Roberto commited on
Commit
0d6b035
·
1 Parent(s): db9c9e8

ppoPandaReachDense-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.38 +/- 0.15
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **PPO** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3cc7a91280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3cc7a89900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1007616, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674506918710852578, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXgmnvsLmCj8Z8m2/NfQzvvmeTL/L/ge/QWSZP+9bND8BN10/ddTwPoOQxz+cXWU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1uaBvp91Dz92NEy/rpcgvjF/UL9y0h+/j86dPy0TKz9kJlQ/Hy73PnoO1z9jbFU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABeCae+wuYKPxnybb8Az/Y/Ny8IPb6mFL819DO++Z5Mv8v+B7867uO+UPomPv93TL9BZJk/71s0PwE3XT+y9GG+gMj2POeq+7911PA+g5DHP5xdZT9O59A8Ez97Pp4OZb2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.32624334 0.5425836 -0.92947537]\n [-0.17573626 -0.79930073 -0.5312316 ]\n [ 1.198372 0.7045278 0.86412054]\n [ 0.47037092 1.5590976 0.8959596 ]]", "desired_goal": "[[-0.25371426 0.5603885 -0.7976755 ]\n [-0.15682861 -0.8144408 -0.6243049 ]\n [ 1.2328662 0.66826135 0.8287108 ]\n [ 0.48277375 1.6801293 0.8336851 ]]", "observation": "[[-0.32624334 0.5425836 -0.92947537 1.9281921 0.03324815 -0.5806693 ]\n [-0.17573626 -0.79930073 -0.5312316 -0.4451769 0.16306424 -0.798706 ]\n [ 1.198372 0.7045278 0.86412054 -0.22066 0.0301249 -1.966153 ]\n [ 0.47037092 1.5590976 0.8959596 0.02550092 0.2453578 -0.05592214]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAanVNumXMxz37pck9P437vUzG0b1bZjg+FkKFPfoZAb43cAU+fGfgvAs1Er66SHo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00078376 0.09755782 0.09846111]\n [-0.122828 -0.102429 0.18007796]\n [ 0.06506746 -0.12607566 0.13031088]\n [-0.0273931 -0.14278047 