lightbulb / lihtbulb_custom
RobbiePasquale's picture
Create lihtbulb_custom
5c18e4c verified
raw
history blame
92.8 kB
import argparse
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import copy
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.cuda.amp import autocast, GradScaler
from datasets import load_dataset
from transformers import AutoTokenizer
from typing import List, Tuple
import sys
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def parse_args():
parser = argparse.ArgumentParser(description='Train or Inference with World Model and Tree of Thought.')
parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path')
parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets')
parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name')
parser.add_argument('--batch_size', type=int, default=4, help='Batch size')
parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
parser.add_argument('--mcts_iterations', type=int, default=3, help='Number of MCTS Iterations')
parser.add_argument('--mcts_exploration_constant', type=float, default=1.414, help='Exploration constant for MCTS')
parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay')
parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight')
parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight')
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models')
parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance')
parser.add_argument('--mode', type=str, choices=['train', 'inference'], default='train', help='Mode: train or inference')
parser.add_argument('--inference_mode', type=str, choices=['world_model', 'without_world_model', 'world_model_tree_of_thought'], default='world_model_tree_of_thought', help='Inference mode')
parser.add_argument('--query', type=str, default='', help='Input query for inference')
parser.add_argument('--train_mode', type=str, choices=['world_model', 'language_model'], default='language_model', help='Train world model or language model only')
parser.add_argument('--beam_size', type=int, default=5, help='Beam size for beam search')
parser.add_argument('--n_tokens_predict', type=int, default=3, help='Number of tokens to predict at each step')
parser.add_argument('--load_model', type=str, default=None,
help='Path to load saved model. If not provided, a new model will be initialized.')
parser.add_argument('--use_custom_data', action='store_true', help='Use custom data for training')
# Determine the base directory
if hasattr(sys, 'frozen') and hasattr(sys, '_MEIPASS'):
# PyInstaller creates a temp folder and stores path in _MEIPASS
base_dir = sys._MEIPASS
elif '__file__' in globals():
# Running as a script
base_dir = os.path.dirname(os.path.abspath(__file__))
else:
# Running in an interactive environment (e.g., Jupyter, Colab)
base_dir = os.getcwd()
default_paths = [
'/content/drive/MyDrive/lightbulb/knowledge_base.json',
'/content/drive/MyDrive/lightbulb/rag_cache.json',
'/content/drive/MyDrive/lightbulb/llm_training_data/llm_training_data.jsonl'
]
parser.add_argument('--custom_data_paths', nargs='+', default=default_paths,
help='Paths to custom data files (relative to the script location or current working directory)')
args, unknown = parser.parse_known_args()
# Convert relative paths to absolute paths
args.custom_data_paths = [os.path.abspath(os.path.join(base_dir, path)) for path in args.custom_data_paths]
return args
import json
import jsonlines
def load_custom_data_from_files(file_paths):
custom_data = []
for file_path in file_paths:
if file_path.endswith('.json'):
with open(file_path, 'r') as f:
data = json.load(f)
if isinstance(data, list):
custom_data.extend(data)
else:
custom_data.append(data)
elif file_path.endswith('.jsonl'):
with jsonlines.open(file_path) as reader:
custom_data.extend(reader)
return custom_data
def preprocess_custom_data(data_list):
processed_data = []
for item in data_list:
# Check if the item is a string (JSON)
if isinstance(item, str):
try:
item = json.loads(item)
except json.JSONDecodeError:
print(f"Failed to parse JSON: {item[:100]}...") # Print first 100 chars for debugging
continue # Skip this item if it's not valid JSON
# Process query and content
query = item.get('query', '')
content = item.get('content', '')
if content == "RAG response generation failed.":
content = ""
# Combine query and content
combined_text = f"Query: {query} Content: {content}"
# Process numerical data (assuming these are available in the item dict)
episode_reward = item.get('episode_reward', 0)
loss = item.get('loss', 0)
cosine_similarity = item.get('cosine_similarity', 0)
rag_performance = item.get('rag_performance', 0)
ranking_model_performance = item.get('ranking_model_performance', 0)
# Create a dictionary with processed data
processed_item = {
'text': combined_text,
'episode_reward': episode_reward,
'loss': loss,
'cosine_similarity': cosine_similarity,
'rag_performance': rag_performance,
'ranking_model_performance': ranking_model_performance
}
processed_data.append(processed_item)
return processed_data
def load_custom_data(args, tokenizer, custom_data):
# Preprocess the custom data
processed_data = preprocess_custom_data(custom_data)
# Create a custom dataset
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, data, tokenizer, max_length):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
encoded = self.tokenizer.encode_plus(
item['text'],
max_length=self.max_length,
padding='max_length',
truncation=True,
return_tensors='pt'
)
return {
'input_ids': encoded['input_ids'].squeeze(),
'attention_mask': encoded['attention_mask'].squeeze(),
'episode_reward': torch.tensor(item['episode_reward'], dtype=torch.float),
'loss': torch.tensor(item['loss'], dtype=torch.float),
'cosine_similarity': torch.tensor(item['cosine_similarity'], dtype=torch.float),
'rag_performance': torch.tensor(item['rag_performance'], dtype=torch.float),
'ranking_model_performance': torch.tensor(item['ranking_model_performance'], dtype=torch.float)
}
# Create dataset and dataloader
dataset = CustomDataset(processed_data, tokenizer, args.max_length)
# Split the dataset into train and eval
train_size = int(0.8 * len(dataset))
eval_size = len(dataset) - train_size
train_dataset, eval_dataset = torch.utils.data.random_split(dataset, [train_size, eval_size])
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=4
)
eval_loader = DataLoader(
eval_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=4
)
return train_loader, eval_loader
def load_data(args, tokenizer):
# Load the dataset
dataset = load_dataset(args.dataset_name, args.dataset_config)
# Ensure the tokenizer has a padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=args.max_length)
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
num_proc=4,
remove_columns=dataset['train'].column_names,
)
# Build inputs and labels for language modeling
block_size = args.max_length
def group_texts(examples):
# Concatenate all texts
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples['input_ids'])
# We drop the small remainder
total_length = (total_length // block_size) * block_size
# Split by chunks of block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result['labels'] = result['input_ids'].copy()
return result
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=4,
)
# Create DataLoader
train_dataset = lm_datasets['train']
eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test']
def data_collator(data):
return {
'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long),
'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long)
}
train_loader = DataLoader(
train_dataset,
shuffle=True,
batch_size=args.batch_size,
collate_fn=data_collator,
pin_memory=True, # Speeds up transfer to GPU
num_workers=4
)
eval_loader = DataLoader(
eval_dataset,
shuffle=False,
batch_size=args.batch_size,
collate_fn=data_collator,
pin_memory=True,
num_workers=4
)
return train_loader, eval_loader
def save_all_models(transformer_model, representation_network, dynamics_network, prediction_network, action_encoder, save_dir, epoch):
"""
Save all models to the specified directory.
Args:
transformer_model (nn.Module): Transformer model.
representation_network (nn.Module): Representation network.
dynamics_network (nn.Module): Dynamics network.
prediction_network (nn.Module): Prediction network.
action_encoder (nn.Module): Action encoder.
save_dir (str): Directory to save the models.
epoch (int): Current epoch number.
"""
os.makedirs(save_dir, exist_ok=True)
torch.save(transformer_model.state_dict(), os.path.join(save_dir, f'transformer_model_epoch_{epoch}.pt'))
torch.save(representation_network.state_dict(), os.path.join(save_dir, f'representation_network_epoch_{epoch}.pt'))
torch.save(dynamics_network.state_dict(), os.path.join(save_dir, f'dynamics_network_epoch_{epoch}.pt'))
torch.save(prediction_network.state_dict(), os.path.join(save_dir, f'prediction_network_epoch_{epoch}.pt'))
torch.save(action_encoder.state_dict(), os.path.join(save_dir, f'action_encoder_epoch_{epoch}.pt'))
print(f"All models saved for epoch {epoch}.")
