Upload 2 files
Browse files- epoch_12 (1).pth +3 -0
- rtmdet_m_textregions_2_concat.py +580 -0
epoch_12 (1).pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e356d393c6ed916b2b1ac085b3ef6075e1cbdad0a3148756f03bbcda41f2d658
|
3 |
+
size 474957088
|
rtmdet_m_textregions_2_concat.py
ADDED
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_scope = 'mmdet'
|
2 |
+
default_hooks = dict(
|
3 |
+
timer=dict(type='IterTimerHook'),
|
4 |
+
logger=dict(type='LoggerHook', interval=100),
|
5 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
6 |
+
checkpoint=dict(
|
7 |
+
type='CheckpointHook', interval=1, max_keep_ckpts=5, save_best='auto'),
|
8 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
9 |
+
visualization=dict(type='DetVisualizationHook'))
|
10 |
+
env_cfg = dict(
|
11 |
+
cudnn_benchmark=False,
|
12 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
13 |
+
dist_cfg=dict(backend='nccl'))
|
14 |
+
vis_backends = [dict(type='LocalVisBackend')]
|
15 |
+
visualizer = dict(
|
16 |
+
type='DetLocalVisualizer',
|
17 |
+
vis_backends=[dict(type='LocalVisBackend')],
|
18 |
+
name='visualizer',
|
19 |
+
save_dir='./')
|
20 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
21 |
+
log_level = 'INFO'
|
22 |
+
load_from = './epoch_12.pth'
|
23 |
+
resume = True
|
24 |
+
train_cfg = dict(
|
25 |
+
type='EpochBasedTrainLoop',
|
26 |
+
max_epochs=12,
|
27 |
+
val_interval=12,
|
28 |
+
dynamic_intervals=[(10, 1)])
|
29 |
+
val_cfg = dict(type='ValLoop')
|
30 |
+
test_cfg = dict(
|
31 |
+
type='TestLoop',
|
32 |
+
pipeline=[
|
33 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
34 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
35 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
36 |
+
dict(
|
37 |
+
type='PackDetInputs',
|
38 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
39 |
+
'scale_factor'))
|
40 |
+
])
|
41 |
+
param_scheduler = [
|
42 |
+
dict(
|
43 |
+
type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0,
|
44 |
+
end=1000),
|
45 |
+
dict(
|
46 |
+
type='CosineAnnealingLR',
|
47 |
+
eta_min=1.25e-05,
|
48 |
+
begin=6,
|
49 |
+
end=12,
|
50 |
+
T_max=6,
|
51 |
+
by_epoch=True,
|
52 |
+
convert_to_iter_based=True)
|
53 |
+
]
|
54 |
+
optim_wrapper = dict(
|
55 |
+
type='OptimWrapper',
|
56 |
+
optimizer=dict(type='AdamW', lr=0.00025, weight_decay=0.05),
|
57 |
+
paramwise_cfg=dict(
|
58 |
+
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
59 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
60 |
+
dataset_type = 'CocoDataset'
|
61 |
+
data_root = 'data/coco/'
|
62 |
+
file_client_args = dict(backend='disk')
|
63 |
+
train_pipeline = [
|
64 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
65 |
+
dict(
|
66 |
+
type='LoadAnnotations',
|
67 |
+
with_bbox=True,
|
68 |
+
with_mask=True,
|
69 |
+
poly2mask=False),
|
70 |
+
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
71 |
+
dict(
|
72 |
+
type='RandomResize',
|
73 |
+
scale=(1280, 1280),
|
74 |
+
ratio_range=(0.1, 2.0),
|
75 |
+
keep_ratio=True),
|
76 |
+
dict(
|
77 |
+
type='RandomCrop',
|
78 |
+
crop_size=(640, 640),
|
79 |
+
recompute_bbox=True,
|
80 |
+
allow_negative_crop=True),
|
81 |
+
dict(type='YOLOXHSVRandomAug'),
|
82 |
+
dict(type='RandomFlip', prob=0.5),
|
83 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
