|
|
|
import argparse
|
|
import math
|
|
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from torch.utils.data import DataLoader
|
|
import copy
|
|
from torch.optim.lr_scheduler import CosineAnnealingLR
|
|
from torch.amp import autocast, GradScaler
|
|
from datasets import load_dataset
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Train World Model with Transformer outputs.')
|
|
parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path')
|
|
parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets')
|
|
parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name')
|
|
parser.add_argument('--batch_size', type=int, default=2, help='Batch size')
|
|
parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
|
|
parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
|
|
parser.add_argument('--mcts_iterations', type=int, default=5, help='Number of MCTS Iterations')
|
|
parser.add_argument('--mcts_exploration_constant', type=float, default=1.414, help='Learning rate')
|
|
parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps')
|
|
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
|
|
parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay')
|
|
parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight')
|
|
parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight')
|
|
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
|
|
parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models')
|
|
parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance')
|
|
parser.add_argument('--transformer_model_path', type=str, required=True, help='Path to the saved Transformer model')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def load_data(args, tokenizer):
|
|
|
|
dataset = load_dataset(args.dataset_name, args.dataset_config)
|
|
|
|
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
def tokenize_function(examples):
|
|
return tokenizer(examples['text'], truncation=True, max_length=args.max_length)
|
|
|
|
tokenized_datasets = dataset.map(
|
|
tokenize_function,
|
|
batched=True,
|
|
num_proc=4,
|
|
remove_columns=dataset['train'].column_names,
|
|
)
|
|
|
|
|
|
block_size = args.max_length
|
|
|
|
def group_texts(examples):
|
|
|
|
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
|
total_length = len(concatenated_examples['input_ids'])
|
|
|
|
total_length = (total_length // block_size) * block_size
|
|
|
|
result = {
|
|
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
|
for k, t in concatenated_examples.items()
|
|
}
|
|
result['labels'] = result['input_ids'].copy()
|
|
return result
|
|
|
|
lm_datasets = tokenized_datasets.map(
|
|
group_texts,
|
|
batched=True,
|
|
num_proc=4,
|
|
)
|
|
|
|
|
|
train_dataset = lm_datasets['train']
|
|
eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test']
|
|
|
|
data_collator = lambda data: {
|
|
'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long),
|
|
'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long)
|
|
}
|
|
|
|
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=data_collator)
|
|
eval_loader = DataLoader(eval_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=data_collator)
|
|
|
|
return train_loader, eval_loader
|
|
|
|
|
|
def save_all_models(transformer_model, representation_network, dynamics_network, prediction_network, action_encoder, save_dir, epoch):
|
|
"""
|
|
Save all models to the specified directory.
|
|
|
|
Args:
|
|
transformer_model (nn.Module): Transformer model.
|
|
representation_network (nn.Module): Representation network.
|
|
dynamics_network (nn.Module): Dynamics network.
|
|
prediction_network (nn.Module): Prediction network.
|
|
action_encoder (nn.Module): Action encoder.
|
|
save_dir (str): Directory to save the models.
|
|
epoch (int): Current epoch number.
|
|
"""
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
torch.save(transformer_model.state_dict(), os.path.join(save_dir, f'transformer_model_epoch_{epoch}.pt'))
|
|
torch.save(representation_network.state_dict(), os.path.join(save_dir, f'representation_network_epoch_{epoch}.pt'))
|
|
torch.save(dynamics_network.state_dict(), os.path.join(save_dir, f'dynamics_network_epoch_{epoch}.pt'))
|
|
torch.save(prediction_network.state_dict(), os.path.join(save_dir, f'prediction_network_epoch_{epoch}.pt'))
|
|
torch.save(action_encoder.state_dict(), os.path.join(save_dir, f'action_encoder_epoch_{epoch}.pt'))
|
|
|
|
print(f"All models saved for epoch {epoch}.")
|
|
|
|
|
|
class RotaryPositionalEncoding(nn.Module):
|
|
def __init__(self, d_model):
|
|
super(RotaryPositionalEncoding, self).__init__()
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model))
|
|
self.register_buffer('inv_freq', inv_freq)
|
|
|
|
def forward(self, x):
|
|
seq_len, batch_size, _ = x.size()
|
|
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
|
|
sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
|
|
sin = sinusoid_inp.sin().unsqueeze(1)
|
|
cos = sinusoid_inp.cos().unsqueeze(1)
|
|
|
|
x1 = x[..., 0::2]
|
|
x2 = x[..., 1::2]
|
|
|
|
|
|
x_rotated = torch.zeros_like(x)
|
|
x_rotated[..., 0::2] = x1 * cos - x2 * sin
|
|
x_rotated[..., 1::2] = x1 * sin + x2 * cos
|
|
|
|
return x_rotated
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, d_model, num_heads):