0.24441805]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID0JAvoQK3b+UhpRSlIwBbJRLMowBdJRHQKjdml54W1t1fZQoaAZoCWgPQwha12g50MPuv5SGlFKUaBVLMmgWR0Co3V2ZJCjUdX2UKGgGaAloD0MI/PuMCwdC3L+UhpRSlGgVSzJoFkdAqN0eaScLB3V9lChoBmgJaA9DCIwwRbk0ftq/lIaUUpRoFUsyaBZHQKjc4ZTho/R1fZQoaAZoCWgPQwir56T3ja/qv5SGlFKUaBVLMmgWR0Co3qLw4KhMdX2UKGgGaAloD0MIDykGSDQB4L+UhpRSlGgVSzJoFkdAqN5mVxCIDnV9lChoBmgJaA9DCJxOstXllNO/lIaUUpRoFUsyaBZHQKjeJx4IKMN1fZQoaAZoCWgPQwjRBfUtc7rTv5SGlFKUaBVLMmgWR0Co3ep6QeV+dX2UKGgGaAloD0MI48Yt5ucG5b+UhpRSlGgVSzJoFkdAqN+nQOWjXXV9lChoBmgJaA9DCPqYDwh0Jty/lIaUUpRoFUsyaBZHQKjfap/gBLh1fZQoaAZoCWgPQwg826M33Efov5SGlFKUaBVLMmgWR0Co3yuBlMAWdX2UKGgGaAloD0MIPdf34SAh0r+UhpRSlGgVSzJoFkdAqN7usJY1YXV9lChoBmgJaA9DCNoeveE+8uK/lIaUUpRoFUsyaBZHQKjgsUypJf91fZQoaAZoCWgPQwjyQGSRJt7dv5SGlFKUaBVLMmgWR0Co4HTQVsUJdX2UKGgGaAloD0MIcCNli6Td3L+UhpRSlGgVSzJoFkdAqOA1qagElnV9lChoBmgJaA9DCFrxDYXP1tO/lIaUUpRoFUsyaBZHQKjf+RKYiPh1fZQoaAZoCWgPQwipvYi2Y+rRv5SGlFKUaBVLMmgWR0Co4bgQg9vCdX2UKGgGaAloD0MIOe//44QJ3b+UhpRSlGgVSzJoFkdAqOF7eCTUzHV9lChoBmgJaA9DCEqWk1D6Qtu/lIaUUpRoFUsyaBZHQKjhPFdcB2h1fZQoaAZoCWgPQwjN6h1uhwbgv5SGlFKUaBVLMmgWR0Co4P943WFwdX2UKGgGaAloD0MIG9e/6zPn8L+UhpRSlGgVSzJoFkdAqOLGloDgZXV9lChoBmgJaA9DCII5evzepuK/lIaUUpRoFUsyaBZHQKjiieuFHrh1fZQoaAZoCWgPQwgHI/YJoBjbv5SGlFKUaBVLMmgWR0Co4kq7yxzJdX2UKGgGaAloD0MIOBWpMLYQ4b+UhpRSlGgVSzJoFkdAqOIN/axoqXV9lChoBmgJaA9DCDSdnQyOktO/lIaUUpRoFUsyaBZHQKjjy9hZyMl1fZQoaAZoCWgPQwgxmpXtQ97Yv5SGlFKUaBVLMmgWR0Co448t5D7ZdX2UKGgGaAloD0MIVwdA3NWr3r+UhpRSlGgVSzJoFkdAqONP9BKL9HV9lChoBmgJaA9DCFgepKfIIeO/lIaUUpRoFUsyaBZHQKjjEvf0mMR1fZQoaAZoCWgPQwjOHJJaKBnov5SGlFKUaBVLMmgWR0Co5Mp8WsRydX2UKGgGaAloD0MIT1lN1xNd0r+UhpRSlGgVSzJoFkdAqOSNzbN8mnV9lChoBmgJaA9DCIE//Pz34N+/lIaUUpRoFUsyaBZHQKjkTpmmLtN1fZQoaAZoCWgPQwjwiuB/K9nev5SGlFKUaBVLMmgWR0Co5BG1IAfddX2UKGgGaAloD0MIp1zhXS7i0r+UhpRSlGgVSzJoFkdAqOXUyJsO5XV9lChoBmgJaA9DCI9xxcVRud2/lIaUUpRoFUsyaBZHQKjlmCCBf8d1fZQoaAZoCWgPQwhET8qkhjbXv5SGlFKUaBVLMmgWR0Co5Vj1f3N+dX2UKGgGaAloD0MIj/tW68Tl2L+UhpRSlGgVSzJoFkdAqOUcGkep43V9lChoBmgJaA9DCE+V7xmJ0Ny/lIaUUpRoFUsyaBZHQKjm3lHSWqt1fZQoaAZoCWgPQwiWdmouNxjyv5SGlFKUaBVLMmgWR0Co5qHAIppfdX2UKGgGaAloD0MIE0NyMnGrzL+UhpRSlGgVSzJoFkdAqOZi4axX4nV9lChoBmgJaA9DCLDHREqzeeO/lIaUUpRoFUsyaBZHQKjmJhRZU1h1fZQoaAZoCWgPQwhmTwKbc/Dfv5SGlFKUaBVLMmgWR0Co59e9rXUZdX2UKGgGaAloD0MIomEx6lp77L+UhpRSlGgVSzJoFkdAqOebNliBoXV9lChoBmgJaA9DCBFSt7OvPOW/lIaUUpRoFUsyaBZHQKjnXAFgUlB1fZQoaAZoCWgPQwhNol7waU7ev5SGlFKUaBVLMmgWR0Co5x8kdFOPdX2UKGgGaAloD0MIzjl4JjRJ2L+UhpRSlGgVSzJoFkdAqOjYBJZntnV9lChoBmgJaA9DCC0j9Z7K6eO/lIaUUpRoFUsyaBZHQKjom1XvH951fZQoaAZoCWgPQwgiHLPsSWDUv5SGlFKUaBVLMmgWR0Co6FwnYxtYdX2UKGgGaAloD0MIPQ0YJH1a2r+UhpRSlGgVSzJoFkdAqOgfQhOgx3V9lChoBmgJaA9DCN/98V61Mti/lIaUUpRoFUsyaBZHQKjp3BqsU7F1fZQoaAZoCWgPQwhpp+ZygyHgv5SGlFKUaBVLMmgWR0Co6Z90aIepdX2UKGgGaAloD0MIhZfg1AeS1b+UhpRSlGgVSzJoFkdAqOlgR02ca3V9lChoBmgJaA9DCD6xTpXvGd2/lIaUUpRoFUsyaBZHQKjpI22oegd1fZQoaAZoCWgPQwg9ZMqHoGrfv5SGlFKUaBVLMmgWR0Co6uI371qWdX2UKGgGaAloD0MIqvI9IxFa9L+UhpRSlGgVSzJoFkdAqOqleY2KmHV9lChoBmgJaA9DCOWYLO4/MuG/lIaUUpRoFUsyaBZHQKjqZlRxcVx1fZQoaAZoCWgPQwizz2OUZ17Zv5SGlFKUaBVLMmgWR0Co6imAkLQYdX2UKGgGaAloD0MIvM/x0eKM2r+UhpRSlGgVSzJoFkdAqOvlUCJXQ3V9lChoBmgJaA9DCAX4bvPGSdy/lIaUUpRoFUsyaBZHQKjrqJswco91fZQoaAZoCWgPQwgpr5XQXRLbv5SGlFKUaBVLMmgWR0Co62mJWNm2dX2UKGgGaAloD0MIkBDlC1pI7b+UhpRSlGgVSzJoFkdAqOsstoSL63V9lChoBmgJaA9DCPYHym37Htq/lIaUUpRoFUsyaBZHQKjs8WXTmXB1fZQoaAZoCWgPQwghsd09QHfgv5SGlFKUaBVLMmgWR0Co7LTeoDPodX2UKGgGaAloD0MInUoGgCpu1b+UhpRSlGgVSzJoFkdAqOx1yimEXnV9lChoBmgJaA9DCK+ZfLPNjdG/lIaUUpRoFUsyaBZHQKjsORL9MsZ1fZQoaAZoCWgPQwj3V4/7VuvUv5SGlFKUaBVLMmgWR0Co7gnUMG5ddX2UKGgGaAloD0MI29/ZHr0h87+UhpRSlGgVSzJoFkdAqO3NnPE873V9lChoBmgJaA9DCJuPa0PFuOi/lIaUUpRoFUsyaBZHQKjtjosZpBZ1fZQoaAZoCWgPQwiNRj6veGrov5SGlFKUaBVLMmgWR0Co7VH2qT8pdX2UKGgGaAloD0MIezL/6Js00r+UhpRSlGgVSzJoFkdAqO8T2OAAhnV9lChoBmgJaA9DCG/yW3Sy1N2/lIaUUpRoFUsyaBZHQKju1yI55qx1fZQoaAZoCWgPQwg0L4fddwzov5SGlFKUaBVLMmgWR0Co7pfiPyTZdX2UKGgGaAloD0MI1GAaho+I07+UhpRSlGgVSzJoFkdAqO5bHp8neHV9lChoBmgJaA9DCHF2a5kMx+q/lIaUUpRoFUsyaBZHQKjwGIpH7P91fZQoaAZoCWgPQwh7o1aYvtfVv5SGlFKUaBVLMmgWR0Co79wNb1RMdX2UKGgGaAloD0MIUwlP6PUn4b+UhpRSlGgVSzJoFkdAqO+cyDZlF3V9lChoBmgJaA9DCI7lXfWAedS/lIaUUpRoFUsyaBZHQKjvYAS39aV1fZQoaAZoCWgPQwiRCmMLQQ7cv5SGlFKUaBVLMmgWR0Co8R+WGATadX2UKGgGaAloD0MIeLRxxFp82r+UhpRSlGgVSzJoFkdAqPDi66J66nV9lChoBmgJaA9DCLwGfentz9S/lIaUUpRoFUsyaBZHQKjwo8Gs3hp1fZQoaAZoCWgPQwgC9Pv+zYvav5SGlFKUaBVLMmgWR0Co8GbuUliSdX2UKGgGaAloD0MIm+PcJtyr4r+UhpRSlGgVSzJoFkdAqPIo+2VmjHV9lChoBmgJaA9DCJcA/FOqRNC/lIaUUpRoFUsyaBZHQKjx7S9/SYx1fZQoaAZoCWgPQwiaet0iMNbZv5SGlFKUaBVLMmgWR0Co8a4AS39adX2UKGgGaAloD0MIwqVjzjN24L+UhpRSlGgVSzJoFkdAqPFxOLzf8HV9lChoBmgJaA9DCOay0Tk/xdO/lIaUUpRoFUsyaBZHQKjzMPT5O8F1fZQoaAZoCWgPQwhMjGX6JeLQv5SGlFKUaBVLMmgWR0Co8vROclPadX2UKGgGaAloD0MIE2HD0ytl4r+UhpRSlGgVSzJoFkdAqPK1A7gbZXV9lChoBmgJaA9DCJ8+An/4+eG/lIaUUpRoFUsyaBZHQKjyeBHTZxt1fZQoaAZoCWgPQwiH3Aw34PPRv5SGlFKUaBVLMmgWR0Co9EZSWJJodX2UKGgGaAloD0MIV3ptNlbi4L+UhpRSlGgVSzJoFkdAqPQJ+x4Y8HV9lChoBmgJaA9DCH6QZcHEH96/lIaUUpRoFUsyaBZHQKjzyycCo0h1fZQoaAZoCWgPQwgIyQImcOvdv5SGlFKUaBVLMmgWR0Co846IN3GGdX2UKGgGaAloD0MISyAldm1v5L+UhpRSlGgVSzJoFkdAqPVw6dUbUHV9lChoBmgJaA9DCHWxaaUQyOC/lIaUUpRoFUsyaBZHQKj1NJEpiJB1fZQoaAZoCWgPQwjByMuaWODUv5SGlFKUaBVLMmgWR0Co9PW6kIomdX2UKGgGaAloD0MIzo3pCUs81L+UhpRSlGgVSzJoFkdAqPS5GvwEyXV9lChoBmgJaA9DCJG1hlJ7EdW/lIaUUpRoFUsyaBZHQKj2fM10knl1fZQoaAZoCWgPQwi8y0V8J2bXv5SGlFKUaBVLMmgWR0Co9kAiV0LddX2UKGgGaAloD0MIFEGchxOY2b+UhpRSlGgVSzJoFkdAqPYBDgIhQnV9lChoBmgJaA9DCI/DYP4KmdS/lIaUUpRoFUsyaBZHQKj1xHbRF7V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57c2ee7dbe901bee901b3ba9a9e29217b6eef9704a4b2c58f3c0930df5692c54
3
+ size 156407
ppo-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-PandaReachDense-v2/data ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3cc7a91280>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f3cc7a89900>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {},
13
+ "observation_space": {
14
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
15
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
16
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
17
+ "_shape": null,
18
+ "dtype": null,
19
+ "_np_random": null
20
+ },
21
+ "action_space": {
22
+ ":type:": "<class 'gym.spaces.box.Box'>",
23
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
24
+ "dtype": "float32",
25
+ "_shape": [
26
+ 3
27
+ ],
28
+ "low": "[-1. -1. -1.]",
29
+ "high": "[1. 1. 1.]",
30
+ "bounded_below": "[ True True True]",
31
+ "bounded_above": "[ True True True]",
32
+ "_np_random": null
33
+ },
34
+ "n_envs": 4,
35
+ "num_timesteps": 1007616,
36
+ "_total_timesteps": 1000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1674506918710852578,
41
