Roberto commited on
Commit
db725bb
1 Parent(s): 17fb06c

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1425.44 +/- 265.51
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88614e4c55fed22007ef0dafb63a4096216d8ce01c43f303d7bf9cc5d5a272d1
3
+ size 129261
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0c7cb4a700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0c7cb4a790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0c7cb4a820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0c7cb4a8b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0c7cb4a940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0c7cb4a9d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0c7cb4aa60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0c7cb4aaf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0c7cb4ab80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0c7cb4ac10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0c7cb4aca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0c7cb4ad30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0c7cb48360>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1673983181898376569,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK93GT/FRSQ+BLggP9to4j8evui+1+6AP1tjpj7fBLm+EoxDP+R5Cj1jQdM+Lb3jv0XJe7+aEWA/sZAqv6gwRD/zuz++PJv6PrloJj7lBiI//29av01mLr/J1NI+lVehPnFOp7/5W+Y+v6QYPxdDpL+jXDo/U+Urv7IqWT4dJDE/mRcTwH0QMcD34Wi/nWk3PpJ9Ej838sm+GU8Jv2a2dT9JlcM/N8/jv1IPML7vjTLA0zZDvgoxUr8M/7q+ws51v5NJlj6+aYG/lHq0P3pXL79xTqe/+VvmPoqr1r8XQ6S/k92wvv5R/D7F5iE/gBC/P1qEsT9q26w+Im3kvVmTFL0ZwEc/d3BHvUZcvr2kxCM/vcAAP0cmB79MXeo+n52Rv2EgMD/fdme/Hkoeut70bj+MhS+/JrhUv0JYpr7NbwbAMNtDP/lb5j6/pBg/F0Okv4mJCz9bIC++gC8JP/5iGEC6Aee/oWIUwHNcNj/6QvW+HrlIP0CfgL1PYos/CtOSv7NPgr8K8XU/C4Jwv8E8Nz+DLQLAY8+4vox43j4ylmc/4dDpvZBtcD+krnG+RfOXPzDbQz/5W+Y+v6QYPxdDpL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA/m+y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjko7PQAAAAAktfy/AAAAAHY18bwAAAAAgLbdPwAAAABr/n69AAAAAGXm+j8AAAAAtziAvQAAAAD/Zfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWH0atgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJRiCj4AAAAAHpbdvwAAAACkKcE9AAAAAJ46/T8AAAAA5vvevQAAAABfEuw/AAAAAJOUMr0AAAAAu5/pvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKX03rIAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICtxuu9AAAAAJTi3b8AAAAAlWrKPAAAAABQNvk/AAAAAK4FC70AAAAA6ijkPwAAAACmK909AAAAADG9+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUhsY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2yYJvgAAAAB7dem/AAAAAP60AD4AAAAAzsPrPwAAAAAm1qc9AAAAAKcK8D8AAAAA+c6+PQAAAABd8PW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiOK6BiCreMAWyUTegDjAF0lEdArSJAqLCN0nV9lChoBkdAlBVqL0jC52gHTegDaAhHQK0leogmqo91fZQoaAZHQJNEcenyd4FoB03oA2gIR0CtKeqODJ2ddX2UKGgGR0CUzA96C17ZaAdN6ANoCEdArSoslRgqmXV9lChoBkdAmD6RoysS02gHTegDaAhHQK0uyLDQ7cR1fZQoaAZHQJasLscABDJoB03oA2gIR0CtMfEF4cFRdX2UKGgGR0CT0rjQzDXOaAdN6ANoCEdArTZnL5h0AHV9lChoBkdAlTJaQmu1W2gHTegDaAhHQK02qpb2USt1fZQoaAZHQJWAe4J/oaFoB03oA2gIR0CtO9CYLLIQdX2UKGgGR0CWKgdbPhQ4aAdN6ANoCEdArT8YwRGtp3V9lChoBkdAgu8HPE87p2gHTegDaAhHQK1DmZLqUvB1fZQoaAZHQJS2AYoAn2JoB03oA2gIR0CtQ94cWCVbdX2UKGgGR0CPSQt4A0bcaAdN6ANoCEdArUiGK2rn1XV9lChoBkdAlBKEiY9gW2gHTegDaAhHQK1LvJwsGxF1fZQoaAZHQJNFmVB2OhloB03oA2gIR0CtUCazE74jdX2UKGgGR0CUUsrxAjY7aAdN6ANoCEdArVBpDVpblnV9lChoBkdAk+O+RgZ0jmgHTegDaAhHQK1VJMXaakR1fZQoaAZHQJGiYSyt3fRoB03oA2gIR0CtWGUxubZwdX2UKGgGR0CNj4hJyyUtaAdN6ANoCEdArVzj7ALy+nV9lChoBkdAkaP4q5LAYmgHTegDaAhHQK1dJhhpg1F1fZQoaAZHQJOTkWUKRdRoB03oA2gIR0CtYe8oH9m6dX2UKGgGR0CTEpfFrEcbaAdN6ANoCEdArWVGOZLIxXV9lChoBkdAhvotuDSPVGgHTegDaAhHQK1p2kHD7651fZQoaAZHQJpSY6U7jkxoB03oA2gIR0Ctah7NjbztdX2UKGgGR0CLMJOgxrSFaAdN6ANoCEdArW73T3IuG3V9lChoBkdAl2BZj+aScWgHTegDaAhHQK1yPoMa0hN1fZQoaAZHQJWNgqur6tVoB03oA2gIR0CtdxlP8AJcdX2UKGgGR0CHFEbDuSfUaAdN6ANoCEdArXdjx3FDOXV9lChoBkdAlWBSkoF3ZGgHTegDaAhHQK18JHWBjF11fZQoaAZHQJZWWvkili1oB03oA2gIR0Ctf1zRhMJydX2UKGgGR0CJyuyE+PilaAdN6ANoCEdArYPXXf642HV9lChoBkdAlj2B/EwWWWgHTegDaAhHQK2EGLVnVXp1fZQoaAZHQJLRiPCEYfpoB03oA2gIR0CtiNp4KQaKdX2UKGgGR0CU6VCF9KEnaAdN6ANoCEdArYwD9sJpnHV9lChoBkdAl6n8HB1s+GgHTegDaAhHQK2QaWl/H5t1fZQoaAZHQJEX+CROk+JoB03oA2gIR0CtkKwEyLyddX2UKGgGR0CWnGtLL6k7aAdN6ANoCEdArZVi00FbFHV9lChoBkdAllqGEPDpDGgHTegDaAhHQK2YjdIoVmB1fZQoaAZHQJVF7PWxyGVoB03oA2gIR0CtnPYYJmdzdX2UKGgGR0CYgPimVJL/aAdN6ANoCEdArZ09yT6i03V9lChoBkdAlQuFwDNhVmgHTegDaAhHQK2h5RgJC0F1fZQoaAZHQIgTu/i5uqFoB03oA2gIR0CtpRuK4x1xdX2UKGgGR0CNEdlKbrkbaAdN6ANoCEdAramNDx9XtHV9lChoBkdAkSIfR7Z392gHTegDaAhHQK2pz+85CF91fZQoaAZHQJSmoFcIJJJoB03oA2gIR0CtrnXh4t6HdX2UKGgGR0CTsySG8EmqaAdN6ANoCEdArbG0hq0ty3V9lChoBkdAltgoxQBPsWgHTegDaAhHQK22hDye7MB1fZQoaAZHQIceE/bCaZxoB03oA2gIR0Cttse5OJtSdX2UKGgGR0CVo23j+717aAdN3gNoCEdArbtTA1vVE3V9lChoBkdAmG4Qtvn8sWgHTegDaAhHQK2+r4cFQl91fZQoaAZHQJXuc1NxlxxoB03oA2gIR0Ctwx2ZJCjUdX2UKGgGR0CVn2nTRYzSaAdN6ANoCEdArcNgOMERrnV9lChoBkdAmAIXwsoUjGgHTegDaAhHQK3H5FmWdEt1fZQoaAZHQJUpdSNwR5FoB03oA2gIR0CtyyqFZgXudX2UKGgGR0CZKHCrcTJyaAdN6ANoCEdArc+fa+N96XV9lChoBkdAhnsbaRISUWgHTegDaAhHQK3P4px3mmt1fZQoaAZHQJiA3FXJYDFoB03oA2gIR0Ct1GGHgxagdX2UKGgGR0CYnhZW7voeaAdN6ANoCEdArdevqqwQlXV9lChoBkdAla+HKOktVmgHTegDaAhHQK3cG10knkV1fZQoaAZHQJnLVfReC05oB03oA2gIR0Ct3GCml67edX2UKGgGR0CUZnHZsbeeaAdN6ANoCEdAreDpRwZOz3V9lChoBkdAmpMvm5lOGmgHTegDaAhHQK3kNIqbz9V1fZQoaAZHQJjqvcJtzjpoB03oA2gIR0Ct6KgpazNVdX2UKGgGR0Ca1vMEA5q/aAdN6ANoCEdArejpaNdZ73V9lChoBkdAmK4fUaya/mgHTegDaAhHQK3th3r2QGR1fZQoaAZHQJnOncqOLixoB03oA2gIR0Ct8Rtv4ubrdX2UKGgGR0CYLsEYwZflaAdN6ANoCEdArfWPsolUqHV9lChoBkdAmCV7QLNOd2gHTegDaAhHQK311F5OafB1fZQoaAZHQJlMuHuZ1FJoB03oA2gIR0Ct+m2Dg62fdX2UKGgGR0CXAZZJkGzKaAdN6ANoCEdArf2/zUZvUHV9lChoBkdAmGPrTDwYtWgHTegDaAhHQK4CNaxHG0h1fZQoaAZHQJdQxlf7aZhoB03oA2gIR0CuAntj0+TvdX2UKGgGR0CWvx+LFXJYaAdN6ANoCEdArgcbTDwYtXV9lChoBkdAkc0W4RVZLmgHTegDaAhHQK4Kd3Cbc451fZQoaAZHQJsM5w84gihoB03oA2gIR0CuDvIatLcsdX2UKGgGR0CSkNb0e2d/aAdN6ANoCEdArg80vmHP/3V9lChoBkdAldYbLlmvn2gHTegDaAhHQK4T36j32251fZQoaAZHQIux0eMhouhoB03oA2gIR0CuF20V8CxNdX2UKGgGR0CBl3mq5sj3aAdN6ANoCEdArhvlkrf+CXV9lChoBkdAlTqWkJrtV2gHTegDaAhHQK4cK5uIhyN1fZQoaAZHQJYJBKh+OOtoB03oA2gIR0CuILxHG0eEdX2UKGgGR0CSUTXXRPXTaAdN6ANoCEdAriQZwjt5U3V9lChoBkdAlN++DFqBVmgHTegDaAhHQK4oosyzoll1fZQoaAZHQIfzcUO/cnFoB03oA2gIR0CuKOWqkuYhdX2UKGgGR0CTHZMqz7djaAdN6ANoCEdAri2rdpItlXV9lChoBkdAlt8HIp6QeWgHTegDaAhHQK4w/TjNpud1fZQoaAZHQJVhhfBvaURoB03oA2gIR0CuNW0knkT6dX2UKGgGR0CQpx0eEIw/aAdN6ANoCEdArjWurlvIfnV9lChoBkdAkpC26wt8NWgHTegDaAhHQK46Ta7mMfl1fZQoaAZHQINQlDKHO8loB03oA2gIR0CuPaaQ/5ckdX2UKGgGR0CUeeva11GLaAdN6ANoCEdArkIQl0HQhXV9lChoBkdAlvgCQo1DSmgHTegDaAhHQK5CVsYVIqd1fZQoaAZHQJR9ldkauOloB03oA2gIR0CuRxeaa1CxdX2UKGgGR0CYCmCWeHzpaAdN6ANoCEdArkp7DEWIoHV9lChoBkdAkvP1nh86WGgHTegDaAhHQK5O8s4ku6F1fZQoaAZHQJWCK2VmjCZoB03oA2gIR0CuTzZHNHH4dX2UKGgGR0CNNDbrTpgUaAdN6ANoCEdArlPbK5kK/nV9lChoBkdAiNKtbTtsvmgHTegDaAhHQK5XQ2rn1Wd1fZQoaAZHQImmpvrGBFxoB03oA2gIR0CuW8gy2x6fdX2UKGgGR0CYqALqlgtwaAdN6ANoCEdArlwKqwQlKXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 100000,
99
+ "n_steps": 5,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e8015f37c10bf872898d0db970b4ef58572c0788dbabcd637785fd7a07dba25