|
|
super(MultiHeadAttention, self).__init__()
|
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
|
self.d_k = d_model // num_heads
|
|
self.num_heads = num_heads
|
|
self.linear_q = nn.Linear(d_model, d_model)
|
|
self.linear_k = nn.Linear(d_model, d_model)
|
|
self.linear_v = nn.Linear(d_model, d_model)
|
|
self.linear_out = nn.Linear(d_model, d_model)
|
|
|
|
def forward(self, query, key, value, mask=None):
|
|
batch_size = query.size(0)
|
|
query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
|
key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
|
value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
|
|
|
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)
|
|
if mask is not None:
|
|
scores = scores.masked_fill(mask == 0, -1e4)
|
|
attn = F.softmax(scores, dim=-1)
|
|
output = torch.matmul(attn, value)
|
|
|
|
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
|
|
return self.linear_out(output)
|
|
|
|
|
|
class MoE(nn.Module):
|
|
def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1):
|
|
super(MoE, self).__init__()
|
|
self.num_experts = num_experts
|
|
self.top_k = top_k
|
|
self.experts = nn.ModuleList([
|
|
nn.Sequential(
|
|
nn.Linear(d_model, d_ff),
|
|
nn.GELU() if i % 2 == 0 else nn.SiLU(),
|
|
nn.Linear(d_ff, d_model)
|
|
)
|
|
for i in range(num_experts)
|
|
])
|
|
self.gate = nn.Linear(d_model, num_experts)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
batch_size, seq_len, d_model = x.size()
|
|
|
|
gate_scores = self.gate(x)
|
|
top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1)
|
|
top_k_scores = F.softmax(top_k_scores, dim=-1)
|
|
|
|
|
|
output = torch.zeros_like(x)
|
|
|
|
|
|
x_flat = x.view(-1, d_model)
|
|
output_flat = output.view(-1, d_model)
|
|
top_k_indices_flat = top_k_indices.view(-1, self.top_k)
|
|
top_k_scores_flat = top_k_scores.view(-1, self.top_k)
|
|
|
|
for k in range(self.top_k):
|
|
expert_idx_flat = top_k_indices_flat[:, k]
|
|
expert_scores_flat = top_k_scores_flat[:, k]
|
|
for e in range(self.num_experts):
|
|
mask = (expert_idx_flat == e)
|
|
if mask.any():
|
|
x_masked = x_flat[mask]
|
|
expert_output = self.experts[e](x_masked)
|
|
output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output
|
|
|
|
output = output_flat.view(batch_size, seq_len, d_model)
|
|
return self.dropout(output)
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2):
|
|
super(TransformerBlock, self).__init__()
|
|
self.self_attention = MultiHeadAttention(d_model, num_heads)
|
|
self.norm1 = nn.LayerNorm(d_model)
|
|
self.cross_attention = MultiHeadAttention(d_model, num_heads)
|
|
self.norm2 = nn.LayerNorm(d_model)
|
|
self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout)
|
|
self.norm3 = nn.LayerNorm(d_model)
|
|
|
|
def forward(self, x, mask=None, enc_output=None, enc_mask=None):
|
|
|
|
attn_output = self.self_attention(x, x, x, mask)
|
|
x = self.norm1(x + attn_output)
|
|
|
|
if enc_output is not None:
|
|
cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask)
|
|
x = self.norm2(x + cross_attn_output)
|
|
|
|
moe_output = self.moe(x)
|
|
return self.norm3(x + moe_output)
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2):
|
|
super(Transformer, self).__init__()
|
|
self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1)
|
|
self.rotary_positional_encoding = RotaryPositionalEncoding(d_model)
|
|
self.encoder_layers = nn.ModuleList(
|
|
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
|
|
)
|
|
self.decoder_layers = nn.ModuleList(
|
|
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
|
|
)
|
|
self.output_layer = nn.Linear(d_model, output_dim)
|
|
self.d_model = d_model
|
|
|
|
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
|
|
|
|
src = self.embedding(src) * math.sqrt(self.d_model)
|
|
src = src.transpose(0, 1)
|
|
src = self.rotary_positional_encoding(src)
|
|
src = src.transpose(0, 1)
|
|
for layer in self.encoder_layers:
|
|
src = layer(src, src_mask)
|
|
|
|
|
|
tgt = self.embedding(tgt) * math.sqrt(self.d_model)
|
|
tgt = tgt.transpose(0, 1)
|
|
tgt = self.rotary_positional_encoding(tgt)
|
|
tgt = tgt.transpose(0, 1)
|
|
for layer in self.decoder_layers:
|
|
tgt = layer(tgt, tgt_mask, src, src_mask)
|
|
output = self.output_layer(tgt)
|
|
return output
|
|
|
|
def generate(self, src, tokenizer, max_length=20, temperature=1.0):
|
|
"""
|
|
Generate sequences using differentiable sampling (Gumbel-Softmax).
|
|
|
|
Args:
|
|
src (torch.Tensor): Source input tensor of shape (batch_size, seq_len)
|
|
tokenizer (transformers.PreTrainedTokenizer): Tokenizer to access special tokens
|
|
max_length (int): Maximum length of the generated sequence
|
|
temperature (float): Temperature parameter for Gumbel-Softmax
|
|
|
|
Returns:
|
|
torch.Tensor: Generated sequences of shape (batch_size, max_length)
|
|
torch.Tensor: Entropy values for each time step
|
|
torch.Tensor: Variance values for each time step
|
|
"""
|
|
batch_size = src.size(0)
|
|
|
|
|
|
src_enc = self.embedding(src) * math.sqrt(self.d_model)
|
|
src_enc = src_enc.transpose(0, 1)
|
|
src_enc = self.rotary_positional_encoding(src_enc)
|
|
src_enc = src_enc.transpose(0, 1)
|
|
for layer in self.encoder_layers:
|
|
src_enc = layer(src_enc)