class RotaryPositionalEncoding(nn.Module):
def __init__(self, d_model):
super(RotaryPositionalEncoding, self).__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x):
seq_len, batch_size, _ = x.size()
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
sin = sinusoid_inp.sin().unsqueeze(1) # (seq_len, 1, d_model/2)
cos = sinusoid_inp.cos().unsqueeze(1) # (seq_len, 1, d_model/2)
x1 = x[..., 0::2]
x2 = x[..., 1::2]
# Apply rotation
x_rotated = torch.zeros_like(x)
x_rotated[..., 0::2] = x1 * cos - x2 * sin
x_rotated[..., 1::2] = x1 * sin + x2 * cos
return x_rotated
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_k = d_model // num_heads
self.num_heads = num_heads
self.linear_q = nn.Linear(d_model, d_model)
self.linear_k = nn.Linear(d_model, d_model)
self.linear_v = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
attn = F.softmax(scores, dim=-1)
output = torch.matmul(attn, value)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
return self.linear_out(output)
class MoE(nn.Module):
def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1):
super(MoE, self).__init__()
self.num_experts = num_experts
self.top_k = top_k
self.experts = nn.ModuleList([
nn.Sequential(
nn.Linear(d_model, d_ff),
nn.GELU() if i % 2 == 0 else nn.SiLU(),
nn.Linear(d_ff, d_model)
)
for i in range(num_experts)
])
self.gate = nn.Linear(d_model, num_experts)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
batch_size, seq_len, d_model = x.size()
# Compute gating scores
gate_scores = self.gate(x) # (batch_size, seq_len, num_experts)
top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1) # (batch_size, seq_len, top_k)
top_k_scores = F.softmax(top_k_scores, dim=-1) # (batch_size, seq_len, top_k)
# Initialize output
output = torch.zeros_like(x)
# Flatten batch and sequence dimensions
x_flat = x.view(-1, d_model) # (batch_size * seq_len, d_model)
output_flat = output.view(-1, d_model)
top_k_indices_flat = top_k_indices.view(-1, self.top_k) # (batch_size * seq_len, top_k)
top_k_scores_flat = top_k_scores.view(-1, self.top_k) # (batch_size * seq_len, top_k)
for k in range(self.top_k):
expert_idx_flat = top_k_indices_flat[:, k] # (batch_size * seq_len)
expert_scores_flat = top_k_scores_flat[:, k] # (batch_size * seq_len)
for e in range(self.num_experts):
mask = (expert_idx_flat == e) # Boolean mask
if mask.any():
x_masked = x_flat[mask] # Select tokens for expert e
expert_output = self.experts[e](x_masked) # Apply expert e
output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output
output = output_flat.view(batch_size, seq_len, d_model)
return self.dropout(output)
class TransformerBlock(nn.Module):
def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2):
super(TransformerBlock, self).__init__()
self.self_attention = MultiHeadAttention(d_model, num_heads)
self.norm1 = nn.LayerNorm(d_model)
self.cross_attention = MultiHeadAttention(d_model, num_heads)
self.norm2 = nn.LayerNorm(d_model)
self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout)
self.norm3 = nn.LayerNorm(d_model)
def forward(self, x, mask=None, enc_output=None, enc_mask=None):
# Self-attention
attn_output = self.self_attention(x, x, x, mask)
x = self.norm1(x + attn_output)
# Cross-attention (only in decoder)
if enc_output is not None:
cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask)
x = self.norm2(x + cross_attn_output)
# Feedforward/MoE
moe_output = self.moe(x)
return self.norm3(x + moe_output)
class Transformer(nn.Module):
def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2):
super(Transformer, self).__init__()
self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1)
self.rotary_positional_encoding = RotaryPositionalEncoding(d_model)
self.encoder_layers = nn.ModuleList(
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
)
self.decoder_layers = nn.ModuleList(
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
)
self.output_layer = nn.Linear(d_model, output_dim)
self.d_model = d_model
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
# Encoder
src = self.embedding(src) * math.sqrt(self.d_model)
src = src.transpose(0, 1) # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model)
src = self.rotary_positional_encoding(src)
src = src.transpose(0, 1) # (seq_len, batch_size, d_model) -> (batch_size, seq_len, d_model)
for layer in self.encoder_layers:
src = layer(src, src_mask)
# Decoder
tgt = self.embedding(tgt) * math.sqrt(self.d_model)
tgt = tgt.transpose(0, 1)
tgt = self.rotary_positional_encoding(tgt)
tgt = tgt.transpose(0, 1)
for layer in self.decoder_layers:
tgt = layer(tgt, tgt_mask, src, src_mask)
output = self.output_layer(tgt)
return output
def generate_with_beam_search(self, src, tokenizer, beam_size=5, max_length=20, n_tokens_predict=3, temperature=1.0):
"""
Generate sequences using beam search with multi-token prediction.
Args:
src (torch.Tensor): Source input tensor of shape (batch_size, seq_len)
tokenizer: Tokenizer to access special tokens
beam_size (int): Size of the beam for beam search
max_length (int): Maximum length of the generated sequence
n_tokens_predict (int): Number of tokens to predict at each step
temperature (float): Temperature parameter for softmax
Returns:
List[Tuple[torch.Tensor, float]]: List of (sequence, score) tuples
"""
batch_size = src.size(0)
device = src.device
vocab_size = self.output_layer.out_features
# Encode the source
src_enc = self.encode(src)
# Initialize beam
beam = [(torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=device),
0.0, # log probability
torch.zeros(batch_size, device=device), # cumulative entropy
torch.zeros(batch_size, device=device))] # cumulative variance
for _ in range(max_length // n_tokens_predict):
all_candidates = []
for seq, score, cum_entropy, cum_variance in beam:
if seq[:, -1].item() == tokenizer.eos_token_id:
all_candidates.append((seq, score, cum_entropy, cum_variance))
continue
# Predict next n tokens
logits = self.predict_next_n_tokens(src_enc, seq, n_tokens_predict)
# Calculate probabilities, entropy, and variance
probs = F.softmax(logits / temperature, dim=-1)
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)
variance = torch.var(probs, dim=-1)
# Sample top-k tokens for each position
topk_probs, topk_indices = torch.topk(probs, k=beam_size, dim=-1)
# Generate all possible continuations
for i in range(beam_size ** n_tokens_predict):
indices = [i // (beam_size ** j) % beam_size for j in range(n_tokens_predict)]
new_tokens = topk_indices[:, range(n_tokens_predict), indices]
new_seq = torch.cat([seq, new_tokens], dim=-1)
new_score = score + torch.sum(torch.log(topk_probs[:, range(n_tokens_predict), indices]))
new_entropy = cum_entropy + torch.sum(entropy[:, indices])
new_variance = cum_variance + torch.sum(variance[:, indices])
all_candidates.append((new_seq, new_score, new_entropy, new_variance))
# Select top beam_size candidates
beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:beam_size]
# Stop if all beams have ended
if all(seq[:, -1].item() == tokenizer.eos_token_id for seq, _, _, _ in beam):
break
return [(seq, score) for seq, score, _, _ in beam]
def encode(self, src):
src_emb = self.embedding(src) * math.sqrt(self.d_model)
src_emb = src_emb.transpose(0, 1)
src_emb = self.rotary_positional_encoding(src_emb)
src_emb = src_emb.transpose(0, 1)
src_enc = src_emb
for layer in self.encoder_layers:
src_enc = layer(src_enc)
return src_enc
def predict_next_n_tokens(self, src_enc, tgt_seq, n_tokens):
tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model)
tgt_emb = tgt_emb.transpose(0, 1)
tgt_emb = self.rotary_positional_encoding(tgt_emb)
tgt_emb = tgt_emb.transpose(0, 1)
tgt_dec = tgt_emb
for layer in self.decoder_layers:
tgt_dec = layer(tgt_dec, None, src_enc, None)
output = self.output_layer(tgt_dec[:, -1:])
return output.repeat(1, n_tokens, 1)
# Objective Functions
class InfoNCE_Loss(nn.Module):
def __init__(self, temperature=0.07):
super(InfoNCE_Loss, self).__init__()
self.temperature = temperature
self.cross_entropy = nn.CrossEntropyLoss()
def forward(self, z_i, z_j):
"""
Args:
z_i (torch.Tensor): Flattened representations from view i, shape (2n, embed_dim)
z_j (torch.Tensor): Flattened representations from view j, shape (2n, embed_dim)
Returns:
torch.Tensor: InfoNCE loss
"""
n = z_i.size(0)
z = torch.cat([z_i, z_j], dim=0) # Shape: (2n, embed_dim)
z = F.normalize(z, dim=1)
similarity_matrix = torch.matmul(z, z.T) # Shape: (2n, 2n)
# Create a mask to exclude self-similarity
mask = torch.eye(2 * n, device=z.device, dtype=torch.bool)
similarity_matrix = similarity_matrix.masked_fill(mask, -1e4) # Use a manageable negative value
# Create labels for contrastive learning
labels = torch.arange(n, device=z.device)
labels = torch.cat([labels + n, labels], dim=0) # Shape: (2n,)
# Apply temperature scaling
similarity_matrix /= self.temperature
# Compute cross-entropy loss
loss = self.cross_entropy(similarity_matrix, labels)
return loss
class CovarianceRegularization(nn.Module):