+ "learning_rate": 0.0003,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'collections.OrderedDict'>",
49
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXgmnvsLmCj8Z8m2/NfQzvvmeTL/L/ge/QWSZP+9bND8BN10/ddTwPoOQxz+cXWU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1uaBvp91Dz92NEy/rpcgvjF/UL9y0h+/j86dPy0TKz9kJlQ/Hy73PnoO1z9jbFU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABeCae+wuYKPxnybb8Az/Y/Ny8IPb6mFL819DO++Z5Mv8v+B7867uO+UPomPv93TL9BZJk/71s0PwE3XT+y9GG+gMj2POeq+7911PA+g5DHP5xdZT9O59A8Ez97Pp4OZb2UaA5LBEsGhpRoEnSUUpR1Lg==",
50
+ "achieved_goal": "[[-0.32624334 0.5425836 -0.92947537]\n [-0.17573626 -0.79930073 -0.5312316 ]\n [ 1.198372 0.7045278 0.86412054]\n [ 0.47037092 1.5590976 0.8959596 ]]",
51
+ "desired_goal": "[[-0.25371426 0.5603885 -0.7976755 ]\n [-0.15682861 -0.8144408 -0.6243049 ]\n [ 1.2328662 0.66826135 0.8287108 ]\n [ 0.48277375 1.6801293 0.8336851 ]]",
52
+ "observation": "[[-0.32624334 0.5425836 -0.92947537 1.9281921 0.03324815 -0.5806693 ]\n [-0.17573626 -0.79930073 -0.5312316 -0.4451769 0.16306424 -0.798706 ]\n [ 1.198372 0.7045278 0.86412054 -0.22066 0.0301249 -1.966153 ]\n [ 0.47037092 1.5590976 0.8959596 0.02550092 0.2453578 -0.05592214]]"
53
+ },
54
+ "_last_episode_starts": {
55
+ ":type:": "<class 'numpy.ndarray'>",
56
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
57
+ },
58
+ "_last_original_obs": {
59
+ ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAanVNumXMxz37pck9P437vUzG0b1bZjg+FkKFPfoZAb43cAU+fGfgvAs1Er66SHo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
62
+ "desired_goal": "[[-0.00078376 0.09755782 0.09846111]\n [-0.122828 -0.102429 0.18007796]\n [ 0.06506746 -0.12607566 0.13031088]\n [-0.0273931 -0.14278047 0.24441805]]",
63
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
64
+ },
65
+ "_episode_num": 0,
66
+ "use_sde": false,
67
+ "sde_sample_freq": -1,
68
+ "_current_progress_remaining": -0.007616000000000067,
69