84 |
+
dict(
|
85 |
+
type='CachedMixUp',
|
86 |
+
img_scale=(640, 640),
|
87 |
+
ratio_range=(1.0, 1.0),
|
88 |
+
max_cached_images=20,
|
89 |
+
pad_val=(114, 114, 114)),
|
90 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
91 |
+
dict(type='PackDetInputs')
|
92 |
+
]
|
93 |
+
test_pipeline = [
|
94 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
95 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
96 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
97 |
+
dict(
|
98 |
+
type='PackDetInputs',
|
99 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
100 |
+
'scale_factor'))
|
101 |
+
]
|
102 |
+
tta_model = dict(
|
103 |
+
type='DetTTAModel',
|
104 |
+
tta_cfg=dict(nms=dict(type='nms', iou_threshold=0.6), max_per_img=100))
|
105 |
+
img_scales = [(640, 640), (320, 320), (960, 960)]
|
106 |
+
tta_pipeline = [
|
107 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
108 |
+
dict(
|
109 |
+
type='TestTimeAug',
|
110 |
+
transforms=[[{
|
111 |
+
'type': 'Resize',
|
112 |
+
'scale': (640, 640),
|
113 |
+
'keep_ratio': True
|
114 |
+
}, {
|
115 |
+
'type': 'Resize',
|
116 |
+
'scale': (320, 320),
|
117 |
+
'keep_ratio': True
|
118 |
+
}, {
|
119 |
+
'type': 'Resize',
|
120 |
+
'scale': (960, 960),
|
121 |
+
'keep_ratio': True
|
122 |
+
}],
|
123 |
+
[{
|
124 |
+
'type': 'RandomFlip',
|
125 |
+
'prob': 1.0
|
126 |
+
}, {
|
127 |
+
'type': 'RandomFlip',
|
128 |
+
'prob': 0.0
|
129 |
+
}],
|
130 |
+
[{
|
131 |
+
'type': 'Pad',
|
132 |
+
'size': (960, 960),
|
133 |
+
'pad_val': {
|
134 |
+
'img': (114, 114, 114)
|
135 |
+
}
|
136 |
+
}],
|
137 |
+
[{
|
138 |
+
'type':
|
139 |
+
'PackDetInputs',
|
140 |
+
'meta_keys':
|
141 |
+
('img_id', 'img_path', 'ori_shape', 'img_shape',
|
142 |
+
'scale_factor', 'flip', 'flip_direction')
|
143 |
+
}]])
|
144 |
+
]
|
145 |
+
model = dict(
|
146 |
+
type='RTMDet',
|
147 |
+
data_preprocessor=dict(
|
148 |
+
type='DetDataPreprocessor',
|
149 |
+
mean=[103.53, 116.28, 123.675],
|
150 |
+
std=[57.375, 57.12, 58.395],
|
151 |
+
bgr_to_rgb=False,
|
152 |
+
batch_augments=None),
|
153 |
+
backbone=dict(
|
154 |
+
type='CSPNeXt',
|
155 |
+
arch='P5',
|
156 |
+
expand_ratio=0.5,
|
157 |
+
deepen_factor=0.67,
|
158 |
+
widen_factor=0.75,
|
159 |
+
channel_attention=True,
|
160 |
+
norm_cfg=dict(type='SyncBN'),
|
161 |
+
act_cfg=dict(type='SiLU', inplace=True)),
|
162 |
+
neck=dict(
|
163 |
+
type='CSPNeXtPAFPN',
|
164 |
+
in_channels=[192, 384, 768],
|
165 |
+
out_channels=192,
|
166 |
+
num_csp_blocks=2,
|
167 |
+
expand_ratio=0.5,
|
168 |
+
norm_cfg=dict(type='SyncBN'),
|
169 |
+
act_cfg=dict(type='SiLU', inplace=True)),
|
170 |
+
bbox_head=dict(
|
171 |
+
type='RTMDetInsSepBNHead',
|
172 |
+
num_classes=80,
|
173 |
+
in_channels=192,
|
174 |
+
stacked_convs=2,
|
175 |
+
share_conv=True,
|
176 |
+
pred_kernel_size=1,
|
177 |
+
feat_channels=192,
|
178 |
+
act_cfg=dict(type='SiLU', inplace=True),
|
179 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
180 |
+
anchor_generator=dict(
|
181 |
+
type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),
|
182 |
+
bbox_coder=dict(type='DistancePointBBoxCoder'),
|
183 |
+
loss_cls=dict(
|
184 |
+
type='QualityFocalLoss',
|
185 |
+
use_sigmoid=True,
|
186 |
+
beta=2.0,
|
187 |
+
loss_weight=1.0),
|