def __init__(self, lambda_reg=1e-3):
super(CovarianceRegularization, self).__init__()
self.lambda_reg = lambda_reg
def forward(self, embeddings):
"""
Args:
embeddings (torch.Tensor): Embedding tensor, shape (batch_size, embed_dim)
Returns:
torch.Tensor: Covariance regularization loss
"""
batch_size, embed_dim = embeddings.size()
mean = embeddings.mean(dim=0)
embeddings_centered = embeddings - mean
cov = (embeddings_centered.T @ embeddings_centered) / (batch_size - 1)
cov_loss = torch.sum(cov ** 2) - torch.sum(torch.diag(cov) ** 2)
return self.lambda_reg * cov_loss
class DynamicsPerformanceLoss(nn.Module):
def __init__(self, lambda_var=1e-3):
super(DynamicsPerformanceLoss, self).__init__()
self.lambda_var = lambda_var
def forward(self, true_next_state, predicted_next_state):
"""
Args:
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)
Returns:
torch.Tensor: Dynamics performance loss
"""
mse_loss = F.mse_loss(predicted_next_state, true_next_state)
variance_loss = torch.var(predicted_next_state, dim=0).mean()
return mse_loss + self.lambda_var * variance_loss
class ThoughtConsistencyLoss(nn.Module):
def __init__(self):
super(ThoughtConsistencyLoss, self).__init__()
def forward(self, true_next_state, perturbed_next_state):
"""
Args:
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
perturbed_next_state (torch.Tensor): Perturbed next state, shape (batch_size, state_dim)
Returns:
torch.Tensor: Thought-consistency loss
"""
return F.mse_loss(true_next_state, perturbed_next_state)
class PolicyValueJointLoss(nn.Module):
def __init__(self, lambda_value=0.5):
super(PolicyValueJointLoss, self).__init__()
self.lambda_value = lambda_value
self.cross_entropy = nn.CrossEntropyLoss()
self.mse_loss = nn.MSELoss()
def forward(self, policy_logits, true_policy, value_pred, true_value):
"""
Args:
policy_logits (torch.Tensor): Logits from the policy network, shape (batch_size * seq_len, num_actions)
true_policy (torch.Tensor): Ground truth policy, shape (batch_size * seq_len, num_actions)
value_pred (torch.Tensor): Predicted values, shape (batch_size * seq_len)
true_value (torch.Tensor): Ground truth values, shape (batch_size * seq_len)
Returns:
torch.Tensor: Combined policy and value loss
"""
policy_logits = policy_logits.reshape(-1, policy_logits.size(-1))
true_policy = true_policy.reshape(-1, true_policy.size(-1))
value_pred = value_pred.reshape(-1)
true_value = true_value.reshape(-1)
policy_loss = self.cross_entropy(policy_logits, true_policy.argmax(dim=1))
value_loss = self.mse_loss(value_pred, true_value)
return policy_loss + self.lambda_value * value_loss
class ActionDiversityReward(nn.Module):
def __init__(self, lambda_div=1e-3):
super(ActionDiversityReward, self).__init__()
self.lambda_div = lambda_div
def forward(self, action_embeddings):
"""
Args:
action_embeddings (torch.Tensor): Embeddings of actions, shape (batch_size, embed_dim)
Returns:
torch.Tensor: Action diversity loss
"""
similarity_matrix = F.cosine_similarity(action_embeddings.unsqueeze(1), action_embeddings.unsqueeze(0), dim=2)
# Zero out self-similarity
similarity_matrix = similarity_matrix - torch.eye(similarity_matrix.size(0)).to(action_embeddings.device)
diversity_loss = torch.sum(similarity_matrix ** 2)
return self.lambda_div * diversity_loss
class ExpectedThoughtValueLoss(nn.Module):
def __init__(self):
super(ExpectedThoughtValueLoss, self).__init__()
def forward(self, mcts_best_values):
"""
Args:
mcts_best_values (torch.Tensor): Best values from MCTS, shape (batch_size)
Returns:
torch.Tensor: ETV loss
"""
return -mcts_best_values.mean()
class ExplorationRegularization(nn.Module):
def __init__(self, lambda_expl=1e-3):
super(ExplorationRegularization, self).__init__()
self.lambda_expl = lambda_expl
def forward(self, visit_counts):
"""
Args:
visit_counts (torch.Tensor): Visit counts for actions, shape (batch_size, num_actions)
Returns:
torch.Tensor: Exploration regularization loss
"""
reward = torch.sum(1.0 / (visit_counts + 1), dim=-1)
return self.lambda_expl * reward.mean()
class KL_DivergenceLoss(nn.Module):
def __init__(self):
super(KL_DivergenceLoss, self).__init__()
def forward(self, old_policy, new_policy):
"""
Args:
old_policy (torch.Tensor): Old policy probabilities, shape (batch_size, num_actions)
new_policy (torch.Tensor): New policy probabilities, shape (batch_size, num_actions)
Returns:
torch.Tensor: KL divergence loss
"""
kl_div = F.kl_div(new_policy.log(), old_policy, reduction='batchmean')
return kl_div
# MuZero Components
class ActionEncoder(nn.Module):
def __init__(self, action_vocab_size, embed_dim):
super(ActionEncoder, self).__init__()
self.embedding = nn.Embedding(action_vocab_size, embed_dim)
def forward(self, action_indices):
"""
Args:
action_indices (torch.Tensor): Tensor of shape (batch_size, seq_len)
Returns:
torch.Tensor: Encoded actions of shape (batch_size, seq_len, embed_dim)
"""
return self.embedding(action_indices)
class RepresentationNetwork(nn.Module):
def __init__(self, vocab_dim, d_model, state_dim):
super(RepresentationNetwork, self).__init__()
self.proj = nn.Linear(vocab_dim, d_model) # Project from vocab_dim to d_model
self.linear = nn.Linear(d_model, state_dim) # Project from d_model to state_dim
self.norm = nn.LayerNorm(state_dim)
def forward(self, transformer_output):
"""
Args:
transformer_output (torch.Tensor): Shape (batch_size, seq_len, vocab_dim)
Returns:
torch.Tensor: Encoded state of shape (batch_size, seq_len, state_dim)
"""
# First project down from vocab_dim to d_model
projected_output = self.proj(transformer_output) # Shape: (batch_size, seq_len, d_model)
# Then project down from d_model to state_dim
state = self.linear(projected_output) # Shape: (batch_size, seq_len, state_dim)
state = self.norm(state) # Shape: (batch_size, seq_len, state_dim)
return state
class DynamicsNetwork(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super(DynamicsNetwork, self).__init__()
self.rms_norm = nn.LayerNorm(state_dim)
self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.activation = nn.GELU()
self.fc2 = nn.Linear(hidden_dim, state_dim)
def forward(self, state, action):
"""
Args:
state (torch.Tensor): Current state, shape (batch_size, seq_len, state_dim)
action (torch.Tensor): Action embedding, shape (batch_size, seq_len, action_dim)
Returns:
torch.Tensor: Predicted next state, shape (batch_size, seq_len, state_dim)
"""
norm_state = self.rms_norm(state)
combined = torch.cat([norm_state, action], dim=-1)
hidden = self.activation(self.fc1(combined))
next_state = self.fc2(hidden)
return next_state
class PredictionNetwork(nn.Module):
def __init__(self, state_dim, action_vocab_size, value_dim):
super(PredictionNetwork, self).__init__()
self.state_dim = state_dim
self.rms_norm = nn.LayerNorm(state_dim)
self.policy_head = nn.Linear(state_dim, action_vocab_size) # Output size is action_vocab_size
self.value_head = nn.Linear(state_dim, value_dim)
def forward(self, state):
"""
Args:
state (torch.Tensor): State representation, shape (batch_size, state_dim)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Policy logits and value estimates
"""
norm_state = self.rms_norm(state)
policy_logits = self.policy_head(norm_state) # Shape: (batch_size, action_vocab_size)
value_estimates = self.value_head(norm_state).squeeze(-1) # Shape: (batch_size)
return policy_logits, value_estimates
class MCTSNode:
__slots__ = [
'state',
'parent',
'action',
'children',
'visit_count',
'value_sum',
'prior',
'cached_policy',
'cached_value',
'thought_node',
'entropy',
'variance'
]
def __init__(self, state, thought_node, parent=None, action=None):
self.state = state
self.thought_node = thought_node
self.parent = parent
self.action = action
self.children = {}
self.visit_count = 0
self.value_sum = 0.0
self.prior = 0.0
self.cached_policy = None
self.cached_value = None
self.entropy = 0.0
self.variance = 0.0
def expand(self, priors):
for child_thought_node in self.thought_node.children:
action = child_thought_node.name
if action not in self.children:
child_state = self.state.apply_action(action)
child_node = MCTSNode(
state=child_state,
thought_node=child_thought_node,
parent=self,
action=action
)
child_node.prior = priors.get(action, 1.0 / len(self.thought_node.children))
self.children[action] = child_node
def is_leaf(self):
return len(self.children) == 0
def ucb_score(self, total_visits, exploration_constant=math.sqrt(2)):
if self.visit_count == 0:
return float('inf') # Ensure unvisited nodes are selected first
avg_value = self.value_sum / self.visit_count
exploration_term = exploration_constant * self.prior * math.sqrt(total_visits) / (1 + self.visit_count)
entropy_term = -0.1 * self.entropy # Slightly prefer lower entropy
variance_term = 0.05 * self.variance # Slightly prefer higher variance
return avg_value + exploration_term + entropy_term + variance_term
class MCTS:
def __init__(self, prediction_network, dynamics_network, action_encoder, num_iterations=10, exploration_constant=math.sqrt(2), beam_size=5, n_tokens_predict=3):
