RichardErkhov commited on
Commit
c51405f
1 Parent(s): 2047126

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +192 -0
README.md ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ stablelm-2-1_6b-chat - GGUF
11
+ - Model creator: https://huggingface.co/stabilityai/
12
+ - Original model: https://huggingface.co/stabilityai/stablelm-2-1_6b-chat/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [stablelm-2-1_6b-chat.Q2_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q2_K.gguf) | Q2_K | 0.65GB |
18
+ | [stablelm-2-1_6b-chat.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q3_K_S.gguf) | Q3_K_S | 0.74GB |
19
+ | [stablelm-2-1_6b-chat.Q3_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q3_K.gguf) | Q3_K | 0.8GB |
20
+ | [stablelm-2-1_6b-chat.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q3_K_M.gguf) | Q3_K_M | 0.8GB |
21
+ | [stablelm-2-1_6b-chat.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q3_K_L.gguf) | Q3_K_L | 0.85GB |
22
+ | [stablelm-2-1_6b-chat.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.IQ4_XS.gguf) | IQ4_XS | 0.88GB |
23
+ | [stablelm-2-1_6b-chat.Q4_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q4_0.gguf) | Q4_0 | 0.92GB |
24
+ | [stablelm-2-1_6b-chat.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.IQ4_NL.gguf) | IQ4_NL | 0.92GB |
25
+ | [stablelm-2-1_6b-chat.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q4_K_S.gguf) | Q4_K_S | 0.92GB |
26
+ | [stablelm-2-1_6b-chat.Q4_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q4_K.gguf) | Q4_K | 0.96GB |
27
+ | [stablelm-2-1_6b-chat.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q4_K_M.gguf) | Q4_K_M | 0.96GB |
28
+ | [stablelm-2-1_6b-chat.Q4_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q4_1.gguf) | Q4_1 | 1.0GB |
29
+ | [stablelm-2-1_6b-chat.Q5_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q5_0.gguf) | Q5_0 | 1.08GB |
30
+ | [stablelm-2-1_6b-chat.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q5_K_S.gguf) | Q5_K_S | 1.08GB |
31
+ | [stablelm-2-1_6b-chat.Q5_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q5_K.gguf) | Q5_K | 1.11GB |
32
+ | [stablelm-2-1_6b-chat.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q5_K_M.gguf) | Q5_K_M | 1.11GB |
33
+ | [stablelm-2-1_6b-chat.Q5_1.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q5_1.gguf) | Q5_1 | 1.17GB |
34
+ | [stablelm-2-1_6b-chat.Q6_K.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q6_K.gguf) | Q6_K | 1.26GB |
35
+ | [stablelm-2-1_6b-chat.Q8_0.gguf](https://huggingface.co/RichardErkhov/stabilityai_-_stablelm-2-1_6b-chat-gguf/blob/main/stablelm-2-1_6b-chat.Q8_0.gguf) | Q8_0 | 1.63GB |
36
+
37
+
38
+
39
+
40
+ Original model description:
41
+ ---
42
+ datasets:
43
+ - HuggingFaceH4/ultrachat_200k
44
+ - allenai/ultrafeedback_binarized_cleaned
45
+ - meta-math/MetaMathQA
46
+ - WizardLM/WizardLM_evol_instruct_V2_196k
47
+ - openchat/openchat_sharegpt4_dataset
48
+ - LDJnr/Capybara
49
+ - Intel/orca_dpo_pairs
50
+ - hkust-nlp/deita-10k-v0
51
+ - teknium/OpenHermes-2.5
52
+
53
+ language:
54
+ - en
55
+ tags:
56
+ - causal-lm
57
+ extra_gated_fields:
58
+ Name: text
59
+ Email: text
60
+ Country: text
61
+ Organization or Affiliation: text
62
+ I ALLOW Stability AI to email me about new model releases: checkbox
63
+ license: other
64
+ ---
65
+ # `StableLM 2 Chat 1.6B`
66
+
67
+ ## Model Description
68
+
69
+ `Stable LM 2 Chat 1.6B` is a 1.6 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
70
+
71
+ ## Usage
72
+
73
+ `StableLM 2 1.6B Chat` uses the following ChatML format:
74
+
75
+
76
+ ```python
77
+ from transformers import AutoModelForCausalLM, AutoTokenizer
78
+
79
+ tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-1_6b-chat')
80
+ model = AutoModelForCausalLM.from_pretrained(
81
+ 'stabilityai/stablelm-2-1_6b-chat',
82
+ device_map="auto",
83
+ )
84
+
85
+ prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
86
+ inputs = tokenizer.apply_chat_template(
87
+ prompt,
88
+ add_generation_prompt=True,
89
+ return_tensors='pt'
90
+ )
91
+
92
+ tokens = model.generate(
93
+ inputs.to(model.device),
94
+ max_new_tokens=100,
95
+ temperature=0.7,
96
+ do_sample=True
97
+ )
98
+ output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
99
+
100
+ print(output)
101
+ ```
102
+
103
+
104
+ ## Model Details
105
+
106
+ * **Developed by**: [Stability AI](https://stability.ai/)
107
+ * **Model type**: `StableLM 2 Chat 1.6B` model is an auto-regressive language model based on the transformer decoder architecture.
