RiturajB commited on
Commit
4073e9b
·
1 Parent(s): bd9df45

LunarLanderPPO-v0.1-upload

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 273.30 +/- 14.66
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f35ca70ecb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35ca70ed40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35ca70edd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35ca70ee60>", "_build": "<function ActorCriticPolicy._build at 0x7f35ca70eef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f35ca70ef80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f35ca70f010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35ca70f0a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f35ca70f130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35ca70f1c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35ca70f250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35ca70f2e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f35ca71c280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687755003537654364, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA3kIj70UxI+dRRnvg4dWL4xJ6u94m7qPQAAAAAAAAAAzSRTvMdkrT+iCvu98O+8voU9sby2/nO9AAAAAAAAAAAzamm9abdAvBaRmrt5WFs8gk28veX1Nj0AAIA/AACAPwAk57vS+7Y//OWPvRsXGL0b/qm5YBrbugAAAAAAAAAAANE7PeHcs7rykn8zJJeFLst1STnSW7qzAACAPwAAgD8z8BK91yZSu2vaObvlO+q70xS+vCPmqbwAAIA/AACAP81INbxToHA/Lq4Svbv/E78Awwi9ve3gvQAAAAAAAAAAM43rvHtUoLqZXEYzcK3RL8bL77qGZ8CzAACAPwAAgD+Nmsm9aK6bPYn2Qz595VG+Kw6lPdtdzTwAAAAAAAAAAM3QYD7bikQ/AKLcPfnLDr94CXQ+uoyVuwAAAAAAAAAAM7u5PbCDwT6VgFu+r0yrvlQOjbyvKoC9AAAAAAAAAACmjZo9ln+8PxHUJD/Qqew9vIeXO20ZND4AAAAAAAAAAGagybzh9IC6a5OrNv73EzK0I446EnHGtQAAgD8AAIA/AIWHvaQiITz3qz8+z1wxvtjQgTx6U7U9AAAAAAAAAAATblU+t5aFP5k1uj5g9Ru/1uySPrJ73jwAAAAAAAAAAM1SUD2Fi4o4qjU7u6qHkzhXqFk7kp7MOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKR6BI4EOmMAWyUTV0BjAF0lEdAlKQfiDM/yHV9lChoBkdAcAYYiPhhpmgHS9toCEdAlKRMsH0K7nV9lChoBkdAcJcWom5UcWgHS/RoCEdAlKSL+T/yXnV9lChoBkdAbj4wEhaC+WgHTRoBaAhHQJSlMRPGhmJ1fZQoaAZHQHKZXnlnyupoB00zAWgIR0CUpb07KaG6dX2UKGgGR0BzVA7nxJ/YaAdNBQFoCEdAlKanWe6I33V9lChoBkdAcySaZx7zCmgHTRIBaAhHQJSnPCxeLNx1fZQoaAZHQHHHCi7CiypoB00DA2gIR0CUp7TcqOLjdX2UKGgGR0Bxrw3zcynDaAdL62gIR0CUqMZ6D5CXdX2UKGgGR0BVVXqJMxoJaAdLwmgIR0CUqOmA9V3mdX2UKGgGR0BwDgsmOU+taAdNSgFoCEdAlKkDqfOD8XV9lChoBkdAclGlvqC6H2gHS+1oCEdAlKr+l9BrvnV9lChoBkdAbW79kz41xmgHTT4BaAhHQJSrb/m1YyR1fZQoaAZHQEF93225QP9oB0vFaAhHQJSr1SYPXkJ1fZQoaAZHQHJ8RLf1pTNoB00LAWgIR0CUrNa1Cw8odX2UKGgGR0ByphXNke6qaAdNrANoCEdAlK2yeAd4mnV9lChoBkdAcqfNG3F1jmgHS+ZoCEdAlK+kornTzHV9lChoBkdAcjegZCOWB2gHS+1oCEdAlLFcRUWEb3V9lChoBkdAcEfQ2uPmxWgHS9xoCEdAlLHtk4FRpHV9lChoBkdAcjXq814xDmgHS9FoCEdAlLNNVNpM6HV9lChoBkdAcHhQk5ZKWmgHTRUBaAhHQJS0kgSvkil1fZQoaAZHQHIgMi4axX5oB01LAWgIR0CUtKUKiO/+dX2UKGgGR0Bu9zAk9lmOaAdL/GgIR0CUtbmGM4tIdX2UKGgGR0BwnEeV9nbqaAdNFwFoCEdAlLcdJWeYlnV9lChoBkdAb+SG21D0DmgHS+ZoCEdAlLhYkAxSHnV9lChoBkdAcWAGhVU+92gHS+1oCEdAlLk33lCCz3V9lChoBkdAby4o5xR2sGgHTc4BaAhHQJS7KHTI/7l1fZQoaAZHQGJKpPIn0CloB03oA2gIR0CUvYTtsvZidX2UKGgGR0BwC2XyAhB7aAdNGQFoCEdAlL4x91EE1XV9lChoBkdAcra8w5/9YWgHTUMBaAhHQJS/tOGj9GZ1fZQoaAZHQHF5G5MDfWNoB01xAWgIR0CUwC+w1R+CdX2UKGgGR0BymL4zrNW3aAdNKQFoCEdAlMDix/ustHV9lChoBkdAb6CzSCvovGgHTQsBaAhHQJTA7E74i5d1fZQoaAZHQHGAl0Lc9GJoB0vdaAhHQJTBOkUKzAx1fZQoaAZHQHLvbzkIX0poB00QAWgIR0CUwXWBz3h5dX2UKGgGR0Bx1ypeeFtbaAdL7mgIR0CUwnAaNuLrdX2UKGgGR0BRvwRChN/OaAdLxWgIR0CUwojT8YQ8dX2UKGgGR0Bv9k5sCT2WaAdNHQFoCEdAlMKoyj59E3V9lChoBkdAcf5oBJZntmgHTRQBaAhHQJTEbRc/t6Z1fZQoaAZHQG1cYG2TgVJoB0v4aAhHQJTEoVxjriV1fZQoaAZHQHKyrD63y7RoB0voaAhHQJTbh4jbBXV1fZQoaAZHQHHdAvxpcopoB003AWgIR0CU278K5TZQdX2UKGgGR0BupbT4L1EmaAdNEwFoCEdAlNvZzHS4OXV9lChoBkdAcsEhqj8DS2gHTawBaAhHQJTcFg/keZJ1fZQoaAZHQHEqvD1oQFtoB0vlaAhHQJTccgTyrgh1fZQoaAZHQHDWGNrCWNZoB00AAWgIR0CU3NE384xUdX2UKGgGR0BuqiBf8dgfaAdNJQFoCEdAlNze8CgbqHV9lChoBkdAcgQnOjZcs2gHTQwBaAhHQJTeg1wYLst1fZQoaAZHQHEr9y5qdpZoB00bAWgIR0CU3oIuGsV+dX2UKGgGR0Bx6w4vN/vwaAdL72gIR0CU3szDXOGCdX2UKGgGR0BybTYvnKW+aAdNEwFoCEdAlN/x/RVp9XV9lChoBkdAcazdGAkLQWgHTSQBaAhHQJTgdmVZ9ux1fZQoaAZHQHAyXUUfxMFoB0voaAhHQJTggVtXPqt1fZQoaAZHQHEWd7v5P/JoB0vsaAhHQJTg5VR1oxp1fZQoaAZHQEw4yhzvJBBoB0uzaAhHQJTizQE6kqN1fZQoaAZHQHCWowAU+LZoB02OAWgIR0CU