self.prediction_network = prediction_network
self.dynamics_network = dynamics_network
self.action_encoder = action_encoder
self.num_iterations = num_iterations
self.exploration_constant = exploration_constant
self.beam_size = beam_size
self.n_tokens_predict = n_tokens_predict
self.cache = {}
def search_with_beam(self, root_state):
root_node = MCTSNode(state=root_state, thought_node=root_state.thought_node)
# Evaluate the root node and backpropagate
value_estimate = self.evaluate(root_node) # Evaluate and expand root_node
self.backpropagate(root_node, value_estimate) # Backpropagate the value
beam = [(root_node, 0.0, 0.0, 0.0, [])] # (node, score, cum_entropy, cum_variance, action_sequence)
for iteration in range(self.num_iterations):
all_candidates = []
for node, score, cum_entropy, cum_variance, action_sequence in beam:
if node.is_leaf():
value_estimate = self.evaluate(node)
self.backpropagate(node, value_estimate) # Backpropagate after evaluation
if len(node.children) == 0:
continue # No children to expand
total_visits = sum(child.visit_count for child in node.children.values())
# Select top actions based on UCB score
sorted_children = sorted(
node.children.items(),
key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant),
reverse=True
)[:self.beam_size]
for selected_action, selected_node in sorted_children:
current_node = selected_node
current_sequence = action_sequence + [selected_action]
current_score = score
current_entropy = cum_entropy + selected_node.entropy
current_variance = cum_variance + selected_node.variance
# Predict n_tokens_predict actions
for _ in range(self.n_tokens_predict):
if current_node.is_leaf():
value_estimate = self.evaluate(current_node)
self.backpropagate(current_node, value_estimate) # Backpropagate after evaluation
if len(current_node.children) == 0:
break # No more actions
total_visits = sum(child.visit_count for child in current_node.children.values())
next_action, next_node = max(
current_node.children.items(),
key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant)
)
current_sequence.append(next_action)
# Prevent division by zero by ensuring visit_count > 0
if next_node.visit_count > 0:
current_score += next_node.value_sum / next_node.visit_count
else:
# Assign a default value or handle the zero division case
current_score += 0.0 # Alternatively, use a small epsilon or skip
current_entropy += next_node.entropy
current_variance += next_node.variance
current_node = next_node
all_candidates.append((current_node, current_score, current_entropy, current_variance, current_sequence))
if not all_candidates:
break # No more candidates to expand
# Select top beam_size candidates
beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:self.beam_size]
print(f"Iteration {iteration + 1}: Beam size after sorting: {len(beam)}") # Debug
if beam:
best_sequence = beam[0][4]
return best_sequence
else:
return []
def search(self, root_state):
root_node = MCTSNode(state=root_state, thought_node=root_state.thought_node)
for _ in range(self.num_iterations):
node = self.select(root_node)
value = self.evaluate(node)
self.backpropagate(node, value)
return self.best_action_sequence(root_node)
def select(self, node):
while not node.is_leaf():
total_visits = sum(child.visit_count for child in node.children.values())
_, node = max(
node.children.items(),
key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant)
)
return node
def evaluate(self, node):
# Extract the last time step
state_representation = node.state.representation[:, -1, :] # Shape: (batch_size=1, state_dim)
print(f"Evaluating node with state_representation shape: {state_representation.shape}") # Debug
policy_logits, value_estimate = self.prediction_network(state_representation)
print(f"Policy logits shape: {policy_logits.shape}, Value estimate shape: {value_estimate.shape}") # Debug
value_estimate = value_estimate.item() # Now safe as batch_size=1
policy_probs = F.softmax(policy_logits, dim=-1).squeeze(0) # Shape: (action_vocab_size,)
print(f"Policy probabilities shape: {policy_probs.shape}") # Debug
priors = {}
for child in node.thought_node.children:
action_name = child.name
action_idx = action_to_index.get(action_name, None)
if action_idx is not None and action_idx < policy_probs.size(0):
priors[action_name] = policy_probs[action_idx].item()
else:
priors[action_name] = 1.0 / len(node.thought_node.children)
node.expand(priors)
# Calculate entropy and variance
entropy = -torch.sum(policy_probs * torch.log(policy_probs + 1e-9))
variance = torch.var(policy_probs)
node.entropy = entropy.item()
node.variance = variance.item()
print(f"Node entropy: {node.entropy}, variance: {node.variance}") # Debug
return value_estimate # Return the value estimate for backpropagation
def backpropagate(self, node, value):
while node is not None:
node.visit_count += 1
node.value_sum += value
node = node.parent
def best_action_sequence(self, root_node):
sequences = []
self._generate_sequences(root_node, [], sequences)
# Score sequences based on visit counts, entropy, and variance
scored_sequences = []
for seq in sequences:
score = sum(node.visit_count for node in seq)
entropy = sum(node.entropy for node in seq)
variance = sum(node.variance for node in seq)
adjusted_score = score - 0.1 * entropy + 0.05 * variance
scored_sequences.append((seq, adjusted_score))
# Sort sequences by adjusted score and select top beam_size
best_sequences = sorted(scored_sequences, key=lambda x: x[1], reverse=True)[:self.beam_size]
# Return the actions of the best sequence
best_sequence = best_sequences[0][0]
return [node.action for node in best_sequence[1:self.n_tokens_predict+1]] # Exclude root node
def _generate_sequences(self, node, current_sequence, sequences):
current_sequence.append(node)
if len(current_sequence) > self.n_tokens_predict or not node.children:
sequences.append(current_sequence)
else:
for child in node.children.values():
self._generate_sequences(child, current_sequence.copy(), sequences)
class State:
def __init__(self, representation, dynamics_network, action_encoder, thought_node):
self.representation = representation
self.dynamics_network = dynamics_network
self.action_encoder = action_encoder
self.thought_node = thought_node
def apply_action(self, action):
next_thought_node = None
for child in self.thought_node.children:
if child.name == action:
next_thought_node = child
break
if next_thought_node is None:
raise ValueError(f"Action '{action}' is not valid from the current thought node.")
# Adjust action_index and action_embedding shapes
action_index = torch.tensor([action_to_index[action]], device=self.representation.device)
action_embedding = self.action_encoder(action_index) # Shape: (batch_size=1, action_dim)
# Extract the last time step of the state
state = self.representation[:, -1, :] # Shape: (batch_size, state_dim)
# Ensure action_embedding matches the state dimension
next_state_representation = self.dynamics_network(state, action_embedding) # Shape: (batch_size, state_dim)
# Append the new state to the representation history
new_representation = torch.cat([self.representation, next_state_representation.unsqueeze(1)], dim=1) # Shape: (batch_size, seq_len+1, state_dim)
return State(
representation=new_representation,
dynamics_network=self.dynamics_network,
action_encoder=self.action_encoder,
thought_node=next_thought_node
)
class PPOAgent:
def __init__(self, policy_network, optimizer, clip_epsilon=0.2, entropy_coef=0.01, value_coef=0.5):
self.policy_network = policy_network
self.optimizer = optimizer
self.clip_epsilon = clip_epsilon
self.entropy_coef = entropy_coef
self.value_coef = value_coef
def compute_loss(self, states, old_log_probs, actions, returns, advantages):
# Get policy logits and value estimates
policy_logits, value_estimates = self.policy_network(states)
# Flatten all tensors
policy_logits = policy_logits.reshape(-1, policy_logits.size(-1))
value_estimates = value_estimates.reshape(-1)
actions = actions.reshape(-1)
old_log_probs = old_log_probs.reshape(-1)
returns = returns.reshape(-1)
advantages = advantages.reshape(-1)
# Ensure all tensors have the same first dimension
assert policy_logits.size(0) == value_estimates.size(0) == actions.size(0) == old_log_probs.size(0) == returns.size(0) == advantages.size(0), "Tensor sizes mismatch"
# Compute new log probabilities
new_log_probs_all = F.log_softmax(policy_logits, dim=-1)
new_log_probs = new_log_probs_all.gather(1, actions.unsqueeze(-1)).squeeze(-1)
# Compute ratios
ratios = torch.exp(new_log_probs - old_log_probs)
# PPO surrogate loss
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * advantages
policy_loss = -torch.min(surr1, surr2).mean()
# Value loss
value_loss = F.mse_loss(value_estimates, returns)
# Entropy loss
entropy = -(new_log_probs * torch.exp(new_log_probs)).mean()
# Total loss
total_loss = policy_loss + self.value_coef * value_loss - self.entropy_coef * entropy