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49ef83cc7b39246c9bffa50121e62622c0cf12e6d790c5587b305f81f923eff8
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0c7cb4a700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0c7cb4a790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0c7cb4a820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0c7cb4a8b0>", "_build": "<function ActorCriticPolicy._build at 0x7f0c7cb4a940>", "forward": "<function ActorCriticPolicy.forward at 0x7f0c7cb4a9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0c7cb4aa60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0c7cb4aaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0c7cb4ab80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0c7cb4ac10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0c7cb4aca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0c7cb4ad30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0c7cb48360>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673983181898376569, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK93GT/FRSQ+BLggP9to4j8evui+1+6AP1tjpj7fBLm+EoxDP+R5Cj1jQdM+Lb3jv0XJe7+aEWA/sZAqv6gwRD/zuz++PJv6PrloJj7lBiI//29av01mLr/J1NI+lVehPnFOp7/5W+Y+v6QYPxdDpL+jXDo/U+Urv7IqWT4dJDE/mRcTwH0QMcD34Wi/nWk3PpJ9Ej838sm+GU8Jv2a2dT9JlcM/N8/jv1IPML7vjTLA0zZDvgoxUr8M/7q+ws51v5NJlj6+aYG/lHq0P3pXL79xTqe/+VvmPoqr1r8XQ6S/k92wvv5R/D7F5iE/gBC/P1qEsT9q26w+Im3kvVmTFL0ZwEc/d3BHvUZcvr2kxCM/vcAAP0cmB79MXeo+n52Rv2EgMD/fdme/Hkoeut70bj+MhS+/JrhUv0JYpr7NbwbAMNtDP/lb5j6/pBg/F0Okv4mJCz9bIC++gC8JP/5iGEC6Aee/oWIUwHNcNj/6QvW+HrlIP0CfgL1PYos/CtOSv7NPgr8K8XU/C4Jwv8E8Nz+DLQLAY8+4vox43j4ylmc/4dDpvZBtcD+krnG+RfOXPzDbQz/5W+Y+v6QYPxdDpL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA/m+y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjko7PQAAAAAktfy/AAAAAHY18bwAAAAAgLbdPwAAAABr/n69AAAAAGXm+j8AAAAAtziAvQAAAAD/Zfq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWH0atgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJRiCj4AAAAAHpbdvwAAAACkKcE9AAAAAJ46/T8AAAAA5vvevQAAAABfEuw/AAAAAJOUMr0AAAAAu5/pvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKX03rIAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICtxuu9AAAAAJTi3b8AAAAAlWrKPAAAAABQNvk/AAAAAK4FC70AAAAA6ijkPwAAAACmK909AAAAADG9+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUhsY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2yYJvgAAAAB7dem/AAAAAP60AD4AAAAAzsPrPwAAAAAm1qc9AAAAAKcK8D8AAAAA+c6+PQAAAABd8PW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiOK6BiCreMAWyUTegDjAF0lEdArSJAqLCN0nV9lChoBkdAlBVqL0jC52gHTegDaAhHQK0leogmqo91fZQoaAZHQJNEcenyd4FoB03oA2gIR0CtKeqODJ2ddX2UKGgGR0CUzA96C17ZaAdN6ANoCEdArSoslRgqmXV9lChoBkdAmD6RoysS02gHTegDaAhHQK0uyLDQ7cR1fZQoaAZHQJasLscABDJoB03oA2gIR0CtMfEF4cFRdX2UKGgGR0CT0rjQzDXOaAdN6ANoCEdArTZnL5h0AHV9lChoBkdAlTJaQmu1W2gHTegDaAhHQK02qpb2USt1fZQoaAZHQJWAe4J/oaFoB03oA2gIR0CtO9CYLLIQdX2UKGgGR0CWKgdbPhQ4aAdN6ANoCEdArT8YwRGtp3V9lChoBkdAgu8HPE87p2gHTegDaAhHQK1DmZLqUvB1fZQoaAZHQJS2AYoAn2JoB03oA2gIR0CtQ94cWCVbdX2UKGgGR0CPSQt4A0bcaAdN6ANoCEdArUiGK2rn1XV9lChoBkdAlBKEiY9gW2gHTegDaAhHQK1LvJwsGxF1fZQoaAZHQJNFmVB2OhloB03oA2gIR0CtUCazE74jdX2UKGgGR0CUUsrxAjY7aAdN6ANoCEdArVBpDVpblnV9lChoBkdAk+O+RgZ0jmgHTegDaAhHQK1VJMXaakR1fZQoaAZHQJGiYSyt3fRoB03oA2gIR0CtWGUxubZwdX2UKGgGR0CNj4hJyyUtaAdN6ANoCEdArVzj7ALy+nV9lChoBkdAkaP4q5LAYmgHTegDaAhHQK1dJhhpg1F1fZQoaAZHQJOTkWUKRdRoB03oA2gIR0CtYe8oH9m6dX2UKGgGR0CTEpfFrEcbaAdN6ANoCEdArWVGOZLIxXV9lChoBkdAhvotuDSPVGgHTegDaAhHQK1p2kHD7651fZQoaAZHQJpSY6U7jkxoB03oA2gIR0Ctah7NjbztdX2UKGgGR0CLMJOgxrSFaAdN6ANoCEdArW73T3IuG3V9lChoBkdAl2BZj+aScWgHTegDaAhHQK1yPoMa0hN1fZQoaAZHQJWNgqur6tVoB03oA2gIR0CtdxlP8AJcdX2UKGgGR0CHFEbDuSfUaAdN6ANoCEdArXdjx3FDOXV9lChoBkdAlWBSkoF3ZGgHTegDaAhHQK18JHWBjF11fZQoaAZHQJZWWvkili1oB03oA2gIR0Ctf1zRhMJydX2UKGgGR0CJyuyE+PilaAdN6ANoCEdArYPXXf642HV9lChoBkdAlj2B/EwWWWgHTegDaAhHQK2EGLVnVXp1fZQoaAZHQJLRiPCEYfpoB03oA2gIR0CtiNp4KQaKdX2UKGgGR0CU6VCF9KEnaAdN6ANoCEdArYwD9sJpnHV9lChoBkdAl6n8HB1s+GgHTegDaAhHQK2QaWl/H5t1fZQoaAZHQJEX+CROk+JoB03oA2gIR0CtkKwEyLyddX2UKGgGR0CWnGtLL6k7aAdN6ANoCEdArZVi00FbFHV9lChoBkdAllqGEPDpDGgHTegDaAhHQK2YjdIoVmB1fZQoaAZHQJVF7PWxyGVoB03oA2gIR0CtnPYYJmdzdX2UKGgGR0CYgPimVJL/aAdN6ANoCEdArZ09yT6i03V9lChoBkdAlQuFwDNhVmgHTegDaAhHQK2h5RgJC0F1fZQoaAZHQIgTu/i5uqFoB03oA2gIR0CtpRuK4x1xdX2UKGgGR0CNEdlKbrkbaAdN6ANoCEdAramNDx9XtHV9lChoBkdAkSIfR7Z392gHTegDaAhHQK2pz+85CF91fZQoaAZHQJSmoFcIJJJoB03oA2gIR0CtrnXh4t6HdX2UKGgGR0CTsySG8EmqaAdN6ANoCEdArbG0hq0ty3V9lChoBkdAltgoxQBPsWgHTegDaAhHQK22hDye7MB1fZQoaAZHQIceE/bCaZxoB03oA2gIR0Cttse5OJtSdX2UKGgGR0CVo23j+717aAdN3gNoCEdArbtTA1vVE3V9lChoBkdAmG4Qtvn8sWgHTegDaAhHQK2+r4cFQl91fZQoaAZHQJXuc1NxlxxoB03oA2gIR0Ctwx2ZJCjUdX2UKGgGR0CVn2nTRYzSaAdN6ANoCEdArcNgOMERrnV9lChoBkdAmAIXwsoUjGgHTegDaAhHQK3H5FmWdEt1fZQoaAZHQJUpdSNwR5FoB03oA2gIR0CtyyqFZgXudX2UKGgGR0