Update handler.py
Browse files- handler.py +10 -5
handler.py
CHANGED
@@ -1,20 +1,25 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
|
|
3 |
|
4 |
-
|
5 |
-
class PreTrainedPipeline():
|
6 |
def __init__(self, path=""):
|
7 |
self.processor = TrOCRProcessor.from_pretrained(path)
|
8 |
self.model = VisionEncoderDecoderModel.from_pretrained(path)
|
|
|
|
|
|
|
9 |
|
10 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
11 |
-
|
|
|
|
|
12 |
|
13 |
# process image
|
14 |
-
pixel_values = self.processor(images=
|
15 |
|
16 |
# run prediction
|
17 |
-
generated_ids = self.model.generate(pixel_values)
|
18 |
|
19 |
# decode output
|
20 |
prediction = generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
+
import torch
|
4 |
|
5 |
+
class EndpointHandler():
|
|
|
6 |
def __init__(self, path=""):
|
7 |
self.processor = TrOCRProcessor.from_pretrained(path)
|
8 |
self.model = VisionEncoderDecoderModel.from_pretrained(path)
|
9 |
+
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
self.model.to(device)
|
12 |
|
13 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
14 |
+
inputs = data.pop("inputs", data)
|
15 |
+
image_input = inputs.get('image')
|
16 |
+
|
17 |
|
18 |
# process image
|
19 |
+
pixel_values = self.processor(images=image_input, return_tensors="pt").pixel_values
|
20 |
|
21 |
# run prediction
|
22 |
+
generated_ids = self.model.generate(pixel_values.to(device))
|
23 |
|
24 |
# decode output
|
25 |
prediction = generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|