RishiDarkDevil
commited on
Commit
•
cf3cc27
1
Parent(s):
d942758
Upload model
Browse files- config.json +13 -0
- configuration_resnet.py +11 -0
- model_resnet.py +47 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ResnetModelForImageClassification"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_resnet.ResnetFeatureExtractorConfig",
|
7 |
+
"AutoModelForImageClassification": "model_resnet.ResnetModelForImageClassification"
|
8 |
+
},
|
9 |
+
"model_type": "resnet",
|
10 |
+
"name": "resnet152",
|
11 |
+
"torch_dtype": "float32",
|
12 |
+
"transformers_version": "4.27.1"
|
13 |
+
}
|
configuration_resnet.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class ResnetFeatureExtractorConfig(PretrainedConfig):
|
4 |
+
model_type = "resnet"
|
5 |
+
|
6 |
+
def __init__(self, name = 'resnet152', **kwargs):
|
7 |
+
if name != 'resnet152':
|
8 |
+
raise ValueError(f"`name` must be 'resnet152', got {name}.")
|
9 |
+
|
10 |
+
self.name = name
|
11 |
+
super().__init__(**kwargs)
|
model_resnet.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torchvision import transforms
|
5 |
+
from transformers.models.mvp.modeling_mvp import CrossEntropyLoss
|
6 |
+
|
7 |
+
from .configuration_resnet import ResnetFeatureExtractorConfig
|
8 |
+
|
9 |
+
class ResnetFeatureExtractor(PreTrainedModel):
|
10 |
+
config_class = ResnetFeatureExtractorConfig
|
11 |
+
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__(config)
|
14 |
+
|
15 |
+
if config.name == 'resnet152':
|
16 |
+
self.model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet152', pretrained=False)
|
17 |
+
self.model.fc = nn.Identity()
|
18 |
+
self.model.to(self.device)
|
19 |
+
self.preprocess = transforms.Compose([
|
20 |
+
transforms.Resize(256),
|
21 |
+
transforms.CenterCrop(224),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
24 |
+
])
|
25 |
+
|
26 |
+
def forward(self, images):
|
27 |
+
tensor = torch.stack([self.preprocess(image) for image in images]).to(self.device).float()
|
28 |
+
return self.model(tensor)
|
29 |
+
|
30 |
+
class ResnetModelForImageClassification(PreTrainedModel):
|
31 |
+
config_class = ResnetFeatureExtractorConfig
|
32 |
+
|
33 |
+
def __init__(self, config):
|
34 |
+
super().__init__(config)
|
35 |
+
if config.name == 'resnet152':
|
36 |
+
self.model = nn.Sequential(
|
37 |
+
nn.Linear(2048, 32),
|
38 |
+
nn.ReLU(),
|
39 |
+
nn.Linear(32, 2)
|
40 |
+
)
|
41 |
+
|
42 |
+
def forward(self, tensor, labels=None):
|
43 |
+
logits = self.model(tensor)
|
44 |
+
if labels is not None:
|
45 |
+
loss = CrossEntropyLoss()(logits, torch.tensor(labels))
|
46 |
+
return {"loss": loss, "logits": logits}
|
47 |
+
return {"logits": logits}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b809790a34c7cf9a393c984d6ccdf0049dd07b03a37469a40c1527593da1b43
|
3 |
+
size 264131
|