4sefqX4TdX2UKGgGR0BkPCeoUBXCaAdN6ANoCEdAlOP7KV6eG3V9lChoBkdAcPxSoOx0MmgHS+toCEdAlOQluNxVAHV9lChoBkdAcNBtsN2C/WgHS/VoCEdAlOQ1dgOSXHV9lChoBkdAboQk+otL+WgHS/doCEdAlOS+kP+XJHV9lChoBkdActCDTjNpumgHTSQBaAhHQJTmDkZJkG11fZQoaAZHQFOed2Pkq+doB0ulaAhHQJTmkjQiRnx1fZQoaAZHQHEHt43WFvhoB0vyaAhHQJTm+PPszEd1fZQoaAZHQHFaKxkd3jdoB0vpaAhHQJTpKi8Fpwl1fZQoaAZHQG6Vd8zAN5NoB00KAWgIR0CU6j5Pdl/ZdX2UKGgGR0BzCpLcsUZfaAdNYgFoCEdAlOpogA6uGXV9lChoBkdAcVNhBZ6lcmgHTQYBaAhHQJTq4Vwgkkd1fZQoaAZHQHDbUMb3oLZoB01KAWgIR0CU65g7HQyAdX2UKGgGR0Bv37sjVx0daAdNRQFoCEdAlOu6yOaOP3V9lChoBkdAbXyY2sJY1mgHTXkBaAhHQJTrwzO5avB1fZQoaAZHQHBVuNkvsZ5oB0v5aAhHQJTvYyoGY8d1fZQoaAZHQHBpUtdzGPxoB00qAWgIR0CU7+iADq4ZdX2UKGgGR0BxH1fu1F6SaAdNMAFoCEdAlPA9Gqgh83V9lChoBkdAcn8rjYI0ImgHS/xoCEdAlPCBk3CKrXV9lChoBkdAcv9Qw9JSSGgHTTcBaAhHQJTyX7DVH4J1fZQoaAZHQHB6sK9f1HxoB00xAWgIR0CU8m7yhBZ7dX2UKGgGR0ByLhuJk5IZaAdNAQFoCEdAlPP2vKU3XXV9lChoBkdAb/KJx//ecmgHTRwBaAhHQJT0H74zrNZ1fZQoaAZHQHDVdPk7wKBoB002AWgIR0CU9mbFjurqdX2UKGgGR0ByhenP3SKFaAdL5mgIR0CU9sGSIP9UdX2UKGgGR0BvJdEE1VHXaAdNBwFoCEdAlPbqjSG8EnV9lChoBkdAcXvkUbkwOGgHS/1oCEdAlPeDijtXxXV9lChoBkdAcOqtkWhysGgHTQABaAhHQJT48UO/cnF1fZQoaAZHQHHfUzO5avBoB00dAWgIR0CU+RMl1KXfdX2UKGgGR0BxrdgrpaA4aAdNEwFoCEdAlPnzNUwSJ3V9lChoBkdAblYkZaV2R2gHTS4BaAhHQJT7KS/0ulJ1fZQoaAZHQHFG/gaWHDdoB0vOaAhHQJT7Q1/DtPZ1fZQoaAZHQHHr3tWuHN5oB0vgaAhHQJT7XBacI7h1fZQoaAZHQE65uJDVpbloB0uhaAhHQJT8euW8h9t1fZQoaAZHQHD21Ed/8VJoB00AAWgIR0CU/S0qH447dX2UKGgGR0BzBUdbPhQ4aAdL8GgIR0CU/j9cry2AdX2UKGgGR0Bx6p7kXDWLaAdL8GgIR0CU/kearmyPdX2UKGgGR0BvQoT7EYO2aAdNIwFoCEdAlP69Nzr/sHV9lChoBkdAcOPuPFNtZWgHS/xoCEdAlP+iT2WY4XV9lChoBkdAcdvxD9fkWGgHTQsBaAhHQJUBuQRwqAl1fZQoaAZHQHEvUF8ohIRoB00SAWgIR0CVAh3ai9IxdX2UKGgGR0ByCZbt7a7FaAdNEgFoCEdAlQKLx/d69nV9lChoBkdAR/IwudwvQGgHS7poCEdAlQObHdXT3XV9lChoBkdAcFeQQtjCpGgHS+loCEdAlQOs7p3X7XV9lChoBkdAcDBqgRK6F2gHS+doCEdAlQOtaEBbOnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb83c024d2a84cda5b37a2f318f70dc497a0be0956930a8f99fa94c88a2fc8fe
3
+ size 146703
