Fuentes commited on
Commit
db497fe
1 Parent(s): 07daf7d

first RL created on Huggingface

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 235.67 +/- 30.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dfd942d0040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dfd942d00d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dfd942d0160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dfd942d01f0>", "_build": "<function ActorCriticPolicy._build at 0x7dfd942d0280>", "forward": "<function ActorCriticPolicy.forward at 0x7dfd942d0310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dfd942d03a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dfd942d0430>", "_predict": "<function ActorCriticPolicy._predict at 0x7dfd942d04c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dfd942d0550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dfd942d05e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dfd942d0670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dfd94272940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714530566130039989, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1x272uHZO6Wp0kNNNCIq9MeJM6UBOaswAAAAAAAIA/mh0bvM+QG7w/WwC7rlOLPIKTfb3d3Wc9AACAPwAAgD+m1P49VNWFvHtfIb7u4x692BBWvaO0P74AAIA/AACAPwDZ2zyumZi6joMMt40/DLJwTVU6+kEiNgAAgD8AAIA/AKyqPFzzTropZj60H8shL/psz7pk46czAACAPwAAgD/w1o++HZBkPo73AT2qW4i+//UWvYZVvzwAAAAAAAAAAADnOb1TODc/K1gbPJrTp74sWua8vJSCPQAAAAAAAAAAM/CHvGxe8j7YRWE+MOy1voYMvT29muE8AAAAAAAAAADNYHM+1tUZP+qRa7wiVIq+E6KVPaCtyL0AAAAAAAAAALMuJz04Q6g/e7bfPjva3b6WtVW8c4lhOwAAAAAAAAAAzbuFvGbnrj/beHy+opvKvjMLDbyHagC+AAAAAAAAAACT0Q6+lHaNO40BAD2D1lM8zaIvvaZunD0AAIA/AACAP5rF2j1xBFA8htl3voRmG761fl68+Hg2vQAAAAAAAAAA83OLvc7RRj8hTym9GwzWvnPYxLxuN6o9AAAAAAAAAAAqHFa+UXcoP2pWnT1WErm+PLHQvRWqQz0AAAAAAAAAAGZmeLkhz7Y/igJJvLUGaz6JuXk7RVkaPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEXJsO5J9SMAWyUTYUCjAF0lEdAk9roV/MGHHV9lChoBkdAbxh1UVBUrGgHTSoBaAhHQJPcbOY6XBx1fZQoaAZHQG5fUnPVurJoB01DAWgIR0CT3dGtITXbdX2UKGgGR0BshQQ6IWP+aAdNdwJoCEdAk97mEsasIXV9lChoBkdAbVpVjI7vHGgHTVoBaAhHQJPi1QHiWE91fZQoaAZHQHEvAeaKDTVoB00HAmgIR0CT5A5C4SYgdX2UKGgGR0ByJMVfu1F6aAdNNQFoCEdAk+TykTHsC3V9lChoBkdAcGQaWX1J2GgHTRgDaAhHQJPldkK/mDF1fZQoaAZHQG4m6HsTnJVoB02YAWgIR0CT5YL3bmEHdX2UKGgGR0BvwrEm6XjVaAdNHgFoCEdAk+Yp0Syt3nV9lChoBkdAcMdw3YL9dmgHTZIBaAhHQJPmKkxh2GJ1fZQoaAZHQHGResPrfLtoB01lAWgIR0CT5pbayrxRdX2UKGgGR0BwOvFMqSX/aAdNJAFoCEdAk/cBybQTmHV9lChoBkdAbY07yxzJZGgHTTQBaAhHQJP5DG8274B1fZQoaAZHQHFXkiILw4NoB00kAWgIR0CT+cOi35N5dX2UKGgGR0BmtEGmk30gaAdN6ANoCEdAk/oA9/z8QHV9lChoBkdAbr/ivxH5J2gHTTABaAhHQJP83Bl+Vkd1fZQoaAZHQHHp75M10kpoB02OAWgIR0CT/PoMa0hNdX2UKGgGR0BwoKp71Iy1aAdNHQFoCEdAlAC3DiwSrnV9lChoBkdAbucF2V3Ux2gHTSQBaAhHQJQD1XnyNGV1fZQoaAZHQG9IYz7/GVBoB01KAWgIR0CUBEJNTLntdX2UKGgGR0BHzLbg0j1PaAdL1mgIR0CUBRfTkQwsdX2UKGgGR0BwuAE/0NBoaAdNTgFoCEdAlAVUOmR/3HV9lChoBkdAcOZYRujynWgHTewBaAhHQJQFx2r4nF51fZQoaAZHQHGBPk3juKJoB01KAWgIR0CUBkkd3jdYdX2UKGgGR0BxDNegL7XQaAdNDAFoCEdAlAbXeBQN1HV9lChoBkdAcgle1rqMWGgHTVMBaAhHQJQHHt6X0Gx1fZQoaAZHQG5ffjCHh0hoB00zAWgIR0CUCXDgIhQndX2UKGgGR0Avv1IRRMviaAdLz2gIR0CUCoCVrylOdX2UKGgGR0Bwvb6k690zaAdNIwFoCEdAlAt+hkAggXV9lChoBkdAbXCzHCGetmgHTVUBaAhHQJQNpEjPfKp1fZQoaAZHQG/W5f+jua5oB00NAWgIR0CUEBrH2h7FdX2UKGgGR0Bx3z94u9OAaAdNHwJoCEdAlBHCSeRPoHV9lChoBkdAbGLGT9sJpmgHTRkBaAhHQJQSNcjZ+QV1fZQoaAZHQG8kU4JeE7JoB00pAWgIR0CUE3WmxdIHdX2UKGgGR0BwNtK5CngpaAdNSwFoCEdAlBORtHhCMXV9lChoBkdAJHFYU34sVmgHS+BoCEdAlBPou9OARXV9lChoBkdAcD44Pf8/EGgHTTIBaAhHQJQVQnKGL1p1fZQoaAZHQHEuFyBCladoB01HAWgIR0CUFd3x4IKMdX2UKGgGR0BlgXd43WFwaAdN6ANoCEdAlBYFBD5TInV9lChoBkdAb4wuscQyymgHTVoBaAhHQJQWGrCFbml1fZQoaAZHQEIcNqgyuZFoB0vRaAhHQJQXBG5MDfZ1fZQoaAZHQG9wGs/6frdoB00ZAWgIR0CUF9dLQHAzdX2UKGgGR0Bvn8mShakiaAdN6AJoCEdAlBfrQokRjHV9lChoBkdARr+7YkE9uGgHS9hoCEdAlBwSCjDbanV9lChoBkdAcD4kcCHRC2gHTSoBaAhHQJQcn/T9bX91fZQoaAZHQHFb+glF+d9oB00LAWgIR0CUHmtO2y9mdX2UKGgGR0Bw24lTm4iHaAdNNAFoCEdAlB6yrgflqHV9lChoBkdAcMV55JK8MGgHTUQBaAhHQJQhzZM+NcZ1fZQoaAZHQHFyqbF0gbJoB029A2gIR0CUIjP3BYV7dX2UKGgGR0Bxm2CyyD7JaAdNSAFoCEdAlCOJ7LMcInV9lChoBkdAbTcLl3hXKmgHTUMBaAhHQJQj/M/yGzt1fZQoaAZHQG2YMtsenydoB00xAWgIR0CUJLPqcEvCdX2UKGgGR0BuuCMPz4DcaAdNNQFoCEdAlCYW/BWPtHV9lChoBkdAM5xekYXO4WgHS+5oCEdAlDqNQ9A5aXV9lChoBkdAbNwef7Jnx2gHTR8BaAhHQJRASBYmsvJ1fZQoaAZHQHHTFtXPqs5oB01MAWgIR0CUQGZdOZb7dX2UKGgGR0Bv1NKwpvxZaAdNMgFoCEdAlED+kcjqwHV9lChoBkdAbVDFGXokiWgHTQsBaAhHQJRC+qtHQQd1fZQoaAZHQG03iFj/dZdoB00wAWgIR0CURIOrhisodX2UKGgGR0Bx8mDL8rI6aAdNKwFoCEdAlEYTm4iHI3V9lChoBkdAbQ4ROk+HJ2gHTRYBaAhHQJRGOcvugHx1fZQoaAZHQHJ4B8YyfthoB01lAmgIR0CURkee4Cp4dX2UKGgGR0BgcFn7HhjwaAdN6ANoCEdAlEcWJSBK+XV9lChoBkdAcEa/xDst02gHTVUBaAhHQJRIabx3FDR1fZQoaAZHQHDIRJVbRnhoB00/AWgIR0CUSuTpxFRYdX2UKGgGR0ByXdVxS5y3aAdNegFoCEdAlEvrpRoAXHV9lChoBkdAZDvU5uIhyWgHTegDaAhHQJRMVW4mTkh1fZQoaAZHQG6rtNJvo/1oB00PAWgIR0CUTVh37k4ndX2UKGgGR0BuKIWznieeaAdNMAFoCEdAlE9Vrl/6PHV9lChoBkdAbyx7TlT3qWgHTVsBaAhHQJRQsu5BkZt1fZQoaAZHQG28rupjtoloB00+AWgIR0CUUaWfK6nSdX2UKGgGR0BmF4iX6ZYxaAdN6ANoCEdAlFQRaX8fm3V9lChoBkdAbO7R7Z39rGgHTSQBaAhHQJRUXtZ3cHp1fZQoaAZHQHI/WEK3NLVoB003AWgIR0CUVH99+gDidX2UKGgGR0BwFgS+QEIPaAdNGgFoCEdAlFVVn27FsHV9lChoBkdAchyfzz3AVWgHTU4BaAhHQJRVYUVSGah1fZQoaAZHQDQMPOIInjRoB0vmaAhHQJRWhTdcjaB1fZQoaAZHQHCSvvfCQ91oB00WAWgIR0CUV53kPtladX2UKGgGR0Bs/74tYjjaaAdNhQFoCEdAlFfop6QeWHV9lChoBkdAZqbUoa1kUmgHTegDaAhHQJRX9SzgMtt1fZQoaAZHQG2cuZLIxQBoB00XAWgIR0CUWcZYxL00dX2UKGgGR0Bkur3XZoPDaAdN6ANoCEdAlFnbeIl+mXV9lChoBkdAb+DEpAlfJGgHTf4BaAhHQJRbWJTER8N1fZQoaAZHQHDV8LBsQ/ZoB01aAWgIR0CUW7PiDM/ydX2UKGgGR0BxABKWcBluaAdNCgFoCEdAlFyJR8+ianV9lChoBkdAbyZwsGxD9mgHTTsBaAhHQJRdaPS2H+J1fZQoaAZHQDWCRxLkCFNoB0vZaAhHQJRdpfOUt7N1fZQoaAZHQHJqIK2KEWZoB00OAWgIR0CUXaQP7N0OdX2UKGgGR0BCZdsrNGExaAdL5GgIR0CUXkv9cbBHdX2UKGgGR0BxCOQtBfKIaAdNCwFoCEdAlF+dxhlUZXV9lChoBkdAbGqlRgqmTGgHTRQBaAhHQJRhWsKb8WN1fZQoaAZHQG+lNAcDKYBoB01FAWgIR0CUZCJv5xiodX2UKGgGR0A4FoybhFVlaAdL6WgIR0CUZPqgh8pkdX2UKGgGR0BwxS/etSydaAdNRgFoCEdAlGVQdbPhQ3V9lChoBkdAcG7GI9C/oWgHTTEBaAhHQJRlw5wOvuB1fZQoaAZHQG5TTRQaaThoB008AWgIR0CUZi2nbZezdX2UKGgGR0Bwl1wVCXyBaAdNSgFoCEdAlGks23rleXV9lChoBkdAcF6xnnMdLmgHS/hoCEdAlGlSuloDgnV9lChoBkdAcW7tnwob42gHTSUBaAhHQJRpc176YVt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-pollo.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9659b7dd57152712285632d4af528d95976c8918d9e26aa019095dd33ad61b1
3
+ size 147561