|
|
|
|
|
|
tgt_seq = torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=src.device)
|
|
entropies = []
|
|
variances = []
|
|
|
|
for _ in range(max_length):
|
|
tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model)
|
|
tgt_emb = tgt_emb.transpose(0, 1)
|
|
tgt_emb = self.rotary_positional_encoding(tgt_emb)
|
|
tgt_emb = tgt_emb.transpose(0, 1)
|
|
tgt_dec = tgt_emb
|
|
for layer in self.decoder_layers:
|
|
tgt_dec = layer(tgt_dec, None, src_enc, None)
|
|
output = self.output_layer(tgt_dec)
|
|
logits = output[:, -1, :]
|
|
|
|
|
|
probs = F.softmax(logits / temperature, dim=-1)
|
|
|
|
|
|
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)
|
|
entropies.append(entropy)
|
|
|
|
|
|
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + 1e-9) + 1e-9)
|
|
y = (logits + gumbel_noise) / temperature
|
|
y = F.softmax(y, dim=-1)
|
|
|
|
|
|
variance = torch.var(y, dim=-1)
|
|
variances.append(variance)
|
|
|
|
|
|
next_tokens = torch.argmax(y, dim=-1, keepdim=True)
|
|
tgt_seq = torch.cat([tgt_seq, next_tokens], dim=1)
|
|
|
|
|
|
entropies = torch.stack(entropies, dim=1)
|
|
variances = torch.stack(variances, dim=1)
|
|
|
|
return tgt_seq[:, 1:], entropies, variances
|
|
|
|
|
|
|
|
|
|
class InfoNCE_Loss(nn.Module):
|
|
def __init__(self, temperature=0.07):
|
|
super(InfoNCE_Loss, self).__init__()
|
|
self.temperature = temperature
|
|
self.cross_entropy = nn.CrossEntropyLoss()
|
|
|
|
def forward(self, z_i, z_j):
|
|
"""
|
|
Args:
|
|
z_i (torch.Tensor): Flattened representations from view i, shape (2n, embed_dim)
|
|
z_j (torch.Tensor): Flattened representations from view j, shape (2n, embed_dim)
|
|
|
|
Returns:
|
|
torch.Tensor: InfoNCE loss
|
|
"""
|
|
n = z_i.size(0)
|
|
z = torch.cat([z_i, z_j], dim=0)
|
|
|
|
z = F.normalize(z, dim=1)
|
|
similarity_matrix = torch.matmul(z, z.T)
|
|
|
|
|
|
mask = torch.eye(2 * n, device=z.device, dtype=torch.bool)
|
|
similarity_matrix = similarity_matrix.masked_fill(mask, -1e4)
|
|
|
|
|
|
labels = torch.arange(n, device=z.device)
|
|
labels = torch.cat([labels + n, labels], dim=0)
|
|
|
|
|
|
similarity_matrix /= self.temperature
|
|
|
|
|
|
loss = self.cross_entropy(similarity_matrix, labels)
|
|
return loss
|
|
|
|
|
|
|
|
class CovarianceRegularization(nn.Module):
|
|
def __init__(self, lambda_reg=1e-3):
|
|
super(CovarianceRegularization, self).__init__()
|
|
self.lambda_reg = lambda_reg
|
|
|
|
def forward(self, embeddings):
|
|
"""
|
|
Args:
|
|
embeddings (torch.Tensor): Embedding tensor, shape (batch_size, embed_dim)
|
|
|
|
Returns:
|
|
torch.Tensor: Covariance regularization loss
|
|
"""
|
|
batch_size, embed_dim = embeddings.size()
|
|
mean = embeddings.mean(dim=0)
|
|
embeddings_centered = embeddings - mean
|
|
cov = (embeddings_centered.T @ embeddings_centered) / (batch_size - 1)
|
|
cov_loss = torch.sum(cov ** 2) - torch.sum(torch.diag(cov) ** 2)
|
|
return self.lambda_reg * cov_loss
|
|
|
|
|
|
class DynamicsPerformanceLoss(nn.Module):
|
|
def __init__(self, lambda_var=1e-3):
|
|
super(DynamicsPerformanceLoss, self).__init__()
|
|
self.lambda_var = lambda_var
|
|
|
|
def forward(self, true_next_state, predicted_next_state):
|
|
"""
|
|
Args:
|
|
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
|
|
predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)
|
|
|
|
Returns:
|
|
torch.Tensor: Dynamics performance loss
|
|
"""
|
|
mse_loss = F.mse_loss(predicted_next_state, true_next_state)
|
|
variance_loss = torch.var(predicted_next_state, dim=0).mean()
|
|
return mse_loss + self.lambda_var * variance_loss
|
|
|
|
|
|
class ThoughtConsistencyLoss(nn.Module):
|
|
def __init__(self):
|
|
super(ThoughtConsistencyLoss, self).__init__()
|
|
|
|
def forward(self, true_next_state, perturbed_next_state):
|
|
"""
|
|
Args:
|
|
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
|
|
perturbed_next_state (torch.Tensor): Perturbed next state, shape (batch_size, state_dim)
|
|
|
|
Returns:
|
|
torch.Tensor: Thought-consistency loss
|
|
"""
|
|
return F.mse_loss(true_next_state, perturbed_next_state)
|
|
|
|
|
|
class PolicyValueJointLoss(nn.Module):
|
|
def __init__(self, lambda_value=0.5):
|
|
super(PolicyValueJointLoss, self).__init__()
|
|
self.lambda_value = lambda_value
|
|
self.cross_entropy = nn.CrossEntropyLoss()
|
|
self.mse_loss = nn.MSELoss()
|
|
|
|
def forward(self, policy_logits, true_policy, value_pred, true_value):
|
|
"""
|
|
Args:
|
|
policy_logits (torch.Tensor): Logits from the policy network, shape (batch_size * seq_len, num_actions)
|
|
true_policy (torch.Tensor): Ground truth policy, shape (batch_size * seq_len, num_actions)
|
|
value_pred (torch.Tensor): Predicted values, shape (batch_size * seq_len)
|
|
true_value (torch.Tensor): Ground truth values, shape (batch_size * seq_len)
|
|
|
|
Returns:
|
|
torch.Tensor: Combined policy and value loss
|
|
"""
|
|
policy_logits = policy_logits.view(-1, policy_logits.size(-1))
|
|
true_policy = true_policy.view(-1, true_policy.size(-1))
|
|
value_pred = value_pred.view(-1)
|
|
true_value = true_value.view(-1)
|
|
|
|
policy_loss = self.cross_entropy(policy_logits, true_policy.argmax(dim=1))
|
|
value_loss = self.mse_loss(value_pred, true_value)
|
|
return policy_loss + self.lambda_value * value_loss