188 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
|
189 |
+
loss_mask=dict(
|
190 |
+
type='DiceLoss', loss_weight=2.0, eps=5e-06, reduction='mean')),
|
191 |
+
train_cfg=dict(
|
192 |
+
assigner=dict(type='DynamicSoftLabelAssigner', topk=13),
|
193 |
+
allowed_border=-1,
|
194 |
+
pos_weight=-1,
|
195 |
+
debug=False),
|
196 |
+
test_cfg=dict(
|
197 |
+
nms_pre=400,
|
198 |
+
min_bbox_size=0,
|
199 |
+
score_thr=0.4,
|
200 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
201 |
+
max_per_img=50,
|
202 |
+
mask_thr_binary=0.5))
|
203 |
+
train_pipeline_stage2 = [
|
204 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
205 |
+
dict(
|
206 |
+
type='LoadAnnotations',
|
207 |
+
with_bbox=True,
|
208 |
+
with_mask=True,
|
209 |
+
poly2mask=False),
|
210 |
+
dict(
|
211 |
+
type='RandomResize',
|
212 |
+
scale=(640, 640),
|
213 |
+
ratio_range=(0.1, 2.0),
|
214 |
+
keep_ratio=True),
|
215 |
+
dict(
|
216 |
+
type='RandomCrop',
|
217 |
+
crop_size=(640, 640),
|
218 |
+
recompute_bbox=True,
|
219 |
+
allow_negative_crop=True),
|
220 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
221 |
+
dict(type='YOLOXHSVRandomAug'),
|
222 |
+
dict(type='RandomFlip', prob=0.5),
|
223 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
224 |
+
dict(type='PackDetInputs')
|
225 |
+
]
|
226 |
+
train_dataloader = dict(
|
227 |
+
batch_size=2,
|
228 |
+
num_workers=1,
|
229 |
+
batch_sampler=None,
|
230 |
+
pin_memory=True,
|
231 |
+
persistent_workers=True,
|
232 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
233 |
+
dataset=dict(
|
234 |
+
type='ConcatDataset',
|
235 |
+
datasets=[
|
236 |
+
dict(
|
237 |
+
type='CocoDataset',
|
238 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
239 |
+
data_prefix=dict(
|
240 |
+
img=
|
241 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
242 |
+
),
|
243 |
+
ann_file=
|
244 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json',
|
245 |
+
pipeline=[
|
246 |
+
dict(
|
247 |
+
type='LoadImageFromFile',
|
248 |
+
file_client_args=dict(backend='disk')),
|
249 |
+
dict(
|
250 |
+
type='LoadAnnotations',
|
251 |
+
with_bbox=True,
|
252 |
+
with_mask=True,
|
253 |
+
poly2mask=False),
|
254 |
+
dict(
|
255 |
+
type='CachedMosaic',
|
256 |
+
img_scale=(640, 640),
|
257 |
+
pad_val=114.0),
|
258 |
+
dict(
|
259 |
+
type='RandomResize',
|
260 |
+
scale=(1280, 1280),
|
261 |
+
ratio_range=(0.1, 2.0),
|
262 |
+
keep_ratio=True),
|
263 |
+
dict(
|
264 |
+
type='RandomCrop',
|
265 |
+
crop_size=(640, 640),
|
266 |
+
recompute_bbox=True,
|
267 |
+
allow_negative_crop=True),
|
268 |
+
dict(type='YOLOXHSVRandomAug'),
|
269 |
+
dict(type='RandomFlip', prob=0.5),
|
270 |
+
dict(
|
271 |
+
type='Pad',
|
272 |
+
size=(640, 640),
|
273 |
+
pad_val=dict(img=(114, 114, 114))),
|
274 |
+
dict(
|
275 |
+
type='CachedMixUp',
|
276 |
+
img_scale=(640, 640),
|
277 |
+
ratio_range=(1.0, 1.0),
|
278 |
+
max_cached_images=20,
|
279 |
+
pad_val=(114, 114, 114)),
|
280 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
281 |
+
dict(type='PackDetInputs')
|
282 |
+
])
|
283 |
+
]))
|
284 |
+
val_dataloader = dict(
|
285 |
+
batch_size=1,
|
286 |
+
num_workers=10,
|
287 |
+
dataset=dict(
|
288 |
+
pipeline=[
|
289 |
+
dict(
|
290 |
+
type='LoadImageFromFile',
|
291 |
+
file_client_args=dict(backend='disk')),