ppo-LunarLander-pollo/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-pollo/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7dfd942d0040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dfd942d00d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dfd942d0160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dfd942d01f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7dfd942d0280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7dfd942d0310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dfd942d03a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dfd942d0430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7dfd942d04c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dfd942d0550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dfd942d05e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dfd942d0670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7dfd94272940>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1714530566130039989,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1x272uHZO6Wp0kNNNCIq9MeJM6UBOaswAAAAAAAIA/mh0bvM+QG7w/WwC7rlOLPIKTfb3d3Wc9AACAPwAAgD+m1P49VNWFvHtfIb7u4x692BBWvaO0P74AAIA/AACAPwDZ2zyumZi6joMMt40/DLJwTVU6+kEiNgAAgD8AAIA/AKyqPFzzTropZj60H8shL/psz7pk46czAACAPwAAgD/w1o++HZBkPo73AT2qW4i+//UWvYZVvzwAAAAAAAAAAADnOb1TODc/K1gbPJrTp74sWua8vJSCPQAAAAAAAAAAM/CHvGxe8j7YRWE+MOy1voYMvT29muE8AAAAAAAAAADNYHM+1tUZP+qRa7wiVIq+E6KVPaCtyL0AAAAAAAAAALMuJz04Q6g/e7bfPjva3b6WtVW8c4lhOwAAAAAAAAAAzbuFvGbnrj/beHy+opvKvjMLDbyHagC+AAAAAAAAAACT0Q6+lHaNO40BAD2D1lM8zaIvvaZunD0AAIA/AACAP5rF2j1xBFA8htl3voRmG761fl68+Hg2vQAAAAAAAAAA83OLvc7RRj8hTym9GwzWvnPYxLxuN6o9AAAAAAAAAAAqHFa+UXcoP2pWnT1WErm+PLHQvRWqQz0AAAAAAAAAAGZmeLkhz7Y/igJJvLUGaz6JuXk7RVkaPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEXJsO5J9SMAWyUTYUCjAF0lEdAk9roV/MGHHV9lChoBkdAbxh1UVBUrGgHTSoBaAhHQJPcbOY6XBx1fZQoaAZHQG5fUnPVurJoB01DAWgIR0CT3dGtITXbdX2UKGgGR0BshQQ6IWP+aAdNdwJoCEdAk97mEsasIXV9lChoBkdAbVpVjI7vHGgHTVoBaAhHQJPi1QHiWE91fZQoaAZHQHEvAeaKDTVoB00HAmgIR0CT5A5C4SYgdX2UKGgGR0ByJMVfu1F6aAdNNQFoCEdAk+TykTHsC3V9lChoBkdAcGQaWX1J2GgHTRgDaAhHQJPldkK/mDF1fZQoaAZHQG4m6HsTnJVoB02YAWgIR0CT5YL3bmEHdX2UKGgGR0BvwrEm6XjVaAdNHgFoCEdAk+Yp0Syt3nV9lChoBkdAcMdw3YL9dmgHTZIBaAhHQJPmKkxh2GJ1fZQoaAZHQHGResPrfLtoB01lAWgIR0CT5pbayrxRdX2UKGgGR0BwOvFMqSX/aAdNJAFoCEdAk/cBybQTmHV9lChoBkdAbY07yxzJZGgHTTQBaAhHQJP5DG8274B1fZQoaAZHQHFXkiILw4NoB00kAWgIR0CT+cOi35N5dX2UKGgGR0BmtEGmk30gaAdN6ANoCEdAk/oA9/z8QHV9lChoBkdAbr/ivxH5J2gHTTABaAhHQJP83Bl+Vkd1fZQoaAZHQHHp75M10kpoB02OAWgIR0CT/PoMa0hNdX2UKGgGR0BwoKp71Iy1aAdNHQFoCEdAlAC3DiwSrnV9lChoBkdAbucF2V3Ux2gHTSQBaAhHQJQD1XnyNGV1fZQoaAZHQG9IYz7/GVBoB01KAWgIR0CUBEJNTLntdX2UKGgGR0BHzLbg0j1PaAdL1mgIR0CUBRfTkQwsdX2UKGgGR0BwuAE/0NBoaAdNTgFoCEdAlAVUOmR/3HV9lChoBkdAcOZYRujynWgHTewBaAhHQJQFx2r4nF51fZQoaAZHQHGBPk3juKJoB01KAWgIR0CUBkkd3jdYdX2UKGgGR0BxDNegL7XQaAdNDAFoCEdAlAbXeBQN1HV9lChoBkdAcgle1rqMWGgHTVMBaAhHQJQHHt6X0Gx1fZQoaAZHQG5ffjCHh0hoB00zAWgIR0CUCXDgIhQndX2UKGgGR0Avv1IRRMviaAdLz2gIR0CUCoCVrylOdX2UKGgGR0Bwvb6k690zaAdNIwFoCEdAlAt+hkAggXV9lChoBkdAbXCzHCGetmgHTVUBaAhHQJQNpEjPfKp1fZQoaAZHQG/W5f+jua5oB00NAWgIR0CUEBrH2h7FdX2UKGgGR0Bx3z94u9OAaAdNHwJoCEdAlBHCSeRPoHV9lChoBkdAbGLGT9sJpmgHTRkBaAhHQJQSNcjZ+QV1fZQoaAZHQG8kU4JeE7JoB00pAWgIR0CUE3WmxdIHdX2UKGgGR0BwNtK5CngpaAdNSwFoCEdAlBORtHhCMXV9lChoBkdAJHFYU34sVmgHS+BoCEdAlBPou9OARXV9lChoBkdAcD44Pf8/EGgHTTIBaAhHQJQVQnKGL1p1fZQoaAZHQHEuFyBCladoB01HAWgIR0CUFd3x4IKMdX2UKGgGR0BlgXd43WFwaAdN6ANoCEdAlBYFBD5TInV9lChoBkdAb4wuscQyymgHTVoBaAhHQJQWGrCFbml1fZQoaAZHQEIcNqgyuZFoB0vRaAhHQJQXBG5MDfZ1fZQoaAZHQG9wGs/6frdoB00ZAWgIR0CUF9dLQHAzdX2UKGgGR0Bvn8mShakiaAdN6AJoCEdAlBfrQokRjHV9lChoBkdARr+7YkE9uGgHS9hoCEdAlBwSCjDbanV9lChoBkdAcD4kcCHRC2gHTSoBaAhHQJQcn/T9bX91fZQoaAZHQHFb+glF+d9oB00LAWgIR0CUHmtO2y9mdX2UKGgGR0Bw24lTm4iHaAdNNAFoCEdAlB6yrgflqHV9lChoBkdAcMV55JK8MGgHTUQBaAhHQJQhzZM+NcZ1fZQoaAZHQHFyqbF0gbJoB029A2gIR0CUIjP3BYV7dX2UKGgGR0Bxm2CyyD7JaAdNSAFoCEdAlCOJ7LMcInV9lChoBkdAbTcLl3hXKmgHTUMBaAhHQJQj/M/yGzt1fZQoaAZHQG2YMtsenydoB00xAWgIR0CUJLPqcEvCdX2UKGgGR0BuuCMPz4DcaAdNNQFoCEdAlCYW/BWPtHV9lChoBkdAM5xekYXO4WgHS+5oCEdAlDqNQ9A5aXV9lChoBkdAbNwef7Jnx2gHTR8BaAhHQJRASBYmsvJ1fZQoaAZHQHHTFtXPqs5oB01MAWgIR0CUQGZdOZb7dX2UKGgGR0Bv1NKwpvxZaAdNMgFoCEdAlED+kcjqwHV9lChoBkdAbVDFGXokiWgHTQsBaAhHQJRC+qtHQQd1fZQoaAZHQG03iFj/dZdoB00wAWgIR0CURIOrhisodX2UKGgGR0Bx8mDL8rI6aAdNKwFoCEdAlEYTm4iHI3V9lChoBkdAbQ4ROk+HJ2gHTRYBaAhHQJRGOcvugHx1fZQoaAZHQHJ4B8YyfthoB01lAmgIR0CURkee4Cp4dX2UKGgGR0BgcFn7HhjwaAdN6ANoCEdAlEcWJSBK+XV9lChoBkdAcEa/xDst02gHTVUBaAhHQJRIabx3FDR1fZQoaAZHQHDIRJVbRnhoB00/AWgIR0CUSuTpxFRYdX2UKGgGR0ByXdVxS5y3aAdNegFoCEdAlEvrpRoAXHV9lChoBkdAZDvU5uIhyWgHTegDaAhHQJRMVW4mTkh1fZQoaAZHQG6rtNJvo/1oB00PAWgIR0CUTVh37k4ndX2UKGgGR0BuKIWznieeaAdNMAFoCEdAlE9Vrl/6PHV9lChoBkdAbyx7TlT3qWgHTVsBaAhHQJRQsu5BkZt1fZQoaAZHQG28rupjtoloB00+AWgIR0CUUaWfK6nSdX2UKGgGR0BmF4iX6ZYxaAdN6ANoCEdAlFQRaX8fm3V9lChoBkdAbO7R7Z39rGgHTSQBaAhHQJRUXtZ3cHp1fZQoaAZHQHI/WEK3NLVoB003AWgIR0CUVH99+gDidX2UKGgGR0BwFgS+QEIPaAdNGgFoCEdAlFVVn27FsHV9lChoBkdAchyfzz3AVWgHTU4BaAhHQJRVYUVSGah1fZQoaAZHQDQMPOIInjRoB0vmaAhHQJRWhTdcjaB1fZQoaAZHQHCSvvfCQ91oB00WAWgIR0CUV53kPtladX2UKGgGR0Bs/74tYjjaaAdNhQFoCEdAlFfop6QeWHV9lChoBkdAZqbUoa1kUmgHTegDaAhHQJRX9SzgMtt1fZQoaAZHQG2cuZLIxQBoB00XAWgIR0CUWcZYxL00dX2UKGgGR0Bkur3XZoPDaAdN6ANoCEdAlFnbeIl+mXV9lChoBkdAb+DEpAlfJGgHTf4BaAhHQJRbWJTER8N1fZQoaAZHQHDV8LBsQ/ZoB01aAWgIR0CUW7PiDM/ydX2UKGgGR0BxABKWcBluaAdNCgFoCEdAlFyJR8+ianV9lChoBkdAbyZwsGxD9mgHTTsBaAhHQJRdaPS2H+J1fZQoaAZHQDWCRxLkCFNoB0vZaAhHQJRdpfOUt7N1fZQoaAZHQHJqIK2KEWZoB00OAWgIR0CUXaQP7N0OdX2UKGgGR0BCZdsrNGExaAdL5GgIR0CUXkv9cbBHdX2UKGgGR0BxCOQtBfKIaAdNCwFoCEdAlF+dxhlUZXV9lChoBkdAbGqlRgqmTGgHTRQBaAhHQJRhWsKb8WN1fZQoaAZHQG+lNAcDKYBoB01FAWgIR0CUZCJv5xiodX2UKGgGR0A4FoybhFVlaAdL6WgIR0CUZPqgh8pkdX2UKGgGR0BwxS/etSydaAdNRgFoCEdAlGVQdbPhQ3V9lChoBkdAcG7GI9C/oWgHTTEBaAhHQJRlw5wOvuB1fZQoaAZHQG5TTRQaaThoB008AWgIR0CUZi2nbZezdX2UKGgGR0Bwl1wVCXyBaAdNSgFoCEdAlGks23rleXV9lChoBkdAcF6xnnMdLmgHS/hoCEdAlGlSuloDgnV9lChoBkdAcW7tnwob42gHTSUBaAhHQJRpc176YVt1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-pollo/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99dc121645cff9c4c4fe59dd03b542541562625938df73cf27aab2d00896b435
3
+ size 87978
ppo-LunarLander-pollo/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a184136223a955a5f09d8487b212eefbd9360a54142e0f636fc55064c13d75dc
3
+ size 43634
ppo-LunarLander-pollo/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-pollo/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (157 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 235.6727642, "std_reward": 30.46692324886899, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-01T03:56:43.092456"}