|
|
|
|
|
|
|
|
class ActionDiversityReward(nn.Module):
|
|
def __init__(self, lambda_div=1e-3):
|
|
super(ActionDiversityReward, self).__init__()
|
|
self.lambda_div = lambda_div
|
|
|
|
def forward(self, action_embeddings):
|
|
"""
|
|
Args:
|
|
action_embeddings (torch.Tensor): Embeddings of actions, shape (batch_size, embed_dim)
|
|
|
|
Returns:
|
|
torch.Tensor: Action diversity loss
|
|
"""
|
|
similarity_matrix = F.cosine_similarity(action_embeddings.unsqueeze(1), action_embeddings.unsqueeze(0), dim=2)
|
|
|
|
similarity_matrix = similarity_matrix - torch.eye(similarity_matrix.size(0)).to(action_embeddings.device)
|
|
diversity_loss = torch.sum(similarity_matrix ** 2)
|
|
return self.lambda_div * diversity_loss
|
|
|
|
|
|
class ExpectedThoughtValueLoss(nn.Module):
|
|
def __init__(self):
|
|
super(ExpectedThoughtValueLoss, self).__init__()
|
|
|
|
def forward(self, mcts_best_values):
|
|
"""
|
|
Args:
|
|
mcts_best_values (torch.Tensor): Best values from MCTS, shape (batch_size)
|
|
|
|
Returns:
|
|
torch.Tensor: ETV loss
|
|
"""
|
|
return -mcts_best_values.mean()
|
|
|
|
|
|
class ExplorationRegularization(nn.Module):
|
|
def __init__(self, lambda_expl=1e-3):
|
|
super(ExplorationRegularization, self).__init__()
|
|
self.lambda_expl = lambda_expl
|
|
|
|
def forward(self, visit_counts):
|
|
"""
|
|
Args:
|
|
visit_counts (torch.Tensor): Visit counts for actions, shape (batch_size, num_actions)
|
|
|
|
Returns:
|
|
torch.Tensor: Exploration regularization loss
|
|
"""
|
|
reward = torch.sum(1.0 / (visit_counts + 1), dim=-1)
|
|
return self.lambda_expl * reward.mean()
|
|
|
|
|
|
class KL_DivergenceLoss(nn.Module):
|
|
def __init__(self):
|
|
super(KL_DivergenceLoss, self).__init__()
|
|
|
|
def forward(self, old_policy, new_policy):
|
|
"""
|
|
Args:
|
|
old_policy (torch.Tensor): Old policy probabilities, shape (batch_size, num_actions)
|
|
new_policy (torch.Tensor): New policy probabilities, shape (batch_size, num_actions)
|
|
|
|
Returns:
|
|
torch.Tensor: KL divergence loss
|
|
"""
|
|
kl_div = F.kl_div(new_policy.log(), old_policy, reduction='batchmean')
|
|
return kl_div
|
|
|
|
|
|
|
|
class ActionEncoder(nn.Module):
|
|
def __init__(self, vocab_size, embed_dim):
|
|
super(ActionEncoder, self).__init__()
|
|
self.embedding = nn.Embedding(vocab_size, embed_dim)
|
|
|
|
def forward(self, action_sequences):
|
|
"""
|
|
Args:
|
|
action_sequences (torch.Tensor): Tensor of shape (batch_size, seq_len)
|
|
|
|
Returns:
|
|
torch.Tensor: Encoded actions of shape (batch_size, seq_len, embed_dim)
|
|
"""
|
|
return self.embedding(action_sequences)
|
|
|
|
class RepresentationNetwork(nn.Module):
|
|
def __init__(self, vocab_dim, d_model, state_dim):
|
|
super(RepresentationNetwork, self).__init__()
|
|
self.proj = nn.Linear(vocab_dim, d_model)
|
|
self.linear = nn.Linear(d_model, state_dim)
|
|
self.norm = nn.LayerNorm(state_dim)
|
|
|
|
def forward(self, transformer_output):
|
|
"""
|
|
Args:
|
|
transformer_output (torch.Tensor): Shape (batch_size, seq_len, vocab_dim)
|
|
|
|
Returns:
|
|
torch.Tensor: Encoded state of shape (batch_size, seq_len, state_dim)
|
|
"""
|
|
|
|
projected_output = self.proj(transformer_output)
|
|
|
|
state = self.linear(projected_output)
|
|
state = self.norm(state)
|
|
return state
|
|
|
|
|
|
class DynamicsNetwork(nn.Module):
|
|
def __init__(self, state_dim, action_dim, hidden_dim):
|
|
super(DynamicsNetwork, self).__init__()
|
|
self.rms_norm = nn.LayerNorm(state_dim)
|
|
self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
|
|
self.activation = nn.GELU()
|
|
self.fc2 = nn.Linear(hidden_dim, state_dim)
|
|
|
|
def forward(self, state, action):
|
|
"""
|
|
Args:
|
|
state (torch.Tensor): Current state, shape (batch_size, seq_len, state_dim)
|
|
action (torch.Tensor): Action embedding, shape (batch_size, seq_len, action_dim)
|
|
|
|
Returns:
|
|
torch.Tensor: Predicted next state, shape (batch_size, seq_len, state_dim)
|
|
"""
|
|
norm_state = self.rms_norm(state)
|
|
combined = torch.cat([norm_state, action], dim=-1)
|
|
hidden = self.activation(self.fc1(combined))
|
|
next_state = self.fc2(hidden)
|
|
return next_state
|
|
|
|
class PredictionNetwork(nn.Module):
|
|
def __init__(self, state_dim, policy_dim, value_dim):
|
|
super(PredictionNetwork, self).__init__()
|
|
self.state_dim = state_dim
|
|
self.rms_norm = nn.LayerNorm(state_dim)
|
|
self.policy_head = nn.Linear(state_dim, policy_dim)
|
|
self.value_head = nn.Linear(state_dim, value_dim)
|
|
|
|
def forward(self, state):
|
|
"""
|
|
Args:
|
|
state (torch.Tensor): Predicted state, shape (batch_size, seq_len, state_dim)
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: Policy logits and value estimates
|
|
"""
|
|
norm_state = self.rms_norm(state)
|
|
policy_logits = self.policy_head(norm_state)
|
|
value_estimates = self.value_head(norm_state)
|
|
return policy_logits, value_estimates
|
|
|
|
|
|
class MCTSNode:
|
|
def __init__(self, state, parent=None, action=None):
|
|
"""
|
|
Initialize an MCTS node.
|
|
|
|
Args:
|
|
state (State): The current state representation.
|
|
parent (MCTSNode, optional): The parent node. Defaults to None.
|
|
action (int, optional): The action taken to reach this node. Defaults to None.
