Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1425.44 +/- 265.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88614e4c55fed22007ef0dafb63a4096216d8ce01c43f303d7bf9cc5d5a272d1
|
3 |
+
size 129261
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0c7cb4a700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0c7cb4a790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0c7cb4a820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0c7cb4a8b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0c7cb4a940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0c7cb4a9d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0c7cb4aa60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0c7cb4aaf0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0c7cb4ab80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0c7cb4ac10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0c7cb4aca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0c7cb4ad30>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f0c7cb48360>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1673983181898376569,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK93GT/FRSQ+BLggP9to4j8evui+1+6AP1tjpj7fBLm+EoxDP+R5Cj1jQdM+Lb3jv0XJe7+aEWA/sZAqv6gwRD/zuz++PJv6PrloJj7lBiI//29av01mLr/J1NI+lVehPnFOp7/5W+Y+v6QYPxdDpL+jXDo/U+Urv7IqWT4dJDE/mRcTwH0QMcD34Wi/nWk3PpJ9Ej838sm+GU8Jv2a2dT9JlcM/N8/jv1IPML7vjTLA0zZDvgoxUr8M/7q+ws51v5NJlj6+aYG/lHq0P3pXL79xTqe/+VvmPoqr1r8XQ6S/k92wvv5R/D7F5iE/gBC/P1qEsT9q26w+Im3kvVmTFL0ZwEc/d3BHvUZcvr2kxCM/vcAAP0cmB79MXeo+n52Rv2EgMD/fdme/Hkoeut70bj+MhS+/JrhUv0JYpr7NbwbAMNtDP/lb5j6/pBg/F0Okv4mJCz9bIC++gC8JP/5iGEC6Aee/oWIUwHNcNj/6QvW+HrlIP0CfgL1PYos/CtOSv7NPgr8K8XU/C4Jwv8E8Nz+DLQLAY8+4vox43j4ylmc/4dDpvZBtcD+krnG+RfOXPzDbQz/5W+Y+v6QYPxdDpL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA/m+y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjko7PQAAAAAktfy/AAAAAHY18bwAAAAAgLbdPwAAAABr/n69AAAAAGXm+j8AAAAAtziAvQAAAAD/Zfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWH0atgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJRiCj4AAAAAHpbdvwAAAACkKcE9AAAAAJ46/T8AAAAA5vvevQAAAABfEuw/AAAAAJOUMr0AAAAAu5/pvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKX03rIAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICtxuu9AAAAAJTi3b8AAAAAlWrKPAAAAABQNvk/AAAAAK4FC70AAAAA6ijkPwAAAACmK909AAAAADG9+