|
292 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
293 |
+
dict(
|
294 |
+
type='Pad', size=(640, 640),
|
295 |
+
pad_val=dict(img=(114, 114, 114))),
|
296 |
+
dict(
|
297 |
+
type='PackDetInputs',
|
298 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
299 |
+
'scale_factor'))
|
300 |
+
],
|
301 |
+
type='CocoDataset',
|
302 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
303 |
+
data_prefix=dict(
|
304 |
+
img=
|
305 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
306 |
+
),
|
307 |
+
ann_file=
|
308 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_regions2.json',
|
309 |
+
test_mode=True),
|
310 |
+
persistent_workers=True,
|
311 |
+
drop_last=False,
|
312 |
+
sampler=dict(type='DefaultSampler', shuffle=False))
|
313 |
+
test_dataloader = dict(
|
314 |
+
batch_size=1,
|
315 |
+
num_workers=10,
|
316 |
+
dataset=dict(
|
317 |
+
pipeline=[
|
318 |
+
dict(
|
319 |
+
type='LoadImageFromFile',
|
320 |
+
file_client_args=dict(backend='disk')),
|
321 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
322 |
+
dict(
|
323 |
+
type='Pad', size=(640, 640),
|
324 |
+
pad_val=dict(img=(114, 114, 114))),
|
325 |
+
dict(
|
326 |
+
type='PackDetInputs',
|
327 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
328 |
+
'scale_factor'))
|
329 |
+
],
|
330 |
+
type='CocoDataset',
|
331 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
332 |
+
data_prefix=dict(
|
333 |
+
img=
|
334 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
335 |
+
),
|
336 |
+
ann_file=
|
337 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_regions2.json',
|
338 |
+
test_mode=True),
|
339 |
+
persistent_workers=True,
|
340 |
+
drop_last=False,
|
341 |
+
sampler=dict(type='DefaultSampler', shuffle=False))
|
342 |
+
max_epochs = 12
|
343 |
+
stage2_num_epochs = 2
|
344 |
+
base_lr = 0.00025
|
345 |
+
interval = 12
|
346 |
+
val_evaluator = dict(
|
347 |
+
proposal_nums=(100, 1, 10),
|
348 |
+
metric=['bbox', 'segm'],
|
349 |
+
type='CocoMetric',
|
350 |
+
ann_file=
|
351 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json'
|
352 |
+
)
|
353 |
+
test_evaluator = dict(
|
354 |
+
proposal_nums=(100, 1, 10),
|
355 |
+
metric=['bbox', 'segm'],
|
356 |
+
type='CocoMetric',
|
357 |
+
ann_file=
|
358 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json'
|
359 |
+
)
|
360 |
+
custom_hooks = [
|
361 |
+
dict(
|
362 |
+
type='EMAHook',
|
363 |
+
ema_type='ExpMomentumEMA',
|
364 |
+
momentum=0.0002,
|
365 |
+
update_buffers=True,
|
366 |
+
priority=49),
|
367 |
+
dict(
|
368 |
+
type='PipelineSwitchHook',
|
369 |
+
switch_epoch=10,
|
370 |
+
switch_pipeline=[
|
371 |
+
dict(
|
372 |
+
type='LoadImageFromFile',
|
373 |
+
file_client_args=dict(backend='disk')),
|
374 |
+
dict(
|
375 |
+
type='LoadAnnotations',
|
376 |
+
with_bbox=True,
|
377 |
+
with_mask=True,
|
378 |
+
poly2mask=False),
|
379 |
+
dict(
|
380 |
+
type='RandomResize',
|
381 |
+
scale=(640, 640),
|
382 |
+
ratio_range=(0.1, 2.0),
|
383 |
+
keep_ratio=True),
|
384 |
+
dict(
|
385 |
+
type='RandomCrop',
|
386 |
+
crop_size=(640, 640),
|
387 |
+
recompute_bbox=True,
|
388 |
+
allow_negative_crop=True),
|
389 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
390 |
+
dict(type='YOLOXHSVRandomAug'),
|
391 |
+
dict(type='RandomFlip', prob=0.5),
|