|
|
"""
|
|
self.state = state
|
|
self.parent = parent
|
|
self.action = action
|
|
self.children = {}
|
|
self.visit_count = 0
|
|
self.value_sum = 0.0
|
|
self.prior = 0.0
|
|
|
|
def expand(self, actions, priors):
|
|
"""
|
|
Expand the node with possible actions and their priors.
|
|
|
|
Args:
|
|
actions (list): List of possible actions (action indices).
|
|
priors (list): List of prior probabilities corresponding to actions.
|
|
"""
|
|
for action, prior in zip(actions, priors):
|
|
if action not in self.children:
|
|
child_state = self.state.apply_action(action)
|
|
child_node = MCTSNode(state=child_state, parent=self, action=action)
|
|
child_node.prior = float(prior)
|
|
self.children[action] = child_node
|
|
|
|
def is_leaf(self):
|
|
"""
|
|
Check if the node is a leaf node (i.e., has no children).
|
|
|
|
Returns:
|
|
bool: True if leaf, False otherwise.
|
|
"""
|
|
return len(self.children) == 0
|
|
|
|
def ucb_score(self, total_visits, exploration_constant=math.sqrt(2)):
|
|
"""
|
|
Calculate the UCB (Upper Confidence Bound) score for the node.
|
|
|
|
Args:
|
|
total_visits (int): Total number of visits to the parent node.
|
|
exploration_constant (float, optional): Exploration parameter. Defaults to math.sqrt(2).
|
|
|
|
Returns:
|
|
float: The UCB score.
|
|
"""
|
|
if self.visit_count == 0:
|
|
return float('inf')
|
|
average_value = self.value_sum / self.visit_count
|
|
exploration_term = exploration_constant * self.prior * math.sqrt(total_visits) / (1 + self.visit_count)
|
|
return average_value + exploration_term
|
|
|
|
class MCTS:
|
|
def __init__(self, prediction_network, dynamics_network, action_encoder, num_iterations=10, exploration_constant=math.sqrt(2)):
|
|
"""
|
|
Initialize the MCTS.
|
|
|
|
Args:
|
|
prediction_network (nn.Module): The Prediction Network.
|
|
dynamics_network (nn.Module): The Dynamics Network.
|
|
num_iterations (int): Number of MCTS iterations per search.
|
|
exploration_constant (float): Exploration parameter for UCB.
|
|
"""
|
|
self.action_encoder = action_encoder
|
|
self.prediction_network = prediction_network
|
|
self.dynamics_network = dynamics_network
|
|
self.num_iterations = num_iterations
|
|
self.exploration_constant = exploration_constant
|
|
|
|
def search(self, root_state):
|
|
"""
|
|
Perform MCTS starting from the root_state.
|
|
|
|
Args:
|
|
root_state: The initial state from which to start MCTS.
|
|
|
|
Returns:
|
|
The best action determined by MCTS.
|
|
"""
|
|
self.root = MCTSNode(state=root_state)
|
|
|
|
for _ in range(self.num_iterations):
|
|
node = self.select(self.root)
|
|
value = self.evaluate(node)
|
|
self.backpropagate(node, value)
|
|
|
|
return self.best_action()
|
|
|
|
def select(self, node):
|
|
"""
|
|
Traverse the tree to select a node for evaluation.
|
|
|
|
Args:
|
|
node: The starting node for selection.
|
|
|
|
Returns:
|
|
The node selected for evaluation.
|
|
"""
|
|
while not node.is_leaf():
|
|
best_action, best_node = max(node.children.items(),
|
|
key=lambda item: item[1].ucb_score(node.visit_count, self.exploration_constant))
|
|
node = best_node
|
|
return node
|
|
|
|
def evaluate(self, node):
|
|
"""
|
|
Evaluate the node by expanding it and predicting its value.
|
|
|
|
Args:
|
|
node: The node to evaluate.
|
|
|
|
Returns:
|
|
The value estimate of the node.
|
|
"""
|
|
|
|
policy_logits, value_estimate = self.prediction_network(node.state.representation)
|
|
|
|
|
|
policy = F.softmax(policy_logits, dim=-1).detach().cpu().numpy()
|
|
|
|
|
|
actions = list(range(policy.shape[-1]))
|
|
priors = policy[0].flatten().tolist()
|
|
|
|
node.expand(actions, priors)
|
|
|
|
return value_estimate.mean().item()
|
|
|
|
|
|
def backpropagate(self, node, value):
|
|
"""
|
|
Backpropagate the value up the tree.
|
|
|
|
Args:
|
|
node: The node to start backpropagation from.
|
|
value (float): The value to backpropagate.
|
|
"""
|
|
while node is not None:
|
|
node.visit_count += 1
|
|
node.value_sum += value
|
|
node = node.parent
|
|
|
|
def best_action(self):
|
|
"""
|
|
Choose the action with the highest visit count.
|
|
|
|
Returns:
|
|
The best action.
|
|
"""
|
|
best_child = max(self.root.children.values(), key=lambda n: n.visit_count)
|
|
return best_child.action
|
|
|
|
class State:
|
|
def __init__(self, representation, dynamics_network, action_encoder):
|
|
"""
|
|
Initialize the State.
|
|
|
|
Args:
|
|
representation (torch.Tensor): Encoded state representation, shape (batch_size, seq_len, state_dim)
|
|
dynamics_network (nn.Module): The Dynamics Network to predict next states
|
|
action_encoder (nn.Module): The Action Encoder to encode actions
|
|
"""
|
|
self.representation = representation
|
|
self.dynamics_network = dynamics_network
|
|
self.action_encoder = action_encoder
|
|
|
|
def apply_action(self, action):
|
|
"""
|
|
Apply an action to the current state to get a new state.
