RichardErkhov commited on
Commit
4a7223e
1 Parent(s): 1d3d0d8

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +316 -0
README.md ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ stablelm-zephyr-3b - GGUF
11
+ - Model creator: https://huggingface.co/stabilityai/
12
+ - Original model: https://huggingface.co/stabilityai/stablelm-zephyr-3b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [stablelm-zephyr-3b.Q2_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q2_K.gguf) | Q2_K | 1.01GB |
18
+ | [stablelm-zephyr-3b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_XS.gguf) | IQ3_XS | 1.11GB |
19
+ | [stablelm-zephyr-3b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_S.gguf) | IQ3_S | 1.17GB |
20
+ | [stablelm-zephyr-3b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_S.gguf) | Q3_K_S | 1.17GB |
21
+ | [stablelm-zephyr-3b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ3_M.gguf) | IQ3_M | 1.23GB |
22
+ | [stablelm-zephyr-3b.Q3_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K.gguf) | Q3_K | 1.3GB |
23
+ | [stablelm-zephyr-3b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_M.gguf) | Q3_K_M | 1.3GB |
24
+ | [stablelm-zephyr-3b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q3_K_L.gguf) | Q3_K_L | 1.4GB |
25
+ | [stablelm-zephyr-3b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ4_XS.gguf) | IQ4_XS | 1.43GB |
26
+ | [stablelm-zephyr-3b.Q4_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_0.gguf) | Q4_0 | 1.5GB |
27
+ | [stablelm-zephyr-3b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.IQ4_NL.gguf) | IQ4_NL | 1.51GB |
28
+ | [stablelm-zephyr-3b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K_S.gguf) | Q4_K_S | 1.51GB |
29
+ | [stablelm-zephyr-3b.Q4_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K.gguf) | Q4_K | 1.59GB |
30
+ | [stablelm-zephyr-3b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_K_M.gguf) | Q4_K_M | 1.59GB |
31
+ | [stablelm-zephyr-3b.Q4_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q4_1.gguf) | Q4_1 | 1.65GB |
32
+ | [stablelm-zephyr-3b.Q5_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_0.gguf) | Q5_0 | 1.81GB |
33
+ | [stablelm-zephyr-3b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K_S.gguf) | Q5_K_S | 1.81GB |
34
+ | [stablelm-zephyr-3b.Q5_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K.gguf) | Q5_K | 1.86GB |
35
+ | [stablelm-zephyr-3b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_K_M.gguf) | Q5_K_M | 1.86GB |
36
+ | [stablelm-zephyr-3b.Q5_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q5_1.gguf) | Q5_1 | 1.96GB |
37
+ | [stablelm-zephyr-3b.Q6_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-zephyr-3b-gguf/blob/main/stablelm-zephyr-3b.Q6_K.gguf) | Q6_K | 2.14GB |
38
+
39
+
40
+
41
+
42
+ Original model description:
43
+ ---
44
+ language:
45
+ - en
46
+ license: other
47
+ tags:
48
+ - causal-lm
49
+ datasets:
50
+ - HuggingFaceH4/ultrachat_200k
51
+ - HuggingFaceH4/ultrafeedback_binarized
52
+ - meta-math/MetaMathQA
53
+ - WizardLM/WizardLM_evol_instruct_V2_196k
54
+ - Intel/orca_dpo_pairs
55
+ extra_gated_fields:
56
+ Name: text
57
+ Email: text
58
+ Country: text
59
+ Organization or Affiliation: text
60
+ I ALLOW Stability AI to email me about new model releases: checkbox
61
+ model-index:
62
+ - name: stablelm-zephyr-3b
63
+ results:
64
+ - task:
65
+ type: text-generation
66
+ name: Text Generation
67
+ dataset:
68
+ name: AI2 Reasoning Challenge (25-Shot)
69
+ type: ai2_arc
70
+ config: ARC-Challenge
71
+ split: test
72
+ args:
73
+ num_few_shot: 25
74
+ metrics:
75
+ - type: acc_norm
76
+ value: 46.08
77
+ name: normalized accuracy
78
+ source:
79
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
80
+ name: Open LLM Leaderboard
81
+ - task:
82
+ type: text-generation
83
+ name: Text Generation
84
+ dataset:
85
+ name: HellaSwag (10-Shot)
86
+ type: hellaswag
87
+ split: validation
88
+ args:
89
+ num_few_shot: 10
90
+ metrics:
91
+ - type: acc_norm
92
+ value: 74.16
93
+ name: normalized accuracy
94
+ source:
95
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
96
+ name: Open LLM Leaderboard
97
+ - task:
98
+ type: text-generation
99
+ name: Text Generation
100
+ dataset:
101
+ name: MMLU (5-Shot)
102
+ type: cais/mmlu
103
+ config: all
104
+ split: test
105
+ args:
106
+ num_few_shot: 5
107
+ metrics:
108
+ - type: acc
109
+ value: 46.17
110
+ name: accuracy
111
+ source:
112
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
113
+ name: Open LLM Leaderboard
114
+ - task:
115
+ type: text-generation
116
+ name: Text Generation
117
+ dataset:
118
+ name: TruthfulQA (0-shot)
119
+ type: truthful_qa
120
+ config: multiple_choice
121
+ split: validation
122
+ args:
123
+ num_few_shot: 0
124
+ metrics:
125
+ - type: mc2
126
+ value: 46.49
127
+ source:
128
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
129
+ name: Open LLM Leaderboard
130
+ - task:
131
+ type: text-generation
132
+ name: Text Generation
133
+ dataset:
134
+ name: Winogrande (5-shot)
135
+ type: winogrande
136
+ config: winogrande_xl
137
+ split: validation
138
+ args:
139
+ num_few_shot: 5
140
+ metrics:
141
+ - type: acc
142
+ value: 65.51
143
+ name: accuracy
144
+ source:
145
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
146
+ name: Open LLM Leaderboard
147
+ - task:
148
+ type: text-generation
149
+ name: Text Generation
150
+ dataset:
151
+ name: GSM8k (5-shot)
152
+ type: gsm8k
153
+ config: main
154
+ split: test
155
+ args:
156
+ num_few_shot: 5
157
+ metrics:
158
+ - type: acc
159
+ value: 42.15
160
+ name: accuracy
161
+ source:
162
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=stabilityai/stablelm-zephyr-3b
163
+ name: Open LLM Leaderboard
164
+ ---
165
+ # `StableLM Zephyr 3B`
166
+
167
+ Please note: For commercial use, please refer to https://stability.ai/membership.
168
+
169
+ ## Model Description
170
+
171
+ `StableLM Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on
172
+ [MT Bench](https://arxiv.org/abs/2306.05685) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/)
173
+
174
+ ## Usage
175
+
176
+ `StableLM Zephyr 3B` uses the following instruction format:
177
+ ```
178
+ <|user|>
179
+ List 3 synonyms for the word "tiny"<|endoftext|>
180
+ <|assistant|>
181
+ 1. Dwarf
182
+ 2. Little
183
+ 3. Petite<|endoftext|>
184
+ ```
185
+
186
+ This format is also available through the tokenizer's `apply_chat_template` method:
187
+
188
+ ```python
189
+ from transformers import AutoModelForCausalLM, AutoTokenizer
190
+
191
+ tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
192
+ model = AutoModelForCausalLM.from_pretrained(
193
+ 'stabilityai/stablelm-zephyr-3b',
194
+ device_map="auto"
195
+ )
196
+
197
+ prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}]
198
+ inputs = tokenizer.apply_chat_template(
199
+ prompt,
200
+ add_generation_prompt=True,
201
+ return_tensors='pt'
202
+ )
203
+
204
+ tokens = model.generate(
205
+ inputs.to(model.device),
206
+ max_new_tokens=1024,
207
+ temperature=0.8,
208
+ do_sample=True
209
+ )
210
+
211
+ print(tokenizer.decode(tokens[0], skip_special_tokens=False))
212
+ ```
213
+
214
+ You can also see how to run a performance optimized version of this model [here](https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/273-stable-zephyr-3b-chatbot/273-stable-zephyr-3b-chatbot.ipynb) using [OpenVINO](https://docs.openvino.ai/2023.2/home.html) from Intel.
215
+
216
+ ## Model Details
217
+
218
+ * **Developed by**: [Stability AI](https://stability.ai/)
219
+ * **Model type**: `StableLM Zephyr 3B` model is an auto-regressive language model based on the transformer decoder architecture.
220
+ * **Language(s)**: English
221
+ * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
222
+ * **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
223
+ * **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-zephyr-3b/raw/main/LICENSE).