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f35ca70ecb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35ca70ed40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35ca70edd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35ca70ee60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f35ca70eef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f35ca70ef80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f35ca70f010>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35ca70f0a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f35ca70f130>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35ca70f1c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35ca70f250>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35ca70f2e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f35ca71c280>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1687755003537654364,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA3kIj70UxI+dRRnvg4dWL4xJ6u94m7qPQAAAAAAAAAAzSRTvMdkrT+iCvu98O+8voU9sby2/nO9AAAAAAAAAAAzamm9abdAvBaRmrt5WFs8gk28veX1Nj0AAIA/AACAPwAk57vS+7Y//OWPvRsXGL0b/qm5YBrbugAAAAAAAAAAANE7PeHcs7rykn8zJJeFLst1STnSW7qzAACAPwAAgD8z8BK91yZSu2vaObvlO+q70xS+vCPmqbwAAIA/AACAP81INbxToHA/Lq4Svbv/E78Awwi9ve3gvQAAAAAAAAAAM43rvHtUoLqZXEYzcK3RL8bL77qGZ8CzAACAPwAAgD+Nmsm9aK6bPYn2Qz595VG+Kw6lPdtdzTwAAAAAAAAAAM3QYD7bikQ/AKLcPfnLDr94CXQ+uoyVuwAAAAAAAAAAM7u5PbCDwT6VgFu+r0yrvlQOjbyvKoC9AAAAAAAAAACmjZo9ln+8PxHUJD/Qqew9vIeXO20ZND4AAAAAAAAAAGagybzh9IC6a5OrNv73EzK0I446EnHGtQAAgD8AAIA/AIWHvaQiITz3qz8+z1wxvtjQgTx6U7U9AAAAAAAAAAATblU+t5aFP5k1uj5g9Ru/1uySPrJ73jwAAAAAAAAAAM1SUD2Fi4o4qjU7u6qHkzhXqFk7kp7MOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVGgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKR6BI4EOmMAWyUTV0BjAF0lEdAlKQfiDM/yHV9lChoBkdAcAYYiPhhpmgHS9toCEdAlKRMsH0K7nV9lChoBkdAcJcWom5UcWgHS/RoCEdAlKSL+T/yXnV9lChoBkdAbj4wEhaC+WgHTRoBaAhHQJSlMRPGhmJ1fZQoaAZHQHKZXnlnyupoB00zAWgIR0CUpb07KaG6dX2UKGgGR0BzVA7nxJ/YaAdNBQFoCEdAlKanWe6I33V9lChoBkdAcySaZx7zCmgHTRIBaAhHQJSnPCxeLNx1fZQoaAZHQHHHCi7CiypoB00DA2gIR0CUp7TcqOLjdX2UKGgGR0Bxrw3zcynDaAdL62gIR0CUqMZ6D5CXdX2UKGgGR0BVVXqJMxoJaAdLwmgIR0CUqOmA9V3mdX2UKGgGR0BwDgsmOU+taAdNSgFoCEdAlKkDqfOD8XV9lChoBkdAclGlvqC6H2gHS+1oCEdAlKr+l9BrvnV9lChoBkdAbW79kz41xmgHTT4BaAhHQJSrb/m1YyR1fZQoaAZHQEF93225QP9oB0vFaAhHQJSr1SYPXkJ1fZQoaAZHQHJ8RLf1pTNoB00LAWgIR0CUrNa1Cw8odX2UKGgGR0ByphXNke6qaAdNrANoCEdAlK2yeAd4mnV9lChoBkdAcqfNG3F1jmgHS+ZoCEdAlK+kornTzHV9lChoBkdAcjegZCOWB2gHS+1oCEdAlLFcRUWEb3V9lChoBkdAcEfQ2uPmxWgHS9xoCEdAlLHtk4FRpHV9lChoBkdAcjXq814xDmgHS9FoCEdAlLNNVNpM6HV9lChoBkdAcHhQk5ZKWmgHTRUBaAhHQJS0kgSvkil1fZQoaAZHQHIgMi4axX5oB01LAWgIR0CUtKUKiO/+dX2UKGgGR0Bu9zAk9lmOaAdL/GgIR0CUtbmGM4tIdX2UKGgGR0BwnEeV9nbqaAdNFwFoCEdAlLcdJWeYlnV9lChoBkdAb+SG21D0DmgHS+ZoCEdAlLhYkAxSHnV9lChoBkdAcWAGhVU+92gHS+1oCEdAlLk33lCCz3V9lChoBkdAby4o5xR2sGgHTc4BaAhHQJS7KHTI/7l1fZQoaAZHQGJKpPIn0CloB03oA2gIR0CUvYTtsvZidX2UKGgGR0BwC2XyAhB7aAdNGQFoCEdAlL4x91EE1XV9lChoBkdAcra8w5/9YWgHTUMBaAhHQJS/tOGj9GZ1fZQoaAZHQHF5G5MDfWNoB01xAWgIR0CUwC+w1R+CdX2UKGgGR0BymL4zrNW3aAdNKQFoCEdAlMDix/ustHV9lChoBkdAb6CzSCvovGgHTQsBaAhHQJTA7E74i5d1fZQoaAZHQHGAl0Lc9GJoB0vdaAhHQJTBOkUKzAx1fZQoaAZHQHLvbzkIX0poB00QAWgIR0CUwXWBz3h5dX2UKGgGR0Bx1ypeeFtbaAdL7mgIR0CUwnAaNuLrdX2UKGgGR0BRvwRChN/OaAdLxWgIR0CUwojT8YQ8dX2UKGgGR0Bv9k5sCT2WaAdNHQFoCEdAlMKoyj59E3V9lChoBkdAcf5oBJZntmgHTRQBaAhHQJTEbRc/t6Z1fZQoaAZHQG1cYG2TgVJoB0v4aAhHQJTEoVxjriV1fZQoaAZHQHKyrD63y7RoB0voaAhHQJTbh4jbBXV1fZQoaAZHQHHdAvxpcopoB003AWgIR0CU278K5TZQdX2UKGgGR0BupbT4L1EmaAdNEwFoCEdAlNvZzHS4OXV9lChoBkdAcsEhqj8DS2gHTawBaAhHQJTcFg/keZJ1fZQoaAZHQHEqvD1oQFtoB0vlaAhHQJTccgTyrgh1fZQoaAZHQHDWGNrCWNZoB00AAWgIR0CU3NE384xUdX2UKGgGR0BuqiBf8dgfaAdNJQFoCEdAlNze8CgbqHV9lChoBkdAcgQnOjZcs2gHTQwBaAhHQJTeg1wYLst1fZQoaAZHQHEr9y5qdpZoB00bAWgIR0CU3oIuGsV+dX2UKGgGR0Bx6w4vN/vwaAdL72gIR0CU3szDXOGCdX2UKGgGR0BybTYvnKW+aAdNEwFoCEdAlN/x/RVp9XV9lChoBkdAcazdGAkLQWgHTSQBaAhHQJTgdmVZ9ux1fZQoaAZHQHAyXUUfxMFoB0voaAhHQJTggVtXPqt1fZQoaAZHQHEWd7v5P/JoB0vsaAhHQJTg5VR1oxp1fZQoaAZHQEw4yhzvJBBoB0uzaAhHQJTizQE6kqN1fZQoaAZHQHCWowAU+LZoB02OAWgIR0CU4sefqX4TdX2UKGgGR0BkPCeoUBXCaAdN6ANoCEdAlOP7KV6eG3V9lChoBkdAcPxSoOx0MmgHS+toCEdAlOQluNxVAHV9lChoBkdAcNBtsN2C/WgHS/VoCEdAlOQ1dgOSXHV9lChoBkdAboQk+otL+WgHS/doCEdAlOS+kP+XJHV9lChoBkdActCDTjNpumgHTSQBaAhHQJTmDkZJkG11fZQoaAZHQFOed2Pkq+doB0ulaAhHQJTmkjQiRnx1fZQoaAZHQHEHt43WFvhoB0vyaAhHQJTm+PPszEd1fZQoaAZHQHFaKxkd3jdoB0vpaAhHQJTpKi8Fpwl1fZQoaAZHQG6Vd8zAN5NoB00KAWgIR0CU6j5Pdl/ZdX2UKGgGR0BzCpLcsUZfaAdNYgFoCEdAlOpogA6uGXV9lChoBkdAcVNhBZ6lcmgHTQYBaAhHQJTq4Vwgkkd1fZQoaAZHQHDbUMb3oLZoB01KAWgIR0CU65g7HQyAdX2UKGgGR0Bv37sjVx0daAdNRQFoCEdAlOu6yOaOP3V9lChoBkdAbXyY2sJY1mgHTXkBaAhHQJTrwzO5avB1fZQoaAZHQHBVuNkvsZ5oB0v5aAhHQJTvYyoGY8d1fZQoaAZHQHBpUtdzGPxoB00qAWgIR0CU7+iADq4ZdX2UKGgGR0BxH1fu1F6SaAdNMAFoCEdAlPA9Gqgh83V9lChoBkdAcn8rjYI0ImgHS/xoCEdAlPCBk3CKrXV9lChoBkdAcv9Qw9JSSGgHTTcBaAhHQJTyX7DVH4J1fZQoaAZHQHB6sK9f1HxoB00xAWgIR0CU8m7yhBZ7dX2UKGgGR0ByLhuJk5IZaAdNAQFoCEdAlPP2vKU3XXV9lChoBkdAb/KJx//ecmgHTRwBaAhHQJT0H74zrNZ1fZQoaAZHQHDVdPk7wKBoB002AWgIR0CU9mbFjurqdX2UKGgGR0ByhenP3SKFaAdL5mgIR0CU9sGSIP9UdX2UKGgGR0BvJdEE1VHXaAdNBwFoCEdAlPbqjSG8EnV9lChoBkdAcXvkUbkwOGgHS/1oCEdAlPeDijtXxXV9lChoBkdAcOqtkWhysGgHTQABaAhHQJT48UO/cnF1fZQoaAZHQHHfUzO5avBoB00dAWgIR0CU+RMl1KXfdX2UKGgGR0BxrdgrpaA4aAdNEwFoCEdAlPnzNUwSJ3V9lChoBkdAblYkZaV2R2gHTS4BaAhHQJT7KS/0ulJ1fZQoaAZHQHFG/gaWHDdoB0vOaAhHQJT7Q1/DtPZ1fZQoaAZHQHHr3tWuHN5oB0vgaAhHQJT7XBacI7h1fZQoaAZHQE65uJDVpbloB0uhaAhHQJT8euW8h9t1fZQoaAZHQHD21Ed/8VJoB00AAWgIR0CU/S0qH447dX2UKGgGR0BzBUdbPhQ4aAdL8GgIR0CU/j9cry2AdX2UKGgGR0Bx6p7kXDWLaAdL8GgIR0CU/kearmyPdX2UKGgGR0BvQoT7EYO2aAdNIwFoCEdAlP69Nzr/sHV9lChoBkdAcOPuPFNtZWgHS/xoCEdAlP+iT2WY4XV9lChoBkdAcdvxD9fkWGgHTQsBaAhHQJUBuQRwqAl1fZQoaAZHQHEvUF8ohIRoB00SAWgIR0CVAh3ai9IxdX2UKGgGR0ByCZbt7a7FaAdNEgFoCEdAlQKLx/d69nV9lChoBkdAR/IwudwvQGgHS7poCEdAlQObHdXT3XV9lChoBkdAcFeQQtjCpGgHS+loCEdAlQOs7p3X7XV9lChoBkdAcDBqgRK6F2gHS+doCEdAlQOtaEBbOnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3581a92430d04ef317e5403e8cbd6cd26dcd59a97d6bdb3583f8c2862c632cb9
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ede030722c97f3f7b31fae4ed4f534bc76c03bb012bd013966004e239dd88086
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (194 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 273.298972, "std_reward": 14.66197643737971, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-26T05:20:07.766524"}