return total_loss
# Tree of Thought Components
class ThoughtNode:
def __init__(self, name):
self.name = name
self.children = []
self.parent = None
def add_child(self, child_node):
child_node.parent = self
self.children.append(child_node)
# Function to build the Tree of Thought from your detailed structure
def build_tree_of_thought():
# Create the root node
root = ThoughtNode('Problem-Solving Process')
# Level 1 nodes
problem_identification = ThoughtNode('Problem Identification')
problem_analysis = ThoughtNode('Problem Analysis')
solution_generation = ThoughtNode('Solution Generation')
implementation = ThoughtNode('Implementation')
evaluation_adjustment = ThoughtNode('Evaluation and Adjustment')
root.add_child(problem_identification)
root.add_child(problem_analysis)
root.add_child(solution_generation)
root.add_child(implementation)
root.add_child(evaluation_adjustment)
# Problem Identification children
B1 = ThoughtNode('Define the Problem')
B2 = ThoughtNode('Identify Stakeholders')
B3 = ThoughtNode('Determine Constraints')
B4 = ThoughtNode('Recognize Problem Type')
B5 = ThoughtNode('Historical Context')
problem_identification.add_child(B1)
problem_identification.add_child(B2)
problem_identification.add_child(B3)
problem_identification.add_child(B4)
problem_identification.add_child(B5)
# Define the Problem children
B1a = ThoughtNode('Problem Statement Formulation')
B1b = ThoughtNode('Scope Definition')
B1c = ThoughtNode('Objective Setting')
B1.add_child(B1a)
B1.add_child(B1b)
B1.add_child(B1c)
# Identify Stakeholders children
B2a = ThoughtNode('Stakeholder Mapping')
B2b = ThoughtNode('Interest and Influence Analysis')
B2c = ThoughtNode('Engagement Strategy')
B2.add_child(B2a)
B2.add_child(B2b)
B2.add_child(B2c)
# Determine Constraints children
B3a = ThoughtNode('Resource Limitations')
B3b = ThoughtNode('Time Constraints')
B3c = ThoughtNode('Legal and Regulatory Constraints')
B3.add_child(B3a)
B3.add_child(B3b)
B3.add_child(B3c)
# Recognize Problem Type children
B4a = ThoughtNode('Simple vs Complex')
B4b = ThoughtNode('Known vs Unknown')
B4c = ThoughtNode('Tame vs Wicked Problems')
B4.add_child(B4a)
B4.add_child(B4b)
B4.add_child(B4c)
# Historical Context children
B5a = ThoughtNode('Previous Attempts')
B5b = ThoughtNode('Lessons Learned')
B5c = ThoughtNode('Environmental Factors')
B5.add_child(B5a)
B5.add_child(B5b)
B5.add_child(B5c)
# Problem Analysis children
C1 = ThoughtNode('Root Cause Analysis')
C2 = ThoughtNode('System Mapping')
C3 = ThoughtNode('Data Collection')
C4 = ThoughtNode('Impact Assessment')
C5 = ThoughtNode('Theoretical Framework')
problem_analysis.add_child(C1)
problem_analysis.add_child(C2)
problem_analysis.add_child(C3)
problem_analysis.add_child(C4)
problem_analysis.add_child(C5)
# Root Cause Analysis children
C1a = ThoughtNode('5 Whys Technique')
C1b = ThoughtNode('Fishbone Diagram')
C1c = ThoughtNode('Pareto Analysis')
C1.add_child(C1a)
C1.add_child(C1b)
C1.add_child(C1c)
# System Mapping children
C2a = ThoughtNode('Causal Loop Diagrams')
C2b = ThoughtNode('Stock and Flow Models')
C2c = ThoughtNode('Network Analysis')
C2.add_child(C2a)
C2.add_child(C2b)
C2.add_child(C2c)
# Data Collection children
C3a = ThoughtNode('Quantitative Data')
C3b = ThoughtNode('Qualitative Data')
C3c = ThoughtNode('Data Validation')
C3.add_child(C3a)
C3.add_child(C3b)
C3.add_child(C3c)
# Quantitative Data children
C3a1 = ThoughtNode('Surveys and Questionnaires')
C3a2 = ThoughtNode('Experimental Data')
C3a3 = ThoughtNode('Big Data Analytics')
C3a.add_child(C3a1)
C3a.add_child(C3a2)
C3a.add_child(C3a3)
# Qualitative Data children
C3b1 = ThoughtNode('Interviews')
C3b2 = ThoughtNode('Focus Groups')
C3b3 = ThoughtNode('Observational Studies')
C3b.add_child(C3b1)
C3b.add_child(C3b2)
C3b.add_child(C3b3)
# Data Validation children
C3c1 = ThoughtNode('Statistical Validation')
C3c2 = ThoughtNode('Cross-Validation')
C3c3 = ThoughtNode('Expert Review')
C3c.add_child(C3c1)
C3c.add_child(C3c2)
C3c.add_child(C3c3)
# Impact Assessment children
C4a = ThoughtNode('Environmental Impact')
C4b = ThoughtNode('Social Impact')
C4c = ThoughtNode('Economic Impact')
C4.add_child(C4a)
C4.add_child(C4b)
C4.add_child(C4c)
# Theoretical Framework children
C5a = ThoughtNode('Literature Review')
C5b = ThoughtNode('Conceptual Modeling')
C5c = ThoughtNode('Hypothesis Formation')
C5.add_child(C5a)
C5.add_child(C5b)
C5.add_child(C5c)
# Solution Generation children
D1 = ThoughtNode('Creative Problem Solving')
D2 = ThoughtNode('Analytical Approach')
D3 = ThoughtNode('Mathematical Computation')
D4 = ThoughtNode('Decision Making')
solution_generation.add_child(D1)
solution_generation.add_child(D2)
solution_generation.add_child(D3)
solution_generation.add_child(D4)
# Action Planning, Resource Allocation, Change Management children (implementation phase)
E1 = ThoughtNode('Action Planning')
E2 = ThoughtNode('Resource Allocation')
E3 = ThoughtNode('Change Management')
implementation.add_child(E1)
implementation.add_child(E2)
implementation.add_child(E3)
# Verification, Performance Metrics, Feedback Loops, Continuous Improvement children (evaluation phase)
F1 = ThoughtNode('Verification')
F2 = ThoughtNode('Performance Metrics')
F3 = ThoughtNode('Feedback Loops')
F4 = ThoughtNode('Continuous Improvement')
evaluation_adjustment.add_child(F1)
evaluation_adjustment.add_child(F2)
evaluation_adjustment.add_child(F3)
evaluation_adjustment.add_child(F4)
# Cross-Cutting Considerations children
G = ThoughtNode('Cross-Cutting Considerations')
root.add_child(G)
# Cross-Cutting Considerations children
G1 = ThoughtNode('Ethical Framework')
G2 = ThoughtNode('Stakeholder Management')
G3 = ThoughtNode('Interdisciplinary Connections')
G4 = ThoughtNode('Technological Integration')
G5 = ThoughtNode('Emotional Intelligence')
G6 = ThoughtNode('Collaborative Problem Solving')
G7 = ThoughtNode('Computational Considerations') # Assuming H was intended as G7
G8 = ThoughtNode('Order of Operations') # Assuming I was intended as G8
G9 = ThoughtNode('Critical Thinking') # Assuming J was intended as G9
G10 = ThoughtNode('Future Perspective') # Assuming K was intended as G10
G11 = ThoughtNode('Learning and Adaptation') # Assuming L was intended as G11
G.add_child(G1)
G.add_child(G2)
G.add_child(G3)
G.add_child(G4)
G.add_child(G5)
G.add_child(G6)
G.add_child(G7)
G.add_child(G8)
G.add_child(G9)
G.add_child(G10)
G.add_child(G11)
# Ethical Framework children
G1a = ThoughtNode('Value-based Decision Making')
G1b = ThoughtNode('Long-term Consequences')
G1.add_child(G1a)
G1.add_child(G1b)
# Value-based Decision Making children
G1a1 = ThoughtNode('Ethical Theories Application')
G1a2 = ThoughtNode('Moral Dilemma Resolution')
G1a.add_child(G1a1)
G1a.add_child(G1a2)
# Long-term Consequences children
G1b1 = ThoughtNode('Sustainability Assessment')
G1b2 = ThoughtNode('Intergenerational Impact')
G1b.add_child(G1b1)
G1b.add_child(G1b2)
# Stakeholder Management children
G2a = ThoughtNode('Direct Stakeholders')
G2b = ThoughtNode('Indirect Stakeholders')
G2c = ThoughtNode('Conflicting Interests')
G2.add_child(G2a)
G2.add_child(G2b)
G2.add_child(G2c)
# Conflicting Interests children
G2c1 = ThoughtNode('Negotiation Strategies')
G2c2 = ThoughtNode('Conflict Resolution Techniques')
G2c.add_child(G2c1)
G2c.add_child(G2c2)
# Interdisciplinary Connections children
G3a = ThoughtNode('Related Fields')
G3b = ThoughtNode('Cross-disciplinary Impact')
G3.add_child(G3a)
G3.add_child(G3b)
# Related Fields children
G3a1 = ThoughtNode('Cross-domain Knowledge Transfer')
G3a2 = ThoughtNode('Interdisciplinary Collaboration')
G3a.add_child(G3a1)
G3a.add_child(G3a2)
# Cross-disciplinary Impact children
G3b1 = ThoughtNode('Synergy Identification')
G3b2 = ThoughtNode('Holistic Impact Assessment')
G3b.add_child(G3b1)
G3b.add_child(G3b2)
# Technological Integration children
G4a = ThoughtNode('AI-assisted Problem Solving')
G4b = ThoughtNode('Data-driven Insights')
G4c = ThoughtNode('Digital Collaboration Tools')
G4.add_child(G4a)
G4.add_child(G4b)
G4.add_child(G4c)
# AI-assisted Problem Solving children
G4a1 = ThoughtNode('Machine Learning Models')
G4a2 = ThoughtNode('Natural Language Processing')
G4a.add_child(G4a1)
G4a.add_child(G4a2)
# Data-driven Insights children
G4b1 = ThoughtNode('Big Data Analytics')
G4b2 = ThoughtNode('Predictive Modeling')
G4b.add_child(G4b1)
G4b.add_child(G4b2)
# Digital Collaboration Tools children
G4c1 = ThoughtNode('Project Management Platforms')
G4c2 = ThoughtNode('Virtual Reality Collaboration')
G4c.add_child(G4c1)
G4c.add_child(G4c2)
# Emotional Intelligence children
G5a = ThoughtNode('Self-Awareness')
G5b = ThoughtNode('Empathy')
G5c = ThoughtNode('Stress Management')
G5.add_child(G5a)
G5.add_child(G5b)
G5.add_child(G5c)
# Self-Awareness children
G5a1 = ThoughtNode('Emotional Recognition')
G5a2 = ThoughtNode('Personal Bias Identification')
G5a.add_child(G5a1)
G5a.add_child(G5a2)
# Empathy children
G5b1 = ThoughtNode('Perspective Taking')
