█▏ | 593/5070 [04:10<28:26, 2.62it/s]
1032
  12%|█▏ | 594/5070 [04:10<28:30, 2.62it/s]
1033
  12%|█▏ | 595/5070 [04:11<26:28, 2.82it/s]
1034
  12%|█▏ | 596/5070 [04:11<24:56, 2.99it/s]
1035
  12%|█▏ | 597/5070 [04:11<26:43, 2.79it/s]
1036
  12%|█▏ | 598/5070 [04:12<26:47, 2.78it/s]
1037
  12%|█▏ | 599/5070 [04:12<28:46, 2.59it/s]
1038
  12%|█▏ | 600/5070 [04:12<28:04, 2.65it/s]
1039
  12%|█▏ | 601/5070 [04:13<27:50, 2.68it/s]
1040
  12%|█▏ | 602/5070 [04:13<28:36, 2.60it/s]
1041
  12%|█▏ | 603/5070 [04:14<31:30, 2.36it/s]
1042
  12%|█▏ | 604/5070 [04:14<30:04, 2.48it/s]
1043
  12%|█▏ | 605/5070 [04:15<29:27, 2.53it/s]
1044
  12%|█▏ | 606/5070 [04:15<27:32, 2.70it/s]
1045
  12%|█▏ | 607/5070 [04:15<26:02, 2.86it/s]
1046
  12%|█▏ | 608/5070 [04:15<24:33, 3.03it/s]
1047
  12%|█▏ | 609/5070 [04:16<27:46, 2.68it/s]
1048
  12%|█▏ | 610/5070 [04:16<27:02, 2.75it/s]
1049
  12%|█▏ | 611/5070 [04:17<27:23, 2.71it/s]
1050
  12%|█▏ | 612/5070 [04:17<26:46, 2.78it/s]
1051
  12%|█▏ | 613/5070 [04:17<27:05, 2.74it/s]
1052
  12%|█▏ | 614/5070 [04:18<27:24, 2.71it/s]
1053
  12%|█▏ | 615/5070 [04:18<27:54, 2.66it/s]
1054
  12%|█▏ | 616/5070 [04:18<28:24, 2.61it/s]
1055
  12%|█▏ | 617/5070 [04:19<27:37, 2.69it/s]
1056
  12%|█▏ | 618/5070 [04:19<27:37, 2.69it/s]
1057
  12%|█▏ | 619/5070 [04:20<27:19, 2.71it/s]
1058
  12%|█▏ | 620/5070 [04:20<32:19, 2.29it/s]
1059
  12%|█▏ | 621/5070 [04:21<33:26, 2.22it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.967845659163988,
3
+ "total_flos": 4644619911314910.0,
4
+ "train_loss": 0.050868147861573,
5
+ "train_runtime": 855.1929,
6
+ "train_samples": 9929,
7
+ "train_samples_per_second": 116.102,
8
+ "train_steps_per_second": 1.812
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6946045049764275,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-1088",
4
+ "epoch": 9.967845659163988,
5
+ "eval_steps": 500,
6
+ "global_step": 1550,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9967845659163987,
13
+ "eval_accuracy": 0.9435978055118868,
14
+ "eval_f1": 0.593056643174106,
15
+ "eval_loss": 0.14849668741226196,
16
+ "eval_precision": 0.5668662674650699,
17
+ "eval_recall": 0.6217843459222769,
18
+ "eval_runtime": 5.8633,
19
+ "eval_samples_per_second": 429.618,
20
+ "eval_steps_per_second": 53.724,
21
+ "step": 155
22
+ },
23
+ {
24
+ "epoch": 2.0,
25
+ "eval_accuracy": 0.9408546953704001,
26
+ "eval_f1": 0.6299060919817,
27
+ "eval_loss": 0.16094118356704712,
28
+ "eval_precision": 0.5623387790197765,
29
+ "eval_recall": 0.715927750410509,
30
+ "eval_runtime": 5.9155,
31
+ "eval_samples_per_second": 425.831,
32
+ "eval_steps_per_second": 53.25,
33
+ "step": 311
34
+ },
35
+ {
36
+ "epoch": 2.996784565916399,
37
+ "eval_accuracy": 0.9486669447207161,
38
+ "eval_f1": 0.6676790685902303,
39
+ "eval_loss": 0.1634686440229416,
40
+ "eval_precision": 0.6209981167608286,
41
+ "eval_recall": 0.7219485495347564,
42
+ "eval_runtime": 5.9009,
43
+ "eval_samples_per_second": 426.884,
44
+ "eval_steps_per_second": 53.382,
45
+ "step": 466
46
+ },
47
+ {
48
+ "epoch": 3.215434083601286,
49
+ "grad_norm": 0.9288749098777771,
50
+ "learning_rate": 3.387096774193548e-05,
51
+ "loss": 0.1246,
52
+ "step": 500
53
+ },
54
+ {
55
+ "epoch": 4.0,
56
+ "eval_accuracy": 0.9492604831723828,
57
+ "eval_f1": 0.6711919630735812,
58
+ "eval_loss": 0.20466655492782593,
59
+ "eval_precision": 0.665948275862069,
60
+ "eval_recall": 0.6765188834154351,
61
+ "eval_runtime": 5.9155,
62
+ "eval_samples_per_second": 425.831,
63
+ "eval_steps_per_second": 53.25,
64
+ "step": 622
65