+ "ep_info_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID0JAvoQK3b+UhpRSlIwBbJRLMowBdJRHQKjdml54W1t1fZQoaAZoCWgPQwha12g50MPuv5SGlFKUaBVLMmgWR0Co3V2ZJCjUdX2UKGgGaAloD0MI/PuMCwdC3L+UhpRSlGgVSzJoFkdAqN0eaScLB3V9lChoBmgJaA9DCIwwRbk0ftq/lIaUUpRoFUsyaBZHQKjc4ZTho/R1fZQoaAZoCWgPQwir56T3ja/qv5SGlFKUaBVLMmgWR0Co3qLw4KhMdX2UKGgGaAloD0MIDykGSDQB4L+UhpRSlGgVSzJoFkdAqN5mVxCIDnV9lChoBmgJaA9DCJxOstXllNO/lIaUUpRoFUsyaBZHQKjeJx4IKMN1fZQoaAZoCWgPQwjRBfUtc7rTv5SGlFKUaBVLMmgWR0Co3ep6QeV+dX2UKGgGaAloD0MI48Yt5ucG5b+UhpRSlGgVSzJoFkdAqN+nQOWjXXV9lChoBmgJaA9DCPqYDwh0Jty/lIaUUpRoFUsyaBZHQKjfap/gBLh1fZQoaAZoCWgPQwg826M33Efov5SGlFKUaBVLMmgWR0Co3yuBlMAWdX2UKGgGaAloD0MIPdf34SAh0r+UhpRSlGgVSzJoFkdAqN7usJY1YXV9lChoBmgJaA9DCNoeveE+8uK/lIaUUpRoFUsyaBZHQKjgsUypJf91fZQoaAZoCWgPQwjyQGSRJt7dv5SGlFKUaBVLMmgWR0Co4HTQVsUJdX2UKGgGaAloD0MIcCNli6Td3L+UhpRSlGgVSzJoFkdAqOA1qagElnV9lChoBmgJaA9DCFrxDYXP1tO/lIaUUpRoFUsyaBZHQKjf+RKYiPh1fZQoaAZoCWgPQwipvYi2Y+rRv5SGlFKUaBVLMmgWR0Co4bgQg9vCdX2UKGgGaAloD0MIOe//44QJ3b+UhpRSlGgVSzJoFkdAqOF7eCTUzHV9lChoBmgJaA9DCEqWk1D6Qtu/lIaUUpRoFUsyaBZHQKjhPFdcB2h1fZQoaAZoCWgPQwjN6h1uhwbgv5SGlFKUaBVLMmgWR0Co4P943WFwdX2UKGgGaAloD0MIG9e/6zPn8L+UhpRSlGgVSzJoFkdAqOLGloDgZXV9lChoBmgJaA9DCII5evzepuK/lIaUUpRoFUsyaBZHQKjiieuFHrh1fZQoaAZoCWgPQwgHI/YJoBjbv5SGlFKUaBVLMmgWR0Co4kq7yxzJdX2UKGgGaAloD0MIOBWpMLYQ4b+UhpRSlGgVSzJoFkdAqOIN/axoqXV9lChoBmgJaA9DCDSdnQyOktO/lIaUUpRoFUsyaBZHQKjjy9hZyMl1fZQoaAZoCWgPQwgxmpXtQ97Yv5SGlFKUaBVLMmgWR0Co448t5D7ZdX2UKGgGaAloD0MIVwdA3NWr3r+UhpRSlGgVSzJoFkdAqONP9BKL9HV9lChoBmgJaA9DCFgepKfIIeO/lIaUUpRoFUsyaBZHQKjjEvf0mMR1fZQoaAZoCWgPQwjOHJJaKBnov5SGlFKUaBVLMmgWR0Co5Mp8WsRydX2UKGgGaAloD0MIT1lN1xNd0r+UhpRSlGgVSzJoFkdAqOSNzbN8mnV9lChoBmgJaA9DCIE//Pz34N+/lIaUUpRoFUsyaBZHQKjkTpmmLtN1fZQoaAZoCWgPQwjwiuB/K9nev5SGlFKUaBVLMmgWR0Co5BG1IAfddX2UKGgGaAloD0MIp1zhXS7i0r+UhpRSlGgVSzJoFkdAqOXUyJsO5XV9lChoBmgJaA9DCI9xxcVRud2/lIaUUpRoFUsyaBZHQKjlmCCBf8d1fZQoaAZoCWgPQwhET8qkhjbXv5SGlFKUaBVLMmgWR0Co5Vj1f3N+dX2UKGgGaAloD0MIj/tW68Tl2L+UhpRSlGgVSzJoFkdAqOUcGkep43V9lChoBmgJaA9DCE+V7xmJ0Ny/lIaUUpRoFUsyaBZHQKjm3lHSWqt1fZQoaAZoCWgPQwiWdmouNxjyv5SGlFKUaBVLMmgWR0Co5qHAIppfdX2UKGgGaAloD0MIE0NyMnGrzL+UhpRSlGgVSzJoFkdAqOZi4axX4nV9lChoBmgJaA9DCLDHREqzeeO/lIaUUpRoFUsyaBZHQKjmJhRZU1h1fZQoaAZoCWgPQwhmTwKbc/Dfv5SGlFKUaBVLMmgWR0Co59e9rXUZdX2UKGgGaAloD0MIomEx6lp77L+UhpRSlGgVSzJoFkdAqOebNliBoXV9lChoBmgJaA9DCBFSt7OvPOW/