G5b2 = ThoughtNode('Active Listening')
G5b.add_child(G5b1)
G5b.add_child(G5b2)
# Stress Management children
G5c1 = ThoughtNode('Mindfulness Techniques')
G5c2 = ThoughtNode('Resilience Building')
G5c.add_child(G5c1)
G5c.add_child(G5c2)
# Collaborative Problem Solving children
G6a = ThoughtNode('Team Dynamics')
G6b = ThoughtNode('Communication Strategies')
G6c = ThoughtNode('Conflict Resolution')
G6.add_child(G6a)
G6.add_child(G6b)
G6.add_child(G6c)
# Team Dynamics children
G6a1 = ThoughtNode('Team Formation Strategies')
G6a2 = ThoughtNode('Role Assignment')
G6a.add_child(G6a1)
G6a.add_child(G6a2)
# Communication Strategies children
G6b1 = ThoughtNode('Clear Messaging')
G6b2 = ThoughtNode('Feedback Mechanisms')
G6b.add_child(G6b1)
G6b.add_child(G6b2)
# Conflict Resolution children
G6c1 = ThoughtNode('Mediation Techniques')
G6c2 = ThoughtNode('Consensus Building')
G6c.add_child(G6c1)
G6c.add_child(G6c2)
# Computational Considerations children
G7a = ThoughtNode('CPU Operations')
G7b = ThoughtNode('GPU Parallelization')
G7c = ThoughtNode('Floating-Point Precision')
G7.add_child(G7a)
G7.add_child(G7b)
G7.add_child(G7c)
# CPU Operations children
G7a1 = ThoughtNode('Instruction Set Architecture')
G7a2 = ThoughtNode('Pipelining and Parallelism')
G7a.add_child(G7a1)
G7a.add_child(G7a2)
# GPU Parallelization children
G7b1 = ThoughtNode('CUDA Programming')
G7b2 = ThoughtNode('OpenCL Framework')
G7b.add_child(G7b1)
G7b.add_child(G7b2)
# Floating-Point Precision children
G7c1 = ThoughtNode('IEEE 754 Standard')
G7c2 = ThoughtNode('Error Propagation Analysis')
G7c.add_child(G7c1)
G7c.add_child(G7c2)
# Order of Operations children
G8a = ThoughtNode('Parentheses')
G8b = ThoughtNode('Exponents')
G8c = ThoughtNode('Multiplication and Division')
G8d = ThoughtNode('Addition and Subtraction')
G8.add_child(G8a)
G8.add_child(G8b)
G8.add_child(G8c)
G8.add_child(G8d)
# Critical Thinking children
G9a = ThoughtNode('Assumptions Questioning')
G9b = ThoughtNode('Bias Recognition')
G9.add_child(G9a)
G9.add_child(G9b)
# Assumptions Questioning children
G9a1 = ThoughtNode('Socratic Questioning')
G9a2 = ThoughtNode('Devil\'s Advocate Approach')
G9a.add_child(G9a1)
G9a.add_child(G9a2)
# Bias Recognition children
G9b1 = ThoughtNode('Cognitive Bias Identification')
G9b2 = ThoughtNode('Debiasing Techniques')
G9b.add_child(G9b1)
G9b.add_child(G9b2)
# Future Perspective children
G10a = ThoughtNode('Short-term Projections')
G10b = ThoughtNode('Long-term Scenarios')
G10c = ThoughtNode('Potential Impacts')
G10.add_child(G10a)
G10.add_child(G10b)
G10.add_child(G10c)
# Short-term Projections children
G10a1 = ThoughtNode('Trend Analysis')
G10a2 = ThoughtNode('Scenario Planning')
G10a.add_child(G10a1)
G10a.add_child(G10a2)
# Long-term Scenarios children
G10b1 = ThoughtNode('Futures Wheel')
G10b2 = ThoughtNode('Backcasting')
G10b.add_child(G10b1)
G10b.add_child(G10b2)
# Potential Impacts children
G10c1 = ThoughtNode('Risk Assessment')
G10c2 = ThoughtNode('Opportunity Identification')
G10c.add_child(G10c1)
G10c.add_child(G10c2)
# Learning and Adaptation children
G11a = ThoughtNode('Reflective Practice')
G11b = ThoughtNode('Knowledge Transfer')
G11c = ThoughtNode('Adaptive Problem Solving')
G11.add_child(G11a)
G11.add_child(G11b)
G11.add_child(G11c)
# Reflective Practice children
G11a1 = ThoughtNode('After Action Review')
G11a2 = ThoughtNode('Learning Journals')
G11a.add_child(G11a1)
G11a.add_child(G11a2)
# Knowledge Transfer children
G11b1 = ThoughtNode('Best Practice Documentation')
G11b2 = ThoughtNode('Mentoring Programs')
G11b.add_child(G11b1)
G11b.add_child(G11b2)
# Adaptive Problem Solving children
G11c1 = ThoughtNode('Iterative Approaches')
G11c2 = ThoughtNode('Flexibility in Methodology')
G11c.add_child(G11c1)
G11c.add_child(G11c2)
return root
def traverse_tree(node, action_list):
if node.name not in action_list:
action_list.append(node.name)
for child in node.children:
traverse_tree(child, action_list)
def infer(query, world_model_components, root_thought_node, tokenizer, max_length=2000, inference_mode='world_model', beam_size=5, n_tokens_predict=3, mcts_iterations=10, exploration_constant=1.414):
"""
Perform inference given a query, utilizing the Tree of Thought and MCTS with multi-token beam search.
Args:
query (str): The input query or prompt.
world_model_components (tuple): Tuple containing the model components.
root_thought_node (ThoughtNode): The root node of the Tree of Thought.
tokenizer (transformers.PreTrainedTokenizer): The tokenizer used.
max_length (int): Maximum length for the generated sequence.
inference_mode (str): Inference mode ('world_model', 'without_world_model', 'world_model_tree_of_thought')
beam_size (int): Size of the beam for beam search
n_tokens_predict (int): Number of tokens to predict at each step
Returns:
List[str] or str: The sequence of actions (thoughts) selected or generated text.
"""
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer = world_model_components
# Tokenize and encode the query
input_ids = tokenizer.encode(query, return_tensors='pt').to(device)
attention_mask = (input_ids != tokenizer.pad_token_id).long()
if inference_mode == 'without_world_model':
# Directly use the transformer model to generate text with beam search
with torch.no_grad():
generated_sequences = model_transformer.generate_with_beam_search(
src=input_ids,
tokenizer=tokenizer,
beam_size=beam_size,
max_length=max_length,
n_tokens_predict=n_tokens_predict,
temperature=args.temperature
)
best_sequence, best_score = generated_sequences[0]
generated_text = tokenizer.decode(best_sequence[0], skip_special_tokens=True)
return generated_text
else:
# Use the world model components
with torch.no_grad():
transformer_output = model_transformer(input_ids, input_ids)
# Get the initial state representation
initial_representation = representation_network(transformer_output) # Shape: (batch_size=1, seq_len, state_dim)
initial_representation = initial_representation[:, -1, :].unsqueeze(1) # Shape: (batch_size=1, 1, state_dim)
initial_state = State(
representation=initial_representation,
dynamics_network=dynamics_network,
action_encoder=action_encoder,
thought_node=root_thought_node
)
if inference_mode == 'world_model_tree_of_thought':
# Use MCTS with Tree of Thought and multi-token beam search
mcts = MCTS(prediction_network, dynamics_network, action_encoder, num_iterations=mcts_iterations, exploration_constant=exploration_constant)
current_state = initial_state
thought_sequence = []
for _ in range(max_length // n_tokens_predict):
best_actions = mcts.search_with_beam(current_state)
thought_sequence.extend(best_actions)
# Apply the best actions to get the next state
for action in best_actions:
current_state = current_state.apply_action(action)
# Check if we've reached a leaf node (no further actions)
if len(current_state.thought_node.children) == 0:
break
return thought_sequence
else:
# Use the world model without Tree of Thought, but with multi-token beam search
beam = [(initial_state, 0.0, torch.zeros(1, device=device), torch.zeros(1, device=device))] # (state, score, cum_entropy, cum_variance)
for _ in range(max_length // n_tokens_predict):
all_candidates = []
for state, score, cum_entropy, cum_variance in beam:
policy_logits, _ = prediction_network(state.representation)
probs = F.softmax(policy_logits / args.temperature, dim=-1)
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)
variance = torch.var(probs, dim=-1)
topk_probs, topk_indices = torch.topk(probs, k=beam_size, dim=-1)
for i in range(beam_size ** n_tokens_predict):
indices = [i // (beam_size ** j) % beam_size for j in range(n_tokens_predict)]
new_actions = [index_to_action[topk_indices[0, j, indices[j]].item()] for j in range(n_tokens_predict)]
new_score = score + torch.sum(torch.log(topk_probs[0, range(n_tokens_predict), indices]))
new_entropy = cum_entropy + torch.sum(entropy[0, indices])
new_variance = cum_variance + torch.sum(variance[0, indices])
new_state = state
for action in new_actions:
new_state = new_state.apply_action(action)
all_candidates.append((new_state, new_score, new_entropy, new_variance, new_actions))
# Select top beam_size candidates
beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:beam_size]
# Accumulate actions
if not thought_sequence:
thought_sequence = [b[4] for b in beam]
else:
for i, b in enumerate(beam):
thought_sequence[i].extend(b[4])
# Return the top sequence
return thought_sequence[0]
def train_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim):
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, _ = world_model_components
representation_network.train()
dynamics_network.train()
prediction_network.train()
action_encoder.train()
ppo_agent.policy_network.train()
total_loss = 0.0
optimizer.zero_grad()
print(f"Starting World Model training epoch with {len(train_loader)} batches...")
for i, batch in enumerate(train_loader):
print(f"Processing batch {i+1}/{len(train_loader)}...")