224
+ * **Commercial License**: to use this model commercially, please refer to https://stability.ai/membership
225
+ * **Contact**: For questions and comments about the model, please email `lm@stability.ai`
226
+
227
+ ### Training Dataset
228
+
229
+ The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
230
+ 1. SFT Datasets
231
+ - HuggingFaceH4/ultrachat_200k
232
+ - meta-math/MetaMathQA
233
+ - WizardLM/WizardLM_evol_instruct_V2_196k
234
+ - Open-Orca/SlimOrca
235
+ 2. Preference Datasets:
236
+ - HuggingFaceH4/ultrafeedback_binarized
237
+ - Intel/orca_dpo_pairs
238
+
239
+ ## Performance
240
+
241
+ ### MT-Bench and Alpaca Bench
242
+
243
+
244
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/8WIZS6dAlu5kSH-382pMl.png" alt="mt_bench_plot" width="600"/>
245
+
246
+ | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
247
+ |-------------|-----|----|---------------|--------------|
248
+ | **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
249
+ | StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
250
+ | Capybara v1.9 | 3B | dSFT | 5.94 | - |
251
+ | MPT-Chat | 7B |dSFT |5.42| -|
252
+ | Xwin-LM v0.1 | 7B| dPPO| 6.19| 87.83|
253
+ | Mistral-Instruct v0.1 | 7B| - | 6.84 |-|
254
+ | Zephyr-7b-α |7B| dDPO| 6.88| -|
255
+ | Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 |
256
+ | Falcon-Instruct | 40B |dSFT |5.17 |45.71|
257
+ | Guanaco | 65B | SFT |6.41| 71.80|
258
+ | Llama2-Chat | 70B |RLHF |6.86| 92.66|
259
+ | Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
260
+ | WizardLM v1.0 | 70B |dSFT |7.71 |-|
261
+ | Xwin-LM v0.1 | 70B |dPPO |- |95.57|
262
+ | GPT-3.5-turbo | - |RLHF |7.94 |89.37|
263
+ | Claude 2 | - |RLHF |8.06| 91.36|
264
+ | GPT-4 | -| RLHF |8.99| 95.28|
265
+
266
+ ## Other benchmarks:
267
+ | Task | Value |
268
+ |-----------------------|---------------------------|
269
+ | ARC (25-shot) | 47.0 |
270
+ | HellaSwag (10-shot) | 74.2 |
271
+ | MMLU (5-shot) | 46.3 |
272
+ | TruthfulQA (0-shot) | 46.5 |
273
+ | Winogrande (5-shot) | 65.5 |
274
+ | GSM8K (5-shot) | 42.3 |
275
+ | BigBench (Avg) | 35.26 |
276
+ | AGI Benchmark (Avg) | 33.23 |
277
+
278
+ ### Training Infrastructure
279
+
280
+ * **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
281
+ * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
282
+
283
+ ## Commitment to Ethical AI
284
+ In line with our responsibility towards ethical AI development, `StableLM Zephyr 3B` is released with a focus on ensuring safety, reliability, and appropriateness in its applications. To this end, we have evaluated `StableLM Zephyr 3B` on 488 malicious prompts and used standard protocols to assess the harmfulness of its outputs. Compared to Zephyr-7b-β, `StableLM Zephyr 3B` reduces the number of harmful outputs as assessed by GPT-4 by 55. Additionally, we performed an internal red teaming event targeting the following abuse areas:
285
+ * **Self-Harm Methods**: (Suicide Methods, Encouragement of Self-Harm, Methods and encouragement of Eating Disorders)
286
+ * **Misinformation**: (Health, Conspiracy Theories, Social Unrest/Conflict, Political Misinformation, & Climate change)
287
+ * **Hate Speech**: (Race, Stereotypes, Immigrants, Gender, Personally Identifiable Information such as Social security numbers, Full names, ID numbers, Email addresses, and telephone numbers)
288
+
289
+ We have incorporated the findings of our malicious prompts evaluation and red teaming event into our release. Users are encouraged to fine-tune and evaluate the model to suit their specific needs, considering the potential biases and limitations found in `StableLM Zephyr 3B` and inherent in other LLM models.
290
+
291
+ ## Use and Limitations
292
+
293
+ ### Intended Use
294
+
295
+ The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. For commercial use, please refer to https://stability.ai/membership.
296
+
297
+ ### Limitations and Bias
298
+
299
+ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
300
+
301
+ Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
302
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
303
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_stabilityai__stablelm-zephyr-3b)
304
+
305
+ | Metric |Value|
306
+ |---------------------------------|----:|
307
+ |Avg. |53.43|
308
+ |AI2 Reasoning Challenge (25-Shot)|46.08|
309
+ |HellaSwag (10-Shot) |74.16|
310
+ |MMLU (5-Shot) |46.17|
311
+ |TruthfulQA (0-shot) |46.49|
312
+ |Winogrande (5-shot) |65.51|
313
+ |GSM8k (5-shot) |42.15|
314
+
315
+
316
+