CZKHCrcTJyaAdN6ANoCEdArc+fa+N96XV9lChoBkdAhnsbaRISUWgHTegDaAhHQK3P4px3mmt1fZQoaAZHQJiA3FXJYDFoB03oA2gIR0Ct1GGHgxagdX2UKGgGR0CYnhZW7voeaAdN6ANoCEdArdevqqwQlXV9lChoBkdAla+HKOktVmgHTegDaAhHQK3cG10knkV1fZQoaAZHQJnLVfReC05oB03oA2gIR0Ct3GCml67edX2UKGgGR0CUZnHZsbeeaAdN6ANoCEdAreDpRwZOz3V9lChoBkdAmpMvm5lOGmgHTegDaAhHQK3kNIqbz9V1fZQoaAZHQJjqvcJtzjpoB03oA2gIR0Ct6KgpazNVdX2UKGgGR0Ca1vMEA5q/aAdN6ANoCEdArejpaNdZ73V9lChoBkdAmK4fUaya/mgHTegDaAhHQK3th3r2QGR1fZQoaAZHQJnOncqOLixoB03oA2gIR0Ct8Rtv4ubrdX2UKGgGR0CYLsEYwZflaAdN6ANoCEdArfWPsolUqHV9lChoBkdAmCV7QLNOd2gHTegDaAhHQK311F5OafB1fZQoaAZHQJlMuHuZ1FJoB03oA2gIR0Ct+m2Dg62fdX2UKGgGR0CXAZZJkGzKaAdN6ANoCEdArf2/zUZvUHV9lChoBkdAmGPrTDwYtWgHTegDaAhHQK4CNaxHG0h1fZQoaAZHQJdQxlf7aZhoB03oA2gIR0CuAntj0+TvdX2UKGgGR0CWvx+LFXJYaAdN6ANoCEdArgcbTDwYtXV9lChoBkdAkc0W4RVZLmgHTegDaAhHQK4Kd3Cbc451fZQoaAZHQJsM5w84gihoB03oA2gIR0CuDvIatLcsdX2UKGgGR0CSkNb0e2d/aAdN6ANoCEdArg80vmHP/3V9lChoBkdAldYbLlmvn2gHTegDaAhHQK4T36j32251fZQoaAZHQIux0eMhouhoB03oA2gIR0CuF20V8CxNdX2UKGgGR0CBl3mq5sj3aAdN6ANoCEdArhvlkrf+CXV9lChoBkdAlTqWkJrtV2gHTegDaAhHQK4cK5uIhyN1fZQoaAZHQJYJBKh+OOtoB03oA2gIR0CuILxHG0eEdX2UKGgGR0CSUTXXRPXTaAdN6ANoCEdAriQZwjt5U3V9lChoBkdAlN++DFqBVmgHTegDaAhHQK4oosyzoll1fZQoaAZHQIfzcUO/cnFoB03oA2gIR0CuKOWqkuYhdX2UKGgGR0CTHZMqz7djaAdN6ANoCEdAri2rdpItlXV9lChoBkdAlt8HIp6QeWgHTegDaAhHQK4w/TjNpud1fZQoaAZHQJVhhfBvaURoB03oA2gIR0CuNW0knkT6dX2UKGgGR0CQpx0eEIw/aAdN6ANoCEdArjWurlvIfnV9lChoBkdAkpC26wt8NWgHTegDaAhHQK46Ta7mMfl1fZQoaAZHQINQlDKHO8loB03oA2gIR0CuPaaQ/5ckdX2UKGgGR0CUeeva11GLaAdN6ANoCEdArkIQl0HQhXV9lChoBkdAlvgCQo1DSmgHTegDaAhHQK5CVsYVIqd1fZQoaAZHQJR9ldkauOloB03oA2gIR0CuRxeaa1CxdX2UKGgGR0CYCmCWeHzpaAdN6ANoCEdArkp7DEWIoHV9lChoBkdAkvP1nh86WGgHTegDaAhHQK5O8s4ku6F1fZQoaAZHQJWCK2VmjCZoB03oA2gIR0CuTzZHNHH4dX2UKGgGR0CNNDbrTpgUaAdN6ANoCEdArlPbK5kK/nV9lChoBkdAiNKtbTtsvmgHTegDaAhHQK5XQ2rn1Wd1fZQoaAZHQImmpvrGBFxoB03oA2gIR0CuW8gy2x6fdX2UKGgGR0CYqALqlgtwaAdN6ANoCEdArlwKqwQlKXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a90a81c61a8ce8ededb777705b3974aab7531513c7101936dc33d8fdecc729b1
3
+ size 1090205
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1425.4400556903565, "std_reward": 265.5143651418041, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T20:14:23.781167"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c233d94c67c55751f6ba073ef336615171ef84f035762c9ef19e3dace04bbba
3
+ size 2521