|
|
|
|
Args:
|
|
action (int): The action to apply (e.g., token index)
|
|
|
|
Returns:
|
|
State: The new state after applying the action
|
|
"""
|
|
|
|
batch_size, seq_len, _ = self.representation.size()
|
|
action_sequence = torch.full((batch_size, seq_len), action, dtype=torch.long, device=self.representation.device)
|
|
|
|
action_embedding = self.action_encoder(action_sequence)
|
|
|
|
with torch.no_grad():
|
|
next_state_representation = self.dynamics_network(self.representation, action_embedding)
|
|
return State(next_state_representation, self.dynamics_network, self.action_encoder)
|
|
|
|
|
|
|
|
|
|
class PPOAgent:
|
|
def __init__(self, policy_network, optimizer, clip_epsilon=0.2, entropy_coef=0.01, value_coef=0.5):
|
|
self.policy_network = policy_network
|
|
self.optimizer = optimizer
|
|
self.clip_epsilon = clip_epsilon
|
|
self.entropy_coef = entropy_coef
|
|
self.value_coef = value_coef
|
|
|
|
def compute_loss(self, states, old_log_probs, actions, returns, advantages):
|
|
|
|
policy_logits, value_estimates = self.policy_network(states)
|
|
batch_size, seq_len, num_actions = policy_logits.size()
|
|
|
|
|
|
policy_logits = policy_logits.view(-1, num_actions)
|
|
value_estimates = value_estimates.view(-1)
|
|
actions = actions.view(-1)
|
|
old_log_probs = old_log_probs.view(-1)
|
|
returns = returns.view(-1)
|
|
advantages = advantages.view(-1)
|
|
|
|
|
|
new_log_probs_all = F.log_softmax(policy_logits, dim=-1)
|
|
new_log_probs = new_log_probs_all.gather(1, actions.unsqueeze(-1)).squeeze(-1)
|
|
|
|
|
|
ratios = torch.exp(new_log_probs - old_log_probs)
|
|
|
|
|
|
surr1 = ratios * advantages
|
|
surr2 = torch.clamp(ratios, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * advantages
|
|
policy_loss = -torch.min(surr1, surr2).mean()
|
|
|
|
|
|
value_loss = F.mse_loss(value_estimates, returns)
|
|
|
|
|
|
entropy = -(new_log_probs * torch.exp(new_log_probs)).mean()
|
|
|
|
|
|
total_loss = policy_loss + self.value_coef * value_loss - self.entropy_coef * entropy
|
|
return total_loss
|
|
|
|
|
|
|
|
|
|
def compute_loss_world_model(predicted_next_state, true_next_state, policy_logits, true_policy, value_estimates, true_value,
|
|
alpha, beta, temperature, lambda_reg, lambda_var, lambda_div, lambda_expl):
|
|
"""
|
|
Compute the combined loss for the World Model.
|
|
|
|
Args:
|
|
predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)
|
|
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
|
|
policy_logits (torch.Tensor): Policy logits, shape (batch_size, num_actions)
|
|
true_policy (torch.Tensor): Ground truth policy, shape (batch_size, num_actions)
|
|
value_estimates (torch.Tensor): Value estimates, shape (batch_size)
|
|
true_value (torch.Tensor): Ground truth value, shape (batch_size)
|
|
alpha (float): Entropy regularization weight
|
|
beta (float): Variance regularization weight
|
|
temperature (float): Temperature parameter
|
|
lambda_reg (float): Covariance regularization weight
|
|
lambda_var (float): Dynamics variance loss weight
|
|
lambda_div (float): Action diversity reward weight
|
|
lambda_expl (float): Exploration regularization weight
|
|
|
|
Returns:
|
|
torch.Tensor: Combined loss
|
|
"""
|
|
|
|
ce_loss = F.cross_entropy(policy_logits, true_policy.argmax(dim=1))
|
|
|
|
|
|
probs = F.softmax(policy_logits / temperature, dim=-1)
|
|
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)
|
|
entropy_loss = -alpha * torch.mean(entropy)
|
|
|
|
|
|
variance = torch.var(probs, dim=-1)
|
|
variance_loss = -beta * torch.mean(variance)
|
|
|
|
|
|
cov_reg = CovarianceRegularization(lambda_reg)(predicted_next_state)
|
|
|
|
|
|
dynamics_loss = DynamicsPerformanceLoss(lambda_var)(true_next_state, predicted_next_state)
|
|
|
|
|
|
perturbed_next_state = predicted_next_state + torch.randn_like(predicted_next_state) * 0.01
|
|
thought_loss = ThoughtConsistencyLoss()(true_next_state, perturbed_next_state)
|
|
|
|
|
|
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates, true_value)
|
|
|
|
|
|
action_embeddings = predicted_next_state
|
|
action_diversity = ActionDiversityReward(lambda_div)(action_embeddings)
|
|
|
|
|
|
|
|
mcts_best_values = torch.zeros(value_estimates.size(0)).to(device)
|
|
etv = ExpectedThoughtValueLoss()(mcts_best_values)
|
|
|
|
|
|
|
|
visit_counts = torch.ones(predicted_next_state.size(0), input_dim).to(device)
|
|
exploration = ExplorationRegularization(lambda_expl)(visit_counts)
|
|
|
|
|
|
|
|
old_policy = F.softmax(policy_logits.detach(), dim=-1)
|
|
new_policy = F.softmax(policy_logits, dim=-1)
|
|
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
|
|
|
|
|
|
total_loss = (
|
|
ce_loss +
|
|
entropy_loss +
|
|
variance_loss +
|
|
cov_reg +
|
|
dynamics_loss +
|
|
thought_loss +
|
|
pv_loss +
|
|
action_diversity +
|
|
etv +
|
|
exploration +
|
|
kl_loss
|
|
)
|
|
|
|
return total_loss
|
|
|
|
|
|
def train_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim):
|
|
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent = world_model_components
|
|
representation_network.train()
|
|
dynamics_network.train()
|
|
prediction_network.train()
|
|
action_encoder.train()
|
|
ppo_agent.policy_network.train()
|
|
|
|
mcts = MCTS(prediction_network, dynamics_network, action_encoder, num_iterations=args.mcts_iterations, exploration_constant=args.mcts_exploration_constant)
|
|
|
|
total_loss = 0.0
|
|
optimizer.zero_grad()
|
|
print(f"Starting World Model training epoch with {len(train_loader)} batches...")
|
|
|
|
for i, batch in enumerate(train_loader):
|
|
print(f"Processing batch {i+1}/{len(train_loader)}...")