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUhsY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2yYJvgAAAAB7dem/AAAAAP60AD4AAAAAzsPrPwAAAAAm1qc9AAAAAKcK8D8AAAAA+c6+PQAAAABd8PW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiOK6BiCreMAWyUTegDjAF0lEdArSJAqLCN0nV9lChoBkdAlBVqL0jC52gHTegDaAhHQK0leogmqo91fZQoaAZHQJNEcenyd4FoB03oA2gIR0CtKeqODJ2ddX2UKGgGR0CUzA96C17ZaAdN6ANoCEdArSoslRgqmXV9lChoBkdAmD6RoysS02gHTegDaAhHQK0uyLDQ7cR1fZQoaAZHQJasLscABDJoB03oA2gIR0CtMfEF4cFRdX2UKGgGR0CT0rjQzDXOaAdN6ANoCEdArTZnL5h0AHV9lChoBkdAlTJaQmu1W2gHTegDaAhHQK02qpb2USt1fZQoaAZHQJWAe4J/oaFoB03oA2gIR0CtO9CYLLIQdX2UKGgGR0CWKgdbPhQ4aAdN6ANoCEdArT8YwRGtp3V9lChoBkdAgu8HPE87p2gHTegDaAhHQK1DmZLqUvB1fZQoaAZHQJS2AYoAn2JoB03oA2gIR0CtQ94cWCVbdX2UKGgGR0CPSQt4A0bcaAdN6ANoCEdArUiGK2rn1XV9lChoBkdAlBKEiY9gW2gHTegDaAhHQK1LvJwsGxF1fZQoaAZHQJNFmVB2OhloB03oA2gIR0CtUCazE74jdX2UKGgGR0CUUsrxAjY7aAdN6ANoCEdArVBpDVpblnV9lChoBkdAk+O+RgZ0jmgHTegDaAhHQK1VJMXaakR1fZQoaAZHQJGiYSyt3fRoB03oA2gIR0CtWGUxubZwdX2UKGgGR0CNj4hJyyUtaAdN6ANoCEdArVzj7ALy+nV9lChoBkdAkaP4q5LAYmgHTegDaAhHQK1dJhhpg1F1fZQoaAZHQJOTkWUKRdRoB03oA2gIR0CtYe8oH9m6dX2UKGgGR0CTEpfFrEcbaAdN6ANoCEdArWVGOZLIxXV9lChoBkdAhvotuDSPVGgHTegDaAhHQK1p2kHD7651fZQoaAZHQJpSY6U7jkxoB03oA2gIR0Ctah7NjbztdX2UKGgGR0CLMJOgxrSFaAdN6ANoCEdArW73T3IuG3V9lChoBkdAl2BZj+aScWgHTegDaAhHQK1yPoMa0hN1fZQoaAZHQJWNgqur6tVoB03oA2gIR0CtdxlP8AJcdX2UKGgGR0CHFEbDuSfUaAdN6ANoCEdArXdjx3FDOXV9lChoBkdAlWBSkoF3ZGgHTegDaAhHQK18JHWBjF11fZQoaAZHQJZWWvkili1oB03oA2gIR0Ctf1zRhMJydX2UKGgGR0CJyuyE+PilaAdN6ANoCEdArYPXXf642HV9lChoBkdAlj2B/EwWWWgHTegDaAhHQK2EGLVnVXp1fZQoaAZHQJLRiPCEYfpoB03oA2gIR0CtiNp4KQaKdX2UKGgGR0CU6VCF9KEnaAdN6ANoCEdArYwD9sJpnHV9lChoBkdAl6n8HB1s+GgHTegDaAhHQK2QaWl/H5t1fZQoaAZHQJEX+CROk+JoB03oA2gIR0CtkKwEyLyddX2UKGgGR0CWnGtLL6k7aAdN6ANoCEdArZVi00FbFHV9lChoBkdAllqGEPDpDGgHTegDaAhHQK2YjdIoVmB1fZQoaAZHQJVF7PWxyGVoB03oA2gIR0CtnPYYJmdzdX2UKGgGR0CYgPimVJL/aAdN6ANoCEdArZ09yT6i03V9lChoBkdAlQuFwDNhVmgHTegDaAhHQK2h5RgJC0F1fZQoaAZHQIgTu/i5uqFoB03oA2gIR0CtpRuK4x1xdX2UKGgGR0CNEdlKbrkbaAdN6ANoCEdAramNDx9XtHV9lChoBkdAkSIfR7Z392gHTegDaAhHQK2pz+85CF91fZQoaAZHQJSmoFcIJJJoB03oA2gIR0CtrnXh4t6HdX2UKGgGR0CTsySG8EmqaAdN6ANoCEdArbG0hq0ty3V9lChoBkdAltgoxQBPsWgHTegDaAhHQK22hDye7MB1fZQoaAZHQIceE/bCaZxoB03oA2gIR0Cttse5OJtSdX2UKGgGR0CVo23j+717aAdN3gNoCEdArbtTA1vVE3V9lChoBkdAmG4Qtvn8sWgHTegDaAhHQK2+r4cFQl91fZQoaAZHQJXuc1NxlxxoB03oA2gIR0Ctwx2ZJCjUdX2UKGgGR0CVn2nTRYzSaAdN6ANoCEdArcNgOMERrnV9lChoBkdAmAIXwsoUjGgHTegDaAhHQK3H5FmWdEt1fZQoaAZHQJUpdSNwR5FoB03oA2gIR0CtyyqFZgXudX2UKGgGR0CZKHCrcTJyaAdN6ANoCEdArc+fa+N96XV9lChoBkdAhnsbaRISUWgHTegDaAhHQK3P4px3mmt1fZQoaAZHQJiA3FXJYDFoB03oA2gIR0Ct1GGHgxagdX2UKGgGR0CYnhZW7voeaAdN6ANoCEdArdevqqwQlXV9lChoBkdAla+HKOktVmgHTegDaAhHQK3cG10knkV1fZQoaAZHQJnLVfReC05oB03oA2gIR0Ct3GCml67edX2UKGgGR0CUZnHZsbeeaAdN6ANoCEdAreDpRwZOz3V9lChoBkdAmpMvm5lOGmgHTegDaAhHQK3kNIqbz9V1fZQoaAZHQJjqvcJtzjpoB03oA2gIR0Ct6KgpazNVdX2UKGgGR0Ca1vMEA5q/aAdN6ANoCEdArejpaNdZ73V9lChoBkdAmK4fUaya/mgHTegDaAhHQK3th3r2QGR1fZQoaAZHQJnOncqOLixoB03oA2gIR0Ct8Rtv4ubrdX2UKGgGR0CYLsEYwZflaAdN6ANoCEdArfWPsolUqHV9lChoBkdAmCV7QLNOd2gHTegDaAhHQK311F5OafB1fZQoaAZHQJlMuHuZ1FJoB03oA2gIR0Ct+m2Dg62fdX2UKGgGR0CXAZZJkGzKaAdN6ANoCEdArf2/zUZvUHV9lChoBkdAmGPrTDwYtWgHTegDaAhHQK4CNaxHG0h1fZQoaAZHQJdQxlf7aZhoB03oA2gIR0CuAntj0+TvdX2UKGgGR0CWvx+LFXJYaAdN6ANoCEdArgcbTDwYtXV9lChoBkdAkc0W4RVZLmgHTegDaAhHQK4Kd3Cbc451fZQoaAZHQJsM5w84gihoB03oA2gIR0CuDvIatLcsdX2UKGgGR0CSkNb0e2d/aAdN6ANoCEdArg80vmHP/3V9lChoBkdAldYbLlmvn2gHTegDaAhHQK4T36j32251fZQoaAZHQIux0eMhouhoB03oA2gIR0CuF20V8CxNdX2UKGgGR0CBl3mq5sj3aAdN6ANoCEdArhvlkrf+CXV9lChoBkdAlTqWkJrtV2gHTegDaAhHQK4cK5uIhyN1fZQoaAZHQJYJBKh+OOtoB03oA2gIR0CuILxHG0eEdX2UKGgGR0CSUTXXRPXTaAdN6ANoCEdAriQZwjt5U3V9lChoBkdAlN++DFqBVmgHTegDaAhHQK4oosyzoll1fZQoaAZHQIfzcUO/cnFoB03oA2gIR0CuKOWqkuYhdX2UKGgGR0CTHZMqz7djaAdN6ANoCEdAri2rdpItlXV9lChoBkdAlt8HIp6QeWgHTegDaAhHQK4w/TjNpud1fZQoaAZHQJVhhfBvaURoB03oA2gIR0CuNW0knkT6dX2UKGgGR0CQpx0eEIw/aAdN6ANoCEdArjWurlvIfnV9lChoBkdAkpC26wt8NWgHTegDaAhHQK46Ta7mMfl1fZQoaAZHQINQlDKHO8loB03oA2gIR0CuPaaQ/5ckdX2UKGgGR0CUeeva11GLaAdN6ANoCEdArkIQl0HQhXV9lChoBkdAlvgCQo1DSmgHTegDaAhHQK5CVsYVIqd1fZQoaAZHQJR9ldkauOloB03oA2gIR0CuRxeaa1CxdX2UKGgGR0CYCmCWeHzpaAdN6ANoCEdArkp7DEWIoHV9lChoBkdAkvP1nh86WGgHTegDaAhHQK5O8s4ku6F1fZQoaAZHQJWCK2VmjCZoB03oA2gIR0CuTzZHNHH4dX2UKGgGR0CNNDbrTpgUaAdN6ANoCEdArlPbK5kK/nV9lChoBkdAiNKtbTtsvmgHTegDaAhHQK5XQ2rn1Wd1fZQoaAZHQImmpvrGBFxoB03oA2gIR0CuW8gy2x6fdX2UKGgGR0CYqALqlgtwaAdN6ANoCEdArlwKqwQlKXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 100000,
|
99 |
+
"n_steps": 5,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e8015f37c10bf872898d0db970b4ef58572c0788dbabcd637785fd7a07dba25
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49ef83cc7b39246c9bffa50121e62622c0cf12e6d790c5587b305f81f923eff8