108
+ * **Language(s)**: English
109
+ * **Paper**: [Stable LM 2 1.6B Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
110
+ * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
111
+ * **Finetuned from model**: [https://huggingface.co/stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)
112
+ * **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-1_6b-chat/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
113
+ * **Contact**: For questions and comments about the model, please email `lm@stability.ai`
114
+
115
+ ### Training Dataset
116
+
117
+ The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
118
+ 1. SFT Datasets
119
+ - HuggingFaceH4/ultrachat_200k
120
+ - meta-math/MetaMathQA
121
+ - WizardLM/WizardLM_evol_instruct_V2_196k
122
+ - Open-Orca/SlimOrca
123
+ - openchat/openchat_sharegpt4_dataset
124
+ - LDJnr/Capybara
125
+ - hkust-nlp/deita-10k-v0
126
+ - teknium/OpenHermes-2.5
127
+
128
+ 2. Preference Datasets:
129
+ - allenai/ultrafeedback_binarized_cleaned
130
+ - Intel/orca_dpo_pairs
131
+ - argilla/dpo-mix-7k
132
+
133
+ ## Performance
134
+
135
+ ### MT-Bench
136
+
137
+ | Model | Size | MT-Bench |
138
+ |-------------------------|------|----------|
139
+ | Mistral-7B-Instruct-v0.2| 7B | 7.61 |
140
+ | Llama2-Chat | 70B | 6.86 |
141
+ | stablelm-zephyr-3b | 3B | 6.64 |
142
+ | MPT-30B-Chat | 30B | 6.39 |
143
+ | **stablelm-2-1_6b-chat** | **1.6B** | **5.83** |
144
+ | stablelm-2-zephyr-1.6b | 1.6B | 5.42 |
145
+ | Falcon-40B-Instruct | 40B | 5.17 |
146
+ | Qwen-1.8B-Chat | 1.8B | 4.95 |
147
+ | dolphin-2.6-phi-2 | 2.7B | 4.93 |
148
+ | phi-2 | 2.7B | 4.29 |
149
+ | TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
150
+
151
+ ### OpenLLM Leaderboard
152
+
153
+ | Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
154
+ |----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
155
+ | microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
156
+ | **stabilityai/stablelm-2-1_6b-chat** | 1.6B | 50.80% | 43.94% | 69.22% | 41.59% | 46.52% | 64.56% | 38.96% |
157
+ | stabilityai/stablelm-2-zephyr-1_6b | 1.6B | 49.89% | 43.69% | 69.34% | 41.85% | 45.21% | 64.09% | 35.18% |
158
+ | microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
159
+ | stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
160
+ | mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
161
+ | KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
162
+ | openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
163
+ | iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
164
+ | TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
165
+
166
+
167
+ ## Use and Limitations
168
+
169
+ ### Intended Use
170
+
171
+ The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.
172
+
173
+ ### Limitations and Bias
174
+
175
+ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
176
+
177
+ Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
178
+ Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
179
+ Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
180
+ Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
181
+
182
+
183
+ ## How to Cite
184
+
185
+ ```bibtex
186
+ @misc{StableLM-2-1.6B,
187
+ url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)},
188
+ title={Stable LM 2 1.6B},
189
+ author={Stability AI Language Team}
190
+ }
191
+ ```
192
+