392 |
+
dict(
|
393 |
+
type='Pad', size=(640, 640),
|
394 |
+
pad_val=dict(img=(114, 114, 114))),
|
395 |
+
dict(type='PackDetInputs')
|
396 |
+
])
|
397 |
+
]
|
398 |
+
work_dir = '/home/erik/Riksarkivet/Projects/HTR_Pipeline/models/checkpoints/rtmdet_lines_pr_2'
|
399 |
+
train_batch_size_per_gpu = 2
|
400 |
+
val_batch_size_per_gpu = 1
|
401 |
+
train_num_workers = 1
|
402 |
+
num_classes = 1
|
403 |
+
metainfo = dict(classes='text_line', palette=[(220, 20, 60)])
|
404 |
+
icdar_2019 = dict(
|
405 |
+
type='CocoDataset',
|
406 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
407 |
+
data_prefix=dict(
|
408 |
+
img=
|
409 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/'
|
410 |
+
),
|
411 |
+
ann_file=
|
412 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/gt_files/coco_regions2.json',
|
413 |
+
pipeline=[
|
414 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
415 |
+
dict(
|
416 |
+
type='LoadAnnotations',
|
417 |
+
with_bbox=True,
|
418 |
+
with_mask=True,
|
419 |
+
poly2mask=False),
|
420 |
+
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
421 |
+
dict(
|
422 |
+
type='RandomResize',
|
423 |
+
scale=(1280, 1280),
|
424 |
+
ratio_range=(0.1, 2.0),
|
425 |
+
keep_ratio=True),
|
426 |
+
dict(
|
427 |
+
type='RandomCrop',
|
428 |
+
crop_size=(640, 640),
|
429 |
+
recompute_bbox=True,
|
430 |
+
allow_negative_crop=True),
|
431 |
+
dict(type='YOLOXHSVRandomAug'),
|
432 |
+
dict(type='RandomFlip', prob=0.5),
|
433 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
434 |
+
dict(
|
435 |
+
type='CachedMixUp',
|
436 |
+
img_scale=(640, 640),
|
437 |
+
ratio_range=(1.0, 1.0),
|
438 |
+
max_cached_images=20,
|
439 |
+
pad_val=(114, 114, 114)),
|
440 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
441 |
+
dict(type='PackDetInputs')
|
442 |
+
])
|
443 |
+
icdar_2019_test = dict(
|
444 |
+
type='CocoDataset',
|
445 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
446 |
+
data_prefix=dict(
|
447 |
+
img=
|
448 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/'
|
449 |
+
),
|
450 |
+
ann_file=
|
451 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/gt_files/coco_lines.json',
|
452 |
+
test_mode=True,
|
453 |
+
pipeline=[
|
454 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
455 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
456 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
457 |
+
dict(
|
458 |
+
type='PackDetInputs',
|
459 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
460 |
+
'scale_factor'))
|
461 |
+
])
|
462 |
+
police_records = dict(
|
463 |
+
type='CocoDataset',
|
464 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
465 |
+
data_prefix=dict(
|
466 |
+
img=
|
467 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
468 |
+
),
|
469 |
+
ann_file=
|
470 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json',
|
471 |
+
pipeline=[
|
472 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
473 |
+
dict(
|
474 |
+
type='LoadAnnotations',
|
475 |
+
with_bbox=True,
|
476 |
+
with_mask=True,
|
477 |
+
poly2mask=False),
|
478 |
+
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
479 |
+
dict(
|
480 |
+
type='RandomResize',
|
481 |
+
scale=(1280, 1280),
|
482 |
+
ratio_range=(0.1, 2.0),
|
483 |
+
keep_ratio=True),
|
484 |
+
dict(
|
485 |