+ },
66
+ {
67
+ "epoch": 4.996784565916399,
68
+ "eval_accuracy": 0.9479771567904007,
69
+ "eval_f1": 0.6827731092436975,
70
+ "eval_loss": 0.2133806049823761,
71
+ "eval_precision": 0.6562342251388188,
72
+ "eval_recall": 0.7115489874110563,
73
+ "eval_runtime": 5.8759,
74
+ "eval_samples_per_second": 428.701,
75
+ "eval_steps_per_second": 53.609,
76
+ "step": 777
77
+ },
78
+ {
79
+ "epoch": 6.0,
80
+ "eval_accuracy": 0.949388815810581,
81
+ "eval_f1": 0.6795913020696882,
82
+ "eval_loss": 0.2258971482515335,
83
+ "eval_precision": 0.6517587939698493,
84
+ "eval_recall": 0.7099069512862616,
85
+ "eval_runtime": 5.9106,
86
+ "eval_samples_per_second": 426.187,
87
+ "eval_steps_per_second": 53.294,
88
+ "step": 933
89
+ },
90
+ {
91
+ "epoch": 6.430868167202572,
92
+ "grad_norm": 0.18494442105293274,
93
+ "learning_rate": 1.774193548387097e-05,
94
+ "loss": 0.0242,
95
+ "step": 1000
96
+ },
97
+ {
98
+ "epoch": 6.996784565916399,
99
+ "eval_accuracy": 0.9496615226667522,
100
+ "eval_f1": 0.6946045049764275,
101
+ "eval_loss": 0.24502409994602203,
102
+ "eval_precision": 0.6659969864389754,
103
+ "eval_recall": 0.7257799671592775,
104
+ "eval_runtime": 5.8918,
105
+ "eval_samples_per_second": 427.542,
106
+ "eval_steps_per_second": 53.464,
107
+ "step": 1088
108
+ },
109
+ {
110
+ "epoch": 8.0,
111
+ "eval_accuracy": 0.9490679842150855,
112
+ "eval_f1": 0.6841015018125324,
113
+ "eval_loss": 0.26501980423927307,
114
+ "eval_precision": 0.6491400491400492,
115
+ "eval_recall": 0.7230432402846196,
116
+ "eval_runtime": 5.9184,
117
+ "eval_samples_per_second": 425.624,
118
+ "eval_steps_per_second": 53.224,
119
+ "step": 1244
120
+ },
121
+ {
122
+ "epoch": 8.996784565916398,
123
+ "eval_accuracy": 0.9497577721454009,
124
+ "eval_f1": 0.687797147385103,
125
+ "eval_loss": 0.27453720569610596,
126
+ "eval_precision": 0.664624808575804,
127
+ "eval_recall": 0.7126436781609196,
128
+ "eval_runtime": 5.9283,
129
+ "eval_samples_per_second": 424.913,
130
+ "eval_steps_per_second": 53.135,
131
+ "step": 1399
132
+ },
133
+ {
134
+ "epoch": 9.646302250803858,
135
+ "grad_norm": 0.35425594449043274,
136
+ "learning_rate": 1.6129032258064516e-06,
137
+ "loss": 0.0083,
138
+ "step": 1500
139
+ },
140
+ {
141
+ "epoch": 9.967845659163988,
142
+ "eval_accuracy": 0.950255061118419,
143
+ "eval_f1": 0.6896008403361344,
144
+ "eval_loss": 0.27744925022125244,
145
+ "eval_precision": 0.662796567390207,
146
+ "eval_recall": 0.7186644772851669,
147
+ "eval_runtime": 6.1493,
148
+ "eval_samples_per_second": 409.643,
149
+ "eval_steps_per_second": 51.226,
150
+ "step": 1550
151
+ },
152
+ {
153
+ "epoch": 9.967845659163988,
154
+ "step": 1550,
155
+ "total_flos": 4644619911314910.0,
156
+ "train_loss": 0.050868147861573,
157
+ "train_runtime": 855.1929,
158
+ "train_samples_per_second": 116.102,
159
+ "train_steps_per_second": 1.812
160
+ }
161
+ ],
162
+ "logging_steps": 500,
163
+ "max_steps": 1550,
164
+ "num_input_tokens_seen": 0,
165
+ "num_train_epochs": 10,
166
+ "save_steps": 500,
167
+ "stateful_callbacks": {
168
+ "TrainerControl": {
169
+ "args": {
170
+ "should_epoch_stop": false,
171
+ "should_evaluate": false,
172
+ "should_log": false,
173
+ "should_save": true,
174
+ "should_training_stop": true
175
+ },
176
+ "attributes": {}
177
+ }
178
+ },
179
+ "total_flos": 4644619911314910.0,
180
+ "train_batch_size": 32,
181
+ "trial_name": null,
182
+ "trial_params": null
183
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.txt ADDED
The diff for this file is too large to render. See raw diff