|
import random |
|
import torch |
|
from torch.utils.tensorboard import SummaryWriter |
|
from plotting_utils import plot_alignment_to_numpy, plot_spectrogram_to_numpy |
|
from plotting_utils import plot_gate_outputs_to_numpy |
|
|
|
|
|
class Tacotron2Logger(SummaryWriter): |
|
def __init__(self, logdir): |
|
super(Tacotron2Logger, self).__init__(logdir) |
|
|
|
def log_training(self, reduced_loss, grad_norm, learning_rate, duration, |
|
iteration): |
|
self.add_scalar("training.loss", reduced_loss, iteration) |
|
self.add_scalar("grad.norm", grad_norm, iteration) |
|
self.add_scalar("learning.rate", learning_rate, iteration) |
|
self.add_scalar("duration", duration, iteration) |
|
|
|
def log_validation(self, reduced_loss, model, y, y_pred, iteration): |
|
self.add_scalar("validation.loss", reduced_loss, iteration) |
|
_, mel_outputs, gate_outputs, alignments = y_pred |
|
mel_targets, gate_targets = y |
|
|
|
|
|
for tag, value in model.named_parameters(): |
|
tag = tag.replace('.', '/') |
|
self.add_histogram(tag, value.data.cpu().numpy(), iteration) |
|
|
|
|
|
idx = random.randint(0, alignments.size(0) - 1) |
|
self.add_image( |
|
"alignment", |
|
plot_alignment_to_numpy(alignments[idx].data.cpu().numpy().T), |
|
iteration, dataformats='HWC') |
|
self.add_image( |
|
"mel_target", |
|
plot_spectrogram_to_numpy(mel_targets[idx].data.cpu().numpy()), |
|
iteration, dataformats='HWC') |
|
self.add_image( |
|
"mel_predicted", |
|
plot_spectrogram_to_numpy(mel_outputs[idx].data.cpu().numpy()), |
|
iteration, dataformats='HWC') |
|
self.add_image( |
|
"gate", |
|
plot_gate_outputs_to_numpy( |
|
gate_targets[idx].data.cpu().numpy(), |
|
torch.sigmoid(gate_outputs[idx]).data.cpu().numpy()), |
|
iteration, dataformats='HWC') |
|
|