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0c7cb4a700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0c7cb4a790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0c7cb4a820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0c7cb4a8b0>", "_build": "<function ActorCriticPolicy._build at 0x7f0c7cb4a940>", "forward": "<function ActorCriticPolicy.forward at 0x7f0c7cb4a9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0c7cb4aa60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0c7cb4aaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0c7cb4ab80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0c7cb4ac10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0c7cb4aca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0c7cb4ad30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0c7cb48360>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673983181898376569, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK93GT/FRSQ+BLggP9to4j8evui+1+6AP1tjpj7fBLm+EoxDP+R5Cj1jQdM+Lb3jv0XJe7+aEWA/sZAqv6gwRD/zuz++PJv6PrloJj7lBiI//29av01mLr/J1NI+lVehPnFOp7/5W+Y+v6QYPxdDpL+jXDo/U+Urv7IqWT4dJDE/mRcTwH0QMcD34Wi/nWk3PpJ9Ej838sm+GU8Jv2a2dT9JlcM/N8/jv1IPML7vjTLA0zZDvgoxUr8M/7q+ws51v5NJlj6+aYG/lHq0P3pXL79xTqe/+VvmPoqr1r8XQ6S/k92wvv5R/D7F5iE/gBC/P1qEsT9q26w+Im3kvVmTFL0ZwEc/d3BHvUZcvr2kxCM/vcAAP0cmB79MXeo+n52Rv2EgMD/fdme/Hkoeut70bj+MhS+/JrhUv0JYpr7NbwbAMNtDP/lb5j6/pBg/F0Okv4mJCz9bIC++gC8JP/5iGEC6Aee/oWIUwHNcNj/6QvW+HrlIP0CfgL1PYos/CtOSv7NPgr8K8XU/C4Jwv8E8Nz+DLQLAY8+4vox43j4ylmc/4dDpvZBtcD+krnG+RfOXPzDbQz/5W+Y+v6QYPxdDpL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA/m+y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjko7PQAAAAAktfy/AAAAAHY18bwAAAAAgLbdPwAAAABr/n69AAAAAGXm+j8AAAAAtziAvQAAAAD/Zfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWH0atgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJRiCj4AAAAAHpbdvwAAAACkKcE9AAAAAJ46/T8AAAAA5vvevQAAAABfEuw/AAAAAJOUMr0AAAAAu5/pvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKX03rIAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICtxuu9AAAAAJTi3b8AAAAAlWrKPAAAAABQNvk/AAAAAK4FC70AAAAA6ijkPwAAAACmK909AAAAADG9+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUhsY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2yYJvgAAAAB7dem/AAAAAP60AD4AAAAAzsPrPwAAAAAm1qc9AAAAAKcK8D8