|
|
|
|
|
|
src_batch = batch['input_ids'].to('cpu')
|
|
tgt_batch = batch['labels'].to('cpu')
|
|
|
|
with autocast(device_type='cuda'):
|
|
print("Forward pass through Transformer (frozen)...")
|
|
with torch.no_grad():
|
|
transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])
|
|
|
|
|
|
transformer_output = transformer_output.to(device)
|
|
|
|
|
|
encoded_actions = action_encoder(tgt_batch[:, :-1].to(device))
|
|
|
|
|
|
state_representation = representation_network(transformer_output)
|
|
|
|
batch_size, seq_len, _ = state_representation.size()
|
|
|
|
|
|
predicted_next_states = []
|
|
|
|
|
|
for b in range(batch_size):
|
|
|
|
current_state = State(state_representation[b].unsqueeze(0), dynamics_network, action_encoder)
|
|
|
|
|
|
best_action = mcts.search(current_state)
|
|
|
|
|
|
action_sequence = torch.full((1, seq_len), best_action, dtype=torch.long, device=device)
|
|
|
|
|
|
action_embedding = action_encoder(action_sequence)
|
|
|
|
|
|
predicted_next_state = dynamics_network(current_state.representation, action_embedding)
|
|
|
|
predicted_next_states.append(predicted_next_state)
|
|
|
|
|
|
predicted_next_state_batch = torch.cat(predicted_next_states, dim=0)
|
|
|
|
|
|
policy_logits, value_estimates = prediction_network(predicted_next_state_batch)
|
|
|
|
|
|
|
|
true_policy = torch.zeros_like(policy_logits).to(device)
|
|
true_value = torch.zeros_like(value_estimates).to(device)
|
|
|
|
|
|
actions = torch.argmax(policy_logits, dim=-1)
|
|
old_log_probs = torch.zeros_like(actions, dtype=torch.float32).to(device)
|
|
returns = torch.zeros_like(actions, dtype=torch.float32).to(device)
|
|
advantages = torch.zeros_like(actions, dtype=torch.float32).to(device)
|
|
|
|
|
|
ppo_loss = ppo_agent.compute_loss(state_representation, old_log_probs, actions, returns, advantages)
|
|
|
|
|
|
z_i = state_representation.view(batch_size * seq_len, state_dim)
|
|
z_j = F.dropout(z_i, p=0.1, training=True)
|
|
info_nce = InfoNCE_Loss()(z_i, z_j)
|
|
|
|
|
|
covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1)))
|
|
dynamics_loss = DynamicsPerformanceLoss()(torch.zeros_like(predicted_next_state_batch).to(device), predicted_next_state_batch)
|
|
perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01
|
|
thought_loss = ThoughtConsistencyLoss()(torch.zeros_like(predicted_next_state_batch).to(device), perturbed_next_state)
|
|
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
|
|
action_diversity = ActionDiversityReward()(encoded_actions.view(-1, embed_dim))
|
|
mcts_best_values = torch.zeros(actions.size(0)).to(device)
|
|
etv = ExpectedThoughtValueLoss()(mcts_best_values)
|
|
visit_counts = torch.ones(actions.size(0), policy_logits.size(-1)).to(device)
|
|
exploration = ExplorationRegularization()(visit_counts)
|
|
old_policy = F.softmax(policy_logits.detach(), dim=-1)
|
|
new_policy = F.softmax(policy_logits, dim=-1)
|
|
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
|
|
|
|
|
|
loss = (
|
|
ppo_loss +
|
|
info_nce +
|
|
covariance +
|
|
dynamics_loss +
|
|
thought_loss +
|
|
pv_loss +
|
|
action_diversity +
|
|
etv +
|
|
exploration +
|
|
kl_loss
|
|
)
|
|
loss = loss / args.accumulation_steps
|
|
|
|
print("Backward pass...")
|
|
scaler.scale(loss).backward()
|
|
|
|
if (i + 1) % args.accumulation_steps == 0:
|
|
print("Gradient clipping...")
|
|
scaler.unscale_(optimizer)
|
|
torch.nn.utils.clip_grad_norm_(
|
|
[param for group in optimizer.param_groups for param in group['params']],
|
|
args.max_grad_norm
|
|
)
|
|
|
|
print("Optimizer step...")
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
|
|
print("Zeroing gradients...")
|
|
optimizer.zero_grad()
|
|
|
|
print("Updating learning rate...")