+
type='RandomCrop',
|
486 |
+
crop_size=(640, 640),
|
487 |
+
recompute_bbox=True,
|
488 |
+
allow_negative_crop=True),
|
489 |
+
dict(type='YOLOXHSVRandomAug'),
|
490 |
+
dict(type='RandomFlip', prob=0.5),
|
491 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
492 |
+
dict(
|
493 |
+
type='CachedMixUp',
|
494 |
+
img_scale=(640, 640),
|
495 |
+
ratio_range=(1.0, 1.0),
|
496 |
+
max_cached_images=20,
|
497 |
+
pad_val=(114, 114, 114)),
|
498 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
499 |
+
dict(type='PackDetInputs')
|
500 |
+
])
|
501 |
+
train_list = [
|
502 |
+
dict(
|
503 |
+
type='CocoDataset',
|
504 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
505 |
+
data_prefix=dict(
|
506 |
+
img=
|
507 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/'
|
508 |
+
),
|
509 |
+
ann_file=
|
510 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/police_records/gt_files/coco_lines2.json',
|
511 |
+
pipeline=[
|
512 |
+
dict(
|
513 |
+
type='LoadImageFromFile',
|
514 |
+
file_client_args=dict(backend='disk')),
|
515 |
+
dict(
|
516 |
+
type='LoadAnnotations',
|
517 |
+
with_bbox=True,
|
518 |
+
with_mask=True,
|
519 |
+
poly2mask=False),
|
520 |
+
dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
|
521 |
+
dict(
|
522 |
+
type='RandomResize',
|
523 |
+
scale=(1280, 1280),
|
524 |
+
ratio_range=(0.1, 2.0),
|
525 |
+
keep_ratio=True),
|
526 |
+
dict(
|
527 |
+
type='RandomCrop',
|
528 |
+
crop_size=(640, 640),
|
529 |
+
recompute_bbox=True,
|
530 |
+
allow_negative_crop=True),
|
531 |
+
dict(type='YOLOXHSVRandomAug'),
|
532 |
+
dict(type='RandomFlip', prob=0.5),
|
533 |
+
dict(
|
534 |
+
type='Pad', size=(640, 640),
|
535 |
+
pad_val=dict(img=(114, 114, 114))),
|
536 |
+
dict(
|
537 |
+
type='CachedMixUp',
|
538 |
+
img_scale=(640, 640),
|
539 |
+
ratio_range=(1.0, 1.0),
|
540 |
+
max_cached_images=20,
|
541 |
+
pad_val=(114, 114, 114)),
|
542 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1)),
|
543 |
+
dict(type='PackDetInputs')
|
544 |
+
])
|
545 |
+
]
|
546 |
+
test_list = [
|
547 |
+
dict(
|
548 |
+
type='CocoDataset',
|
549 |
+
metainfo=dict(classes='text_line', palette=[(220, 20, 60)]),
|
550 |
+
data_prefix=dict(
|
551 |
+
img=
|
552 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/'
|
553 |
+
),
|
554 |
+
ann_file=
|
555 |
+
'/media/erik/Elements/Riksarkivet/data/datasets/htr/segmentation/ICDAR-2019/clean/gt_files/coco_lines.json',
|
556 |
+
test_mode=True,
|
557 |
+
pipeline=[
|
558 |
+
dict(
|
559 |
+
type='LoadImageFromFile',
|
560 |
+
file_client_args=dict(backend='disk')),
|
561 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
562 |
+
dict(
|
563 |
+
type='Pad', size=(640, 640),
|
564 |
+
pad_val=dict(img=(114, 114, 114))),
|
565 |
+
dict(
|
566 |
+
type='PackDetInputs',
|
567 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
568 |
+
'scale_factor'))
|
569 |
+
])
|
570 |
+
]
|
571 |
+
pipeline = [
|
572 |
+
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')),
|
573 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
574 |
+
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
|
575 |
+
dict(
|
576 |
+
type='PackDetInputs',
|
577 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
578 |
+
'scale_factor'))
|
579 |
+
]
|
580 |
+
launcher = 'pytorch'
|