|
from transformers import PreTrainedModel |
|
import torch |
|
import torch.nn as nn |
|
from torchvision import transforms |
|
from transformers.models.mvp.modeling_mvp import CrossEntropyLoss |
|
|
|
from .configuration_resnet import ResnetFeatureExtractorConfig |
|
|
|
class ResnetFeatureExtractor(PreTrainedModel): |
|
config_class = ResnetFeatureExtractorConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if config.name == 'resnet152': |
|
self.model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet152', pretrained=False) |
|
self.model.fc = nn.Identity() |
|
self.model.to(self.device) |
|
self.preprocess = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
|
|
def forward(self, images): |
|
tensor = torch.stack([self.preprocess(image) for image in images]).to(self.device).float() |
|
return self.model(tensor) |
|
|
|
class ResnetModelForImageClassification(PreTrainedModel): |
|
config_class = ResnetFeatureExtractorConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
if config.name == 'resnet152': |
|
self.model = nn.Sequential( |
|
nn.Linear(2048, 32), |
|
nn.ReLU(), |
|
nn.Linear(32, 2) |
|
) |
|
|
|
def forward(self, tensor, labels=None): |
|
logits = self.model(tensor) |
|
if labels is not None: |
|
loss = CrossEntropyLoss()(logits, torch.tensor(labels)) |
|
return {"loss": loss, "logits": logits} |
|
return {"logits": logits} |