AAAAA+c6+PQAAAABd8PW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiOK6BiCreMAWyUTegDjAF0lEdArSJAqLCN0nV9lChoBkdAlBVqL0jC52gHTegDaAhHQK0leogmqo91fZQoaAZHQJNEcenyd4FoB03oA2gIR0CtKeqODJ2ddX2UKGgGR0CUzA96C17ZaAdN6ANoCEdArSoslRgqmXV9lChoBkdAmD6RoysS02gHTegDaAhHQK0uyLDQ7cR1fZQoaAZHQJasLscABDJoB03oA2gIR0CtMfEF4cFRdX2UKGgGR0CT0rjQzDXOaAdN6ANoCEdArTZnL5h0AHV9lChoBkdAlTJaQmu1W2gHTegDaAhHQK02qpb2USt1fZQoaAZHQJWAe4J/oaFoB03oA2gIR0CtO9CYLLIQdX2UKGgGR0CWKgdbPhQ4aAdN6ANoCEdArT8YwRGtp3V9lChoBkdAgu8HPE87p2gHTegDaAhHQK1DmZLqUvB1fZQoaAZHQJS2AYoAn2JoB03oA2gIR0CtQ94cWCVbdX2UKGgGR0CPSQt4A0bcaAdN6ANoCEdArUiGK2rn1XV9lChoBkdAlBKEiY9gW2gHTegDaAhHQK1LvJwsGxF1fZQoaAZHQJNFmVB2OhloB03oA2gIR0CtUCazE74jdX2UKGgGR0CUUsrxAjY7aAdN6ANoCEdArVBpDVpblnV9lChoBkdAk+O+RgZ0jmgHTegDaAhHQK1VJMXaakR1fZQoaAZHQJGiYSyt3fRoB03oA2gIR0CtWGUxubZwdX2UKGgGR0CNj4hJyyUtaAdN6ANoCEdArVzj7ALy+nV9lChoBkdAkaP4q5LAYmgHTegDaAhHQK1dJhhpg1F1fZQoaAZHQJOTkWUKRdRoB03oA2gIR0CtYe8oH9m6dX2UKGgGR0CTEpfFrEcbaAdN6ANoCEdArWVGOZLIxXV9lChoBkdAhvotuDSPVGgHTegDaAhHQK1p2kHD7651fZQoaAZHQJpSY6U7jkxoB03oA2gIR0Ctah7NjbztdX2UKGgGR0CLMJOgxrSFaAdN6ANoCEdArW73T3IuG3V9lChoBkdAl2BZj+aScWgHTegDaAhHQK1yPoMa0hN1fZQoaAZHQJWNgqur6tVoB03oA2gIR0CtdxlP8AJcdX2UKGgGR0CHFEbDuSfUaAdN6ANoCEdArXdjx3FDOXV9lChoBkdAlWBSkoF3ZGgHTegDaAhHQK18JHWBjF11fZQoaAZHQJZWWvkili1oB03oA2gIR0Ctf1zRhMJydX2UKGgGR0CJyuyE+PilaAdN6ANoCEdArYPXXf642HV9lChoBkdAlj2B/EwWWWgHTegDaAhHQK2EGLVnVXp1fZQoaAZHQJLRiPCEYfpoB03oA2gIR0CtiNp4KQaKdX2UKGgGR0CU6VCF9KEnaAdN6ANoCEdArYwD9sJpnHV9lChoBkdAl6n8HB1s+GgHTegDaAhHQK2QaWl/H5t1fZQoaAZHQJEX+CROk+JoB03oA2gIR0CtkKwEyLyddX2UKGgGR0CWnGtLL6k7aAdN6ANoCEdArZVi00FbFHV9lChoBkdAllqGEPDpDGgHTegDaAhHQK2YjdIoVmB1fZQoaAZHQJVF7PWxyGVoB03oA2gIR0CtnPYYJmdzdX2UKGgGR0CYgPimVJL/aAdN6ANoCEdArZ09yT6i03V9lChoBkdAlQuFwDNhVmgHTegDaAhHQK2h5RgJC0F1fZQoaAZHQIgTu/i5uqFoB03oA2gIR0CtpRuK4x1xdX2UKGgGR0CNEdlKbrkbaAdN6ANoCEdAramNDx9XtHV9lChoBkdAkSIfR7Z392gHTegDaAhHQK2pz+85CF91fZQoaAZHQJSmoFcIJJJoB03oA2gIR0CtrnXh4t6HdX2UKGgGR0CTsySG8EmqaAdN6ANoCEdArbG0hq0ty3V9lChoBkdAltgoxQBPsWgHTegDaAhHQK22hDye7MB1fZQoaAZHQIceE/bCaZxoB03oA2gIR0Cttse5OJtSdX2UKGgGR0CVo23j+717aAdN3gNoCEdArbtTA1vVE3V9lChoBkdAmG4Qtvn8sWgHTegDaAhHQK2+r4cFQl91fZQoaAZHQJXuc1NxlxxoB03oA2gIR0Ctwx2ZJCjUdX2UKGgGR0CVn2nTRYzSaAdN6ANoCEdArcNgOMERrnV9lChoBkdAmAIXwsoUjGgHTegDaAhHQK3H5FmWdEt1fZQoaAZHQJUpdSNwR5FoB03oA2gIR0CtyyqFZgXudX2UKGgGR0CZKHCrcTJyaAdN6ANoCEdArc+fa+N96XV9lChoBkdAhnsbaRISUWgHTegDaAhHQK3P4px3mmt1fZQoaAZHQJiA3FXJYDFoB03oA2gIR0Ct1GGHgxagdX2UKGgGR0CYnhZW7voeaAdN6ANoCEdArdevqqwQlXV9lChoBkdAla+HKOktVmgHTegDaAhHQK3cG10knkV1fZQoaAZHQJnLVfReC05oB03oA2gIR0Ct3GCml67edX2UKGgGR0CUZnHZsbeeaAdN6ANoCEdAreDpRwZOz3V9lChoBkdAmpMvm5lOGmgHTegDaAhHQK3kNIqbz9V1fZQoaAZHQJjqvcJtzjpoB03oA2gIR0Ct6KgpazNVdX2UKGgGR0Ca1vMEA5q/aAdN6ANoCEdArejpaNdZ73V9lChoBkdAmK4fUaya/mgHTegDaAhHQK3th3r2QGR1fZQoaAZHQJnOncqOLixoB03oA2gIR0Ct8Rtv4ubrdX2UKGgGR0CYLsEYwZflaAdN6ANoCEdArfWPsolUqHV9lChoBkdAmCV7QLNOd2gHTegDaAhHQK311F5OafB1fZQoaAZHQJlMuHuZ1FJoB03oA2gIR0Ct+m2Dg62fdX2UKGgGR0CXAZZJkGzKaAdN6ANoCEdArf2/zUZvUHV9lChoBkdAmGPrTDwYtWgHTegDaAhHQK4CNaxHG0h1fZQoaAZHQJdQxlf7aZhoB03oA2gIR0CuAntj0+TvdX2UKGgGR0CWvx+LFXJYaAdN6ANoCEdArgcbTDwYtXV9lChoBkdAkc0W4RVZLmgHTegDaAhHQK4Kd3Cbc451fZQoaAZHQJsM5w84gihoB03oA2gIR0CuDvIatLcsdX2UKGgGR0CSkNb0e2d/aAdN6ANoCEdArg80vmHP/3V9lChoBkdAldYbLlmvn2gHTegDaAhHQK4T36j32251fZQoaAZHQIux0eMhouhoB03oA2gIR0CuF20V8CxNdX2UKGgGR0CBl3mq5sj3aAdN6ANoCEdArhvlkrf+CXV9lChoBkdAlTqWkJrtV2gHTegDaAhHQK4cK5uIhyN1fZQoaAZHQJYJBKh+OOtoB03oA2gIR0CuILxHG0eEdX2UKGgGR0CSUTXXRPXTaAdN6ANoCEdAriQZwjt5U3V9lChoBkdAlN++DFqBVmgHTegDaAhHQK4oosyzoll1fZQoaAZHQIfzcUO/cnFoB03oA2gIR0CuKOWqkuYhdX2UKGgGR0CTHZMqz7djaAdN6ANoCEdAri2rdpItlXV9lChoBkdAlt8HIp6QeWgHTegDaAhHQK4w/TjNpud1fZQoaAZHQJVhhfBvaURoB03oA2gIR0CuNW0knkT6dX2UKGgGR0CQpx0eEIw/aAdN6ANoCEdArjWurlvIfnV9lChoBkdAkpC26wt8NWgHTegDaAhHQK46Ta7mMfl1fZQoaAZHQINQlDKHO8loB03oA2gIR0CuPaaQ/5ckdX2UKGgGR0CUeeva11GLaAdN6ANoCEdArkIQl0HQhXV9lChoBkdAlvgCQo1DSmgHTegDaAhHQK5CVsYVIqd1fZQoaAZHQJR9ldkauOloB03oA2gIR0CuRxeaa1CxdX2UKGgGR0CYCmCWeHzpaAdN6ANoCEdArkp7DEWIoHV9lChoBkdAkvP1nh86WGgHTegDaAhHQK5O8s4ku6F1fZQoaAZHQJWCK2VmjCZoB03oA2gIR0CuTzZHNHH4dX2UKGgGR0CNNDbrTpgUaAdN6ANoCEdArlPbK5kK/nV9lChoBkdAiNKtbTtsvmgHTegDaAhHQK5XQ2rn1Wd1fZQoaAZHQImmpvrGBFxoB03oA2gIR0CuW8gy2x6fdX2UKGgGR0CYqALqlgtwaAdN6ANoCEdArlwKqwQlKXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a90a81c61a8ce8ededb777705b3974aab7531513c7101936dc33d8fdecc729b1
|
3 |
+
size 1090205
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1425.4400556903565, "std_reward": 265.5143651418041, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T20:14:23.781167"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c233d94c67c55751f6ba073ef336615171ef84f035762c9ef19e3dace04bbba
|
3 |
+
size 2521
|