# Move batches to the device
src_batch = batch['input_ids'].to(device)
tgt_batch = batch['labels'].to(device)
with torch.amp.autocast(device_type='cuda'):
print("Forward pass through Transformer (frozen)...")
with torch.no_grad():
transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])
# World Model - Representation
state_representation = representation_network(transformer_output)
# For simplicity, let's assume true actions are provided (e.g., next tokens)
true_actions = tgt_batch[:, :-1]
action_sequences = true_actions
# Get action embeddings
action_embeddings = action_encoder(action_sequences)
# Apply dynamics network
predicted_next_state_batch = dynamics_network(state_representation, action_embeddings)
# Prediction Network - Policy logits and value
policy_logits, value_estimates = prediction_network(predicted_next_state_batch)
# Define true_policy and true_value as placeholders on the GPU
true_policy = F.one_hot(true_actions, num_classes=input_dim).float()
true_value = torch.zeros_like(value_estimates).to(device)
# Compute individual losses
ppo_loss = ppo_agent.compute_loss(
state_representation,
torch.zeros_like(true_actions, dtype=torch.float32).to(device),
true_actions,
torch.zeros_like(value_estimates, dtype=torch.float32).to(device),
torch.zeros_like(value_estimates, dtype=torch.float32).to(device)
)
info_nce = InfoNCE_Loss()(
state_representation.reshape(-1, state_dim),
F.dropout(state_representation.reshape(-1, state_dim), p=0.1, training=True)
)
covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1)))
dynamics_loss = DynamicsPerformanceLoss()(state_representation, predicted_next_state_batch)
perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01
thought_loss = ThoughtConsistencyLoss()(predicted_next_state_batch, perturbed_next_state)
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
action_diversity = ActionDiversityReward()(action_embeddings.view(-1, embed_dim))
mcts_best_values = torch.zeros(true_actions.size(0)).to(device)
etv = ExpectedThoughtValueLoss()(mcts_best_values)
visit_counts = torch.ones(true_actions.size(0), policy_logits.size(-1)).to(device)
exploration = ExplorationRegularization()(visit_counts)
old_policy = F.softmax(policy_logits.detach(), dim=-1)
new_policy = F.softmax(policy_logits, dim=-1)
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
# Total Loss
loss = (
ppo_loss +
info_nce +
covariance +
dynamics_loss +
thought_loss +
pv_loss +
action_diversity +
etv +
exploration +
kl_loss
)
loss = loss / args.accumulation_steps
print("Backward pass...")
scaler.scale(loss).backward()
if (i + 1) % args.accumulation_steps == 0 or (i + 1) == len(train_loader):
print("Gradient clipping...")
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
[param for group in optimizer.param_groups for param in group['params']],
args.max_grad_norm
)
print("Optimizer step...")
scaler.step(optimizer)
scaler.update()
print("Zeroing gradients...")
optimizer.zero_grad()
print("Updating learning rate...")
scheduler.step()
total_loss += loss.item() * args.accumulation_steps
# Print individual losses and total loss for this batch
print(f"Batch {i+1} completed. Losses:")
print(f" PPO Loss: {ppo_loss.item():.4f}")
print(f" InfoNCE Loss: {info_nce.item():.4f}")
print(f" Covariance Loss: {covariance.item():.4f}")
print(f" Dynamics Loss: {dynamics_loss.item():.4f}")
print(f" Thought Consistency Loss: {thought_loss.item():.4f}")
print(f" Policy-Value Loss: {pv_loss.item():.4f}")
print(f" Action Diversity Loss: {action_diversity.item():.4f}")
print(f" Expected Thought Value Loss: {etv.item():.4f}")
print(f" Exploration Loss: {exploration.item():.4f}")
print(f" KL Divergence Loss: {kl_loss.item():.4f}")
print(f" Total Loss: {loss.item():.4f}")
avg_loss = total_loss / len(train_loader)
print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}")
return avg_loss
def train_epoch_language_model(model, train_loader, optimizer, scheduler, scaler, args):
model.train()
total_loss = 0.0
optimizer.zero_grad()
print(f"Starting Language Model training epoch with {len(train_loader)} batches...")
for i, batch in enumerate(train_loader):
input_ids = batch['input_ids'].to(device)
labels = batch['labels'].to(device)
with autocast():
outputs = model(input_ids, input_ids)
logits = outputs.view(-1, outputs.size(-1))
labels = labels.view(-1)
loss = F.cross_entropy(logits, labels, ignore_index=model.embedding.padding_idx)
loss = loss / args.accumulation_steps
scaler.scale(loss).backward()
if (i + 1) % args.accumulation_steps == 0 or (i + 1) == len(train_loader):
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
[param for group in optimizer.param_groups for param in group['params']],
args.max_grad_norm
)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
scheduler.step()
total_loss += loss.item() * args.accumulation_steps
print(f"Batch {i + 1} completed. Current loss: {loss.item():.4f}")
avg_loss = total_loss / len(train_loader)
print(f"Language Model training epoch completed. Average loss: {avg_loss:.4f}")
return avg_loss
def train_custom_data_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim):
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, _ = world_model_components
representation_network.train()
dynamics_network.train()
prediction_network.train()
action_encoder.train()
ppo_agent.policy_network.train()
total_loss = 0.0
optimizer.zero_grad()
print(f"Starting World Model training epoch with {len(train_loader)} batches...")
for i, batch in enumerate(train_loader):
print(f"Processing batch {i+1}/{len(train_loader)}...")
# Move batches to the device
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
episode_reward = batch['episode_reward'].to(device)
loss_value = batch['loss'].to(device)
cosine_similarity = batch['cosine_similarity'].to(device)
rag_performance = batch['rag_performance'].to(device)
ranking_model_performance = batch['ranking_model_performance'].to(device)
with torch.amp.autocast(device_type='cuda'):
print("Forward pass through Transformer (frozen)...")
with torch.no_grad():
transformer_output = model_transformer(input_ids, input_ids)
# World Model - Representation
state_representation = representation_network(transformer_output)
print(f"State representation shape: {state_representation.shape}")
# For simplicity, let's assume true actions are provided (e.g., next tokens)
true_actions = input_ids[:, 1:] # Shift input_ids by 1 to get next tokens
print(f"True actions shape: {true_actions.shape}")
action_sequences = true_actions
# Get action embeddings
action_embeddings = action_encoder(action_sequences)
print(f"Action embeddings shape: {action_embeddings.shape}")
# Ensure state_representation and action_embeddings have the same sequence length
min_seq_len = min(state_representation.size(1), action_embeddings.size(1))
state_representation = state_representation[:, :min_seq_len, :]
action_embeddings = action_embeddings[:, :min_seq_len, :]
print(f"Adjusted state representation shape: {state_representation.shape}")
print(f"Adjusted action embeddings shape: {action_embeddings.shape}")
# Apply dynamics network
predicted_next_state_batch = dynamics_network(state_representation, action_embeddings)
print(f"Predicted next state batch shape: {predicted_next_state_batch.shape}")
# Prediction Network - Policy logits and value
policy_logits, value_estimates = prediction_network(predicted_next_state_batch)
# Adjust true_actions to match the sequence length
true_actions = true_actions[:, :min_seq_len]
# Define true_policy and true_value
true_policy = F.one_hot(true_actions, num_classes=input_dim).float()
true_value = episode_reward.unsqueeze(1).expand(-1, min_seq_len) # Expand to match sequence length
# Compute individual losses
info_nce = InfoNCE_Loss()(
state_representation.reshape(-1, state_dim),
F.dropout(state_representation.reshape(-1, state_dim), p=0.1, training=True)
)
covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1)))
dynamics_loss = DynamicsPerformanceLoss()(state_representation, predicted_next_state_batch)
perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01
thought_loss = ThoughtConsistencyLoss()(predicted_next_state_batch, perturbed_next_state)
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
action_diversity = ActionDiversityReward()(action_embeddings.view(-1, embed_dim))
mcts_best_values = torch.zeros(true_actions.size(0)).to(device)
etv = ExpectedThoughtValueLoss()(mcts_best_values)
visit_counts = torch.ones(true_actions.size(0), policy_logits.size(-1)).to(device)
exploration = ExplorationRegularization()(visit_counts)
old_policy = F.softmax(policy_logits.detach(), dim=-1)
new_policy = F.softmax(policy_logits, dim=-1)
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
# Compute mean value estimates over the sequence length
value_estimates_mean = value_estimates.squeeze(-1).mean(dim=1) # Shape: [batch_size]
# Add new loss components
rag_loss = F.mse_loss(value_estimates_mean, rag_performance)
ranking_loss = F.mse_loss(value_estimates_mean, ranking_model_performance)
cosine_similarity_loss = 1 - cosine_similarity.mean() # Maximize cosine similarity
# Total Loss
loss = (
info_nce +
covariance +
dynamics_loss +
thought_loss +
pv_loss +
action_diversity +
etv +
exploration +
kl_loss +
rag_loss +
ranking_loss +
cosine_similarity_loss
)
loss = loss / args.accumulation_steps
print("Backward pass...")
scaler.scale(loss).backward()
if (i + 1) % args.accumulation_steps == 0 or (i + 1) == len(train_loader):
print("Gradient clipping...")