|
|
scheduler.step()
|
|
|
|
total_loss += loss.item() * args.accumulation_steps
|
|
print(f"Batch {i+1} completed. Current loss: {loss.item():.4f}")
|
|
|
|
avg_loss = total_loss / len(train_loader)
|
|
print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}")
|
|
return avg_loss
|
|
|
|
|
|
|
|
def evaluate_world_model(world_model_components, model_transformer, eval_loader, args):
|
|
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent = world_model_components
|
|
representation_network.eval()
|
|
dynamics_network.eval()
|
|
prediction_network.eval()
|
|
action_encoder.eval()
|
|
ppo_agent.policy_network.eval()
|
|
|
|
total_loss = 0.0
|
|
with torch.no_grad():
|
|
for batch in eval_loader:
|
|
src_batch = batch['input_ids'].to(device)
|
|
tgt_batch = batch['labels'].to(device)
|
|
|
|
|
|
transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])
|
|
|
|
|
|
encoded_actions = action_encoder(tgt_batch[:, :-1].to(device))
|
|
|
|
|
|
state = representation_network(transformer_output.to(device))
|
|
|
|
|
|
predicted_next_state = dynamics_network(state, encoded_actions)
|
|
|
|
|
|
policy_logits, value_estimates = prediction_network(predicted_next_state)
|
|
|
|
|
|
|
|
true_policy = torch.zeros_like(policy_logits).to(device)
|
|
true_value = torch.zeros_like(value_estimates).to(device)
|
|
|
|
|
|
|
|
old_log_probs = torch.zeros_like(policy_logits).to(device)
|
|
actions = torch.argmax(policy_logits, dim=-1)
|
|
returns = torch.zeros(actions.size(0)).to(device)
|
|
advantages = torch.zeros(actions.size(0)).to(device)
|
|
|
|
ppo_loss = ppo_agent.compute_loss(old_log_probs, actions, returns, advantages)
|
|
|
|
|
|
info_nce = InfoNCE_Loss()(state, state)
|
|
covariance = CovarianceRegularization()(predicted_next_state.view(-1, predicted_next_state.size(-1)))
|
|
dynamics_loss = DynamicsPerformanceLoss()(torch.zeros_like(predicted_next_state).to(device), predicted_next_state)
|
|
perturbed_next_state = predicted_next_state + torch.randn_like(predicted_next_state) * 0.01
|
|
thought_loss = ThoughtConsistencyLoss()(torch.zeros_like(predicted_next_state).to(device), perturbed_next_state)
|
|
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
|
|
action_diversity = ActionDiversityReward()(encoded_actions.view(-1, encoded_actions.size(-1)))
|
|
mcts_best_values = torch.zeros(actions.size(0)).to(device)
|
|
etv = ExpectedThoughtValueLoss()(mcts_best_values)
|
|
visit_counts = torch.ones(actions.size(0), policy_logits.size(-1)).to(device)
|
|
exploration = ExplorationRegularization()(visit_counts)
|
|
old_policy = F.softmax(policy_logits.detach(), dim=-1)
|
|
new_policy = F.softmax(policy_logits, dim=-1)
|
|
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
|
|
|
|
|
|
loss = (
|
|
ppo_loss +
|
|
info_nce +
|
|
covariance +
|
|
dynamics_loss +
|
|
thought_loss +
|
|
pv_loss +
|
|
action_diversity +
|
|
etv +
|
|
exploration +
|
|
kl_loss
|
|
)
|
|
|
|
total_loss += loss.item()
|
|
|
|
avg_loss = total_loss / len(eval_loader)
|
|
print(f"World Model evaluation completed. Average loss: {avg_loss:.4f}")
|
|
return avg_loss
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
print("Arguments parsed successfully.")
|
|
|
|
|
|
if not os.path.exists(args.save_dir):
|
|
os.makedirs(args.save_dir)
|
|
print(f"Save directory created: {args.save_dir}")
|
|
|
|
|
|
print("Loading tokenizer...")
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
print("Tokenizer loaded successfully.")
|
|
|
|
|
|
padding_idx = tokenizer.pad_token_id
|
|
input_dim = len(tokenizer)
|
|
|
|
|
|
print("Loading and preprocessing data...")
|
|
train_loader, eval_loader = load_data(args, tokenizer)
|
|
print("Data loaded and preprocessed successfully.")
|
|
|
|
|
|
d_model = 512
|
|
num_heads = 8
|
|
num_layers = 6
|
|
d_ff = 2048
|
|
num_experts = 4
|
|
output_dim = input_dim
|
|
dropout = 0.1
|
|
top_k = 2
|
|
state_dim = 128
|
|
action_dim = d_model
|
|
hidden_dim = 512
|
|
vocab_dim = len(tokenizer)
|
|
|
|
print("Initializing and loading Transformer model...")
|
|
model_transformer = Transformer(input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout, top_k)
|
|
model_transformer.load_state_dict(torch.load(args.transformer_model_path, map_location='cpu'))
|
|
model_transformer.eval()
|
|
model_transformer.to('cpu')
|
|
print("Transformer model loaded and moved to CPU.")
|
|
|
|
|
|
representation_network = RepresentationNetwork(vocab_dim, d_model, state_dim).to(device)
|
|
dynamics_network = DynamicsNetwork(state_dim, action_dim, hidden_dim).to(device)
|
|
prediction_network = PredictionNetwork(state_dim, input_dim, 1).to(device)
|
|
action_encoder = ActionEncoder(input_dim, action_dim).to(device)
|
|
|
|
|
|
optimizer = optim.AdamW(
|
|
list(representation_network.parameters()) +
|
|
list(dynamics_network.parameters()) +
|
|
list(prediction_network.parameters()) +
|
|
list(action_encoder.parameters()),
|
|
lr=args.learning_rate, weight_decay=args.weight_decay
|
|
)
|
|
scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
|
|
scaler = GradScaler()
|
|
|
|
|
|
ppo_agent = PPOAgent(
|
|
policy_network=prediction_network,
|
|
optimizer=optim.AdamW(prediction_network.parameters(), lr=args.learning_rate),
|
|
clip_epsilon=0.2,
|
|
entropy_coef=0.01,
|
|
value_coef=0.5
|
|
)
|
|
|
|
|
|
world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent)
|
|
|
|
print("Setup complete. Starting training...")
|
|
|
|
for epoch in range(args.num_epochs):
|
|
print(f"Epoch {epoch + 1}/{args.num_epochs} started.")
|
|
|
|
|
|
avg_train_loss = train_epoch_world_model(
|
|
world_model_components,
|
|
train_loader,
|
|
optimizer,
|
|
scheduler,
|
|
scaler,
|
|
args,
|
|
model_transformer,
|
|
state_dim,
|
|
d_model,
|
|
input_dim
|
|
)
|
|
|
|
print(f"World Model training epoch {epoch + 1} completed. Average loss: {avg_train_loss:.4f}")
|
|
|
|
|
|
avg_eval_loss = evaluate_world_model(
|
|
world_model_components,
|
|
model_transformer,
|
|
eval_loader,
|
|
args
|
|
)
|
|
print(f"Evaluation for epoch {epoch + 1} completed. Average loss: {avg_eval_loss:.4f}")
|
|
|
|
print(f"Epoch {epoch + 1}/{args.num_epochs}, Train Loss: {avg_train_loss:.4f}, Eval Loss: {avg_eval_loss:.4f}")
|
|
|
|
|
|
save_all_models(model_transformer, representation_network, dynamics_network, prediction_network, action_encoder, args.save_dir, epoch + 1)
|
|
print(f"Models saved for epoch {epoch + 1}")
|
|
|
|
print("Training completed.")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|
|
|
|
|