Rizzler-gyatt-69 commited on
Commit
1fa1631
·
verified ·
1 Parent(s): deaf9ca

End of training

Browse files
Files changed (2) hide show
  1. README.md +93 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert/distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - wnut_17
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: ner_model
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: wnut_17
22
+ type: wnut_17
23
+ config: wnut_17
24
+ split: test
25
+ args: wnut_17
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.5549805950840879
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.39759036144578314
33
+ - name: F1
34
+ type: f1
35
+ value: 0.4632829373650108
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.9468599033816425
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # ner_model
45
+
46
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.2763
49
+ - Precision: 0.5550
50
+ - Recall: 0.3976
51
+ - F1: 0.4633
52
+ - Accuracy: 0.9469
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 3
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 1.0 | 213 | 0.2519 | 0.5165 | 0.3781 | 0.4366 | 0.9449 |
84
+ | No log | 2.0 | 426 | 0.2690 | 0.5622 | 0.3855 | 0.4574 | 0.9466 |
85
+ | 0.0833 | 3.0 | 639 | 0.2763 | 0.5550 | 0.3976 | 0.4633 | 0.9469 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.46.2
91
+ - Pytorch 2.5.0+cu121
92
+ - Datasets 3.1.0
93
+ - Tokenizers 0.20.3
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a066ff2aaea98c4d45558d0cbb1ceaebb5ae8ffd19efe7585587b46cf777677
3
  size 265503852
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be79428d547dcc76c64e62d81a9d111fa518666a0e55b02e6d5010498f6e361a
3
  size 265503852