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
[param for group in optimizer.param_groups for param in group['params']],
args.max_grad_norm
)
print("Optimizer step...")
scaler.step(optimizer)
scaler.update()
print("Zeroing gradients...")
optimizer.zero_grad()
print("Updating learning rate...")
scheduler.step()
# Print individual losses and total loss for this batch
print(f"Batch {i+1} completed. Losses:")
print(f" InfoNCE Loss: {info_nce.item():.4f}")
print(f" Covariance Loss: {covariance.item():.4f}")
print(f" Dynamics Loss: {dynamics_loss.item():.4f}")
print(f" Thought Consistency Loss: {thought_loss.item():.4f}")
print(f" Policy-Value Loss: {pv_loss.item():.4f}")
print(f" Action Diversity Loss: {action_diversity.item():.4f}")
print(f" Expected Thought Value Loss: {etv.item():.4f}")
print(f" Exploration Loss: {exploration.item():.4f}")
print(f" KL Divergence Loss: {kl_loss.item():.4f}")
print(f" RAG Loss: {rag_loss.item():.4f}")
print(f" Ranking Loss: {ranking_loss.item():.4f}")
print(f" Cosine Similarity Loss: {cosine_similarity_loss.item():.4f}")
print(f" Total Loss: {loss.item():.4f}")
avg_loss = total_loss / len(train_loader)
print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}")
return avg_loss
def main():
args = parse_args()
print("Arguments parsed successfully.")
# Create save directory
os.makedirs(args.save_dir, exist_ok=True)
print(f"Save directory created: {args.save_dir}")
# Load tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Tokenizer loaded successfully.")
# Define padding_idx and input dimension based on tokenizer
padding_idx = tokenizer.pad_token_id
input_dim = len(tokenizer)
# Initialize the Transformer model on GPU
print("Initializing Transformer model...")
model_transformer = Transformer(
input_dim=input_dim,
d_model=128,
num_heads=4,
num_layers=4,
d_ff=256,
num_experts=2,
output_dim=input_dim,
dropout=0.1,
top_k=2
).to(device)
model_transformer.train()
print("Transformer model initialized on device.")
# Define model parameters (adjusted for speed)
d_model = 32
state_dim = 32
action_dim = d_model
hidden_dim = 64
vocab_dim = input_dim
embed_dim = d_model
# Define World Model components
representation_network = RepresentationNetwork(vocab_dim, d_model, state_dim).to(device)
dynamics_network = DynamicsNetwork(state_dim, action_dim, hidden_dim).to(device)
prediction_network = PredictionNetwork(state_dim, input_dim, 1).to(device)
action_encoder = ActionEncoder(input_dim, action_dim).to(device)
# Initialize PPO Agent
ppo_agent = PPOAgent(
policy_network=prediction_network,
optimizer=optim.AdamW(prediction_network.parameters(), lr=args.learning_rate),
clip_epsilon=0.2,
entropy_coef=0.01,
value_coef=0.5
)
# Bundle World Model components
world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer)
print(f"Current mode: {args.mode}")
if args.mode == 'train':
print("Loading and preprocessing data...")
if args.use_custom_data:
custom_data = load_custom_data_from_files(args.custom_data_paths)
processed_data = preprocess_custom_data(custom_data)
train_loader, eval_loader = load_custom_data(args, tokenizer, processed_data)
print("Custom data loaded and preprocessed successfully.")
else:
train_loader, eval_loader = load_data(args, tokenizer)
print("Default data loaded and preprocessed successfully.")
# Optimizer and Scheduler
optimizer = optim.AdamW(
list(representation_network.parameters()) +
list(dynamics_network.parameters()) +
list(prediction_network.parameters()) +
list(action_encoder.parameters()),
lr=args.learning_rate, weight_decay=args.weight_decay
) if args.train_mode == 'world_model' else optim.AdamW(model_transformer.parameters(), lr=args.learning_rate)
scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
scaler = GradScaler()
print(f"Starting {args.train_mode} training...")
for epoch in range(args.num_epochs):
if args.train_mode == 'world_model':
if args.use_custom_data:
avg_loss = train_custom_data_epoch_world_model(
world_model_components,
train_loader,
optimizer,
scheduler,
scaler,
args,
model_transformer,
state_dim,
embed_dim,
input_dim
)
else:
avg_loss = train_epoch_world_model(
world_model_components,
train_loader,
optimizer,
scheduler,
scaler,
args,
model_transformer,
state_dim,
embed_dim,
input_dim
)
else:
avg_loss = train_epoch_language_model(
model_transformer,
train_loader,
optimizer,
scheduler,
scaler,
args
)
print(f"{args.train_mode.capitalize()} training epoch {epoch + 1} completed. Average loss: {avg_loss:.4f}")
# Save models
if args.train_mode == 'world_model':
save_all_models(model_transformer, representation_network, dynamics_network, prediction_network, action_encoder, args.save_dir, epoch + 1)
print(f"Models saved for epoch {epoch + 1}")
else:
torch.save(model_transformer.state_dict(), os.path.join(args.save_dir, f'language_model_epoch_{epoch + 1}.pt'))
print(f"Language model saved for epoch {epoch + 1}")
print("Training completed.")
elif args.mode == 'inference':
print("Entering inference mode...")
# Build Tree of Thought if needed
print("Building Tree of Thought...")
tree_root = build_tree_of_thought()
print("Tree of Thought built successfully.")
# Generate action list
print("Generating action list...")
action_list = []
traverse_tree(tree_root, action_list)
print(f"Action list generated. Total actions: {len(action_list)}")
# Create mappings
global action_to_index, index_to_action
action_to_index = {action: idx for idx, action in enumerate(action_list)}
index_to_action = {idx: action for action, idx in action_to_index.items()}
action_vocab_size = len(action_list)
print(f"Action mappings created. Vocabulary size: {action_vocab_size}")
# Initialize or load models based on the load_model argument
if args.load_model:
print(f"Loading saved model from {args.load_model}")
# Load the saved models
model_transformer.load_state_dict(torch.load(os.path.join(args.load_model, 'transformer_model.pt')))
representation_network.load_state_dict(torch.load(os.path.join(args.load_model, 'representation_network.pt')))
dynamics_network.load_state_dict(torch.load(os.path.join(args.load_model, 'dynamics_network.pt')))
# Load prediction network and adjust its size if necessary
saved_state_dict = torch.load(os.path.join(args.load_model, 'prediction_network.pt'))
saved_vocab_size = saved_state_dict['policy_head.weight'].size(0)
if saved_vocab_size != action_vocab_size:
print(f"Adjusting prediction network size from {saved_vocab_size} to {action_vocab_size}")
prediction_network = PredictionNetwork(state_dim, saved_vocab_size, 1).to(device)
prediction_network.load_state_dict(saved_state_dict)
prediction_network.policy_head = nn.Linear(prediction_network.state_dim, action_vocab_size).to(device)
else:
prediction_network = PredictionNetwork(state_dim, action_vocab_size, 1).to(device)
prediction_network.load_state_dict(saved_state_dict)
action_encoder.load_state_dict(torch.load(os.path.join(args.load_model, 'action_encoder.pt')))
else:
print("Using newly initialized models")
# Prepare the components
world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer)
print("Starting inference loop...")
while True:
if args.query:
query = args.query
args.query = None # Reset query for next iteration
else:
query = input("Please enter your query (or type 'exit' to quit): ")
if query.lower() == 'exit':
break
print(f"Processing query: {query}")
result = infer(query, world_model_components, tree_root, tokenizer,
max_length=args.max_length,
inference_mode=args.inference_mode,
beam_size=args.beam_size,
n_tokens_predict=args.n_tokens_predict,
mcts_iterations=args.mcts_iterations,
exploration_constant=args.mcts_exploration_constant)
if args.inference_mode == 'without_world_model':
print("Generated Text:")
print(result)
else:
print("Generated Thought Sequence:")
for thought in result:
print(thought)
print("\n") # Add a newline for better readability between queries
print("Inference completed.")
else:
print(f"Invalid mode: {args.mode}. Please choose 'train' or 'inference'.")
if __name__ == '__main__':
sys.argv = [
'lightbulb_2.py',
'--mode', 'inference',
'--train_mode', 'world_model', # Set 'world_model' or 'language_model' depending on the training mode
'--dataset_name', 'wikitext', # Specify the Hugging Face dataset (e.g., 'wikitext')
'--dataset_config', 'wikitext-2-raw-v1', # Use if you need a specific config of the dataset
'--num_epochs', '10',
'--batch_size', '4',
'--accumulation_steps', '1',
'--max_grad_norm', '1.0',
'--weight_decay', '0.01',
'--learning_rate', '1e-4',
'--max_length', '512',
'--save_dir', './trained_models',
# Uncomment the following line to use custom data instead of a Hugging Face dataset
#'--use_custom_data',
'--custom_data_paths', '/content/drive/MyDrive/lightbulb/knowledge_base.json',
'--custom_data_paths', '/content/drive/MyDrive/lightbulb/rag_cache.json',
'--custom_data_paths', '/content/drive/MyDrive/lightbulb/llm_training_data/llm_training_data.jsonl'
]
# Parse the arguments and run the main training function
args = parse_args()
# Check which data source to use
if args.use_custom_data:
print("Training with custom data from paths:")
for path in args.custom_data_paths:
print(f" - {path}")
else:
print(f"Training with dataset '{args.dataset_name}' from Hugging Face Datasets")
main()