lIaUUpRoFUsyaBZHQKjnXAFgUlB1fZQoaAZoCWgPQwhNol7waU7ev5SGlFKUaBVLMmgWR0Co5x8kdFOPdX2UKGgGaAloD0MIzjl4JjRJ2L+UhpRSlGgVSzJoFkdAqOjYBJZntnV9lChoBmgJaA9DCC0j9Z7K6eO/lIaUUpRoFUsyaBZHQKjom1XvH951fZQoaAZoCWgPQwgiHLPsSWDUv5SGlFKUaBVLMmgWR0Co6FwnYxtYdX2UKGgGaAloD0MIPQ0YJH1a2r+UhpRSlGgVSzJoFkdAqOgfQhOgx3V9lChoBmgJaA9DCN/98V61Mti/lIaUUpRoFUsyaBZHQKjp3BqsU7F1fZQoaAZoCWgPQwhpp+ZygyHgv5SGlFKUaBVLMmgWR0Co6Z90aIepdX2UKGgGaAloD0MIhZfg1AeS1b+UhpRSlGgVSzJoFkdAqOlgR02ca3V9lChoBmgJaA9DCD6xTpXvGd2/lIaUUpRoFUsyaBZHQKjpI22oegd1fZQoaAZoCWgPQwg9ZMqHoGrfv5SGlFKUaBVLMmgWR0Co6uI371qWdX2UKGgGaAloD0MIqvI9IxFa9L+UhpRSlGgVSzJoFkdAqOqleY2KmHV9lChoBmgJaA9DCOWYLO4/MuG/lIaUUpRoFUsyaBZHQKjqZlRxcVx1fZQoaAZoCWgPQwizz2OUZ17Zv5SGlFKUaBVLMmgWR0Co6imAkLQYdX2UKGgGaAloD0MIvM/x0eKM2r+UhpRSlGgVSzJoFkdAqOvlUCJXQ3V9lChoBmgJaA9DCAX4bvPGSdy/lIaUUpRoFUsyaBZHQKjrqJswco91fZQoaAZoCWgPQwgpr5XQXRLbv5SGlFKUaBVLMmgWR0Co62mJWNm2dX2UKGgGaAloD0MIkBDlC1pI7b+UhpRSlGgVSzJoFkdAqOsstoSL63V9lChoBmgJaA9DCPYHym37Htq/lIaUUpRoFUsyaBZHQKjs8WXTmXB1fZQoaAZoCWgPQwghsd09QHfgv5SGlFKUaBVLMmgWR0Co7LTeoDPodX2UKGgGaAloD0MInUoGgCpu1b+UhpRSlGgVSzJoFkdAqOx1yimEXnV9lChoBmgJaA9DCK+ZfLPNjdG/lIaUUpRoFUsyaBZHQKjsORL9MsZ1fZQoaAZoCWgPQwj3V4/7VuvUv5SGlFKUaBVLMmgWR0Co7gnUMG5ddX2UKGgGaAloD0MI29/ZHr0h87+UhpRSlGgVSzJoFkdAqO3NnPE873V9lChoBmgJaA9DCJuPa0PFuOi/lIaUUpRoFUsyaBZHQKjtjosZpBZ1fZQoaAZoCWgPQwiNRj6veGrov5SGlFKUaBVLMmgWR0Co7VH2qT8pdX2UKGgGaAloD0MIezL/6Js00r+UhpRSlGgVSzJoFkdAqO8T2OAAhnV9lChoBmgJaA9DCG/yW3Sy1N2/lIaUUpRoFUsyaBZHQKju1yI55qx1fZQoaAZoCWgPQwg0L4fddwzov5SGlFKUaBVLMmgWR0Co7pfiPyTZdX2UKGgGaAloD0MI1GAaho+I07+UhpRSlGgVSzJoFkdAqO5bHp8neHV9lChoBmgJaA9DCHF2a5kMx+q/lIaUUpRoFUsyaBZHQKjwGIpH7P91fZQoaAZoCWgPQwh7o1aYvtfVv5SGlFKUaBVLMmgWR0Co79wNb1RMdX2UKGgGaAloD0MIUwlP6PUn4b+UhpRSlGgVSzJoFkdAqO+cyDZlF3V9lChoBmgJaA9DCI7lXfWAedS/lIaUUpRoFUsyaBZHQKjvYAS39aV1fZQoaAZoCWgPQwiRCmMLQQ7cv5SGlFKUaBVLMmgWR0Co8R+WGATadX2UKGgGaAloD0MIeLRxxFp82r+UhpRSlGgVSzJoFkdAqPDi66J66nV9lChoBmgJaA9DCLwGfentz9S/lIaUUpRoFUsyaBZHQKjwo8Gs3hp1fZQoaAZoCWgPQwgC9Pv+zYvav5SGlFKUaBVLMmgWR0Co8GbuUliSdX2UKGgGaAloD0MIm+PcJtyr4r+UhpRSlGgVSzJoFkdAqPIo+2VmjHV9lChoBmgJaA9DCJcA/FOqRNC/lIaUUpRoFUsyaBZHQKjx7S9/SYx1fZQoaAZoCWgPQwiaet0iMNbZv5SGlFKUaBVLMmgWR0Co8a4AS39adX2UKGgGaAloD0MIwqVjzjN24L+UhpRSlGgVSzJoFkdAqPFxOLzf8HV9lChoBmgJaA9DCOay0Tk/xdO/lIaUUpRoFUsyaBZHQKjzMPT5O8F1fZQoaAZoCWgPQwhMjGX6JeLQv5SGlFKUaBVLMmgWR0Co8vROclPadX2UKGgGaAloD0MIE2HD0ytl4r+UhpRSlGgVSzJoFkdAqPK1A7gbZXV9lChoBmgJaA9DCJ8+An/4+eG/lIaUUpRoFUsyaBZHQKjyeBHTZxt1fZQoaAZoCWgPQwiH3Aw34PPRv5SGlFKUaBVLMmgWR0Co9EZSWJJodX2UKGgGaAloD0MIV3ptNlbi4L+UhpRSlGgVSzJoFkdAqPQJ+x4Y8HV9lChoBmgJaA9DCH6QZcHEH96/lIaUUpRoFUsyaBZHQKjzyycCo0h1fZQoaAZoCWgPQwgIyQImcOvdv5SGlFKUaBVLMmgWR0Co846IN3GGdX2UKGgGaAloD0MISyAldm1v5L+UhpRSlGgVSzJoFkdAqPVw6dUbUHV9lChoBmgJaA9DCHWxaaUQyOC/lIaUUpRoFUsyaBZHQKj1NJEpiJB1fZQoaAZoCWgPQwjByMuaWODUv5SGlFKUaBVLMmgWR0Co9PW6kIomdX2UKGgGaAloD0MIzo3pCUs81L+UhpRSlGgVSzJoFkdAqPS5GvwEyXV9lChoBmgJaA9DCJG1hlJ7EdW/lIaUUpRoFUsyaBZHQKj2fM10knl1fZQoaAZoCWgPQwi8y0V8J2bXv5SGlFKUaBVLMmgWR0Co9kAiV0LddX2UKGgGaAloD0MIFEGchxOY2b+UhpRSlGgVSzJoFkdAqPYBDgIhQnV9lChoBmgJaA9DCI/DYP4KmdS/lIaUUpRoFUsyaBZHQKj1xHbRF7V1ZS4="
72
+ },
73
+ "ep_success_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
76
+ },
77
+ "_n_updates": 1230,
78
+ "n_steps": 2048,
79
+ "gamma": 0.99,
80
+ "gae_lambda": 0.95,
81
+ "ent_coef": 0.0,
82
+ "vf_coef": 0.5,
83
+ "max_grad_norm": 0.5,
84
+ "batch_size": 64,
85
+ "n_epochs": 10,
86
+ "clip_range": {
87
+ ":type:": "<class 'function'>",
88
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
89
+ },
90
+ "clip_range_vf": null,
91
+ "normalize_advantage": true,
92
+ "target_kl": null
93
+ }
ppo-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b377e2fe8e4d162762cc8b206c303938da6b8e1eb54a1e1ef04320b6065059c0
3
+ size 92400
ppo-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c676e498fe0292c6d39c033727c9a0b2e0722b19e6511342dcb65e944be8fec
3
+ size 46014
ppo-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (537 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.3848767170769861, "std_reward": 0.14698721791580613, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T21:41:58.615240"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f4327133dcfffb89f25e904118db8bf74a176824a92c2e36fbb1c58ca18fa5c
3
+ size 3212