RichardErkhov commited on
Commit
8e58d74
1 Parent(s): 9291688

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +207 -0
README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ llama-3-typhoon-v1.5x-70b-instruct - GGUF
11
+ - Model creator: https://huggingface.co/scb10x/
12
+ - Original model: https://huggingface.co/scb10x/llama-3-typhoon-v1.5x-70b-instruct/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.Q2_K.gguf) | Q2_K | 24.56GB |
18
+ | [llama-3-typhoon-v1.5x-70b-instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.IQ3_XS.gguf) | IQ3_XS | 27.29GB |
19
+ | [llama-3-typhoon-v1.5x-70b-instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.IQ3_S.gguf) | IQ3_S | 28.79GB |
20
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.Q3_K_S.gguf) | Q3_K_S | 28.79GB |
21
+ | [llama-3-typhoon-v1.5x-70b-instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.IQ3_M.gguf) | IQ3_M | 29.74GB |
22
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.Q3_K.gguf) | Q3_K | 31.91GB |
23
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.Q3_K_M.gguf) | Q3_K_M | 31.91GB |
24
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.Q3_K_L.gguf) | Q3_K_L | 34.59GB |
25
+ | [llama-3-typhoon-v1.5x-70b-instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.IQ4_XS.gguf) | IQ4_XS | 35.64GB |
26
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/blob/main/llama-3-typhoon-v1.5x-70b-instruct.Q4_0.gguf) | Q4_0 | 37.22GB |
27
+ | [llama-3-typhoon-v1.5x-70b-instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | IQ4_NL | 37.58GB |
28
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q4_K_S | 37.58GB |
29
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q4_K | 39.6GB |
30
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q4_K_M | 39.6GB |
31
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q4_1 | 41.27GB |
32
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q5_0 | 45.32GB |
33
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q5_K_S | 45.32GB |
34
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q5_K | 46.52GB |
35
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q5_K_M | 46.52GB |
36
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q5_1 | 49.36GB |
37
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q6_K | 53.91GB |
38
+ | [llama-3-typhoon-v1.5x-70b-instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/scb10x_-_llama-3-typhoon-v1.5x-70b-instruct-gguf/tree/main/) | Q8_0 | 69.83GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - th
47
+ - en
48
+ pipeline_tag: text-generation
49
+ license: llama3
50
+ ---
51
+ **Llama-3-Typhoon-1.5X-70B-instruct: Thai Large Language Model (Instruct)**
52
+
53
+ **Llama-3-Typhoon-1.5X-70B-instruct** is a 70 billion parameter instruct model designed for Thai 🇹🇭 language. It demonstrates competitive performance with GPT-4-0612, and is optimized for **application** use cases, **Retrieval-Augmented Generation (RAG), constrained generation**, and **reasoning** tasks.
54
+
55
+ Built on Typhoon 1.5 70B (not yet released) and Llama 3 70B Instruct. this model is a result of our experiment on **cross-lingual transfer**. It utilizes the [task-arithmetic model editing](https://arxiv.org/abs/2212.04089) technique, combining the Thai understanding capability of Typhoon with the human alignment performance of Llama 3 Instruct.
56
+
57
+ Remark: To acknowledge Meta's efforts in creating the foundation model and comply with the license, we explicitly include "llama-3" in the model name.
58
+
59
+ ## **Model Description**
60
+
61
+ - **Model type**: A 70B instruct decoder-only model based on the Llama architecture
62
+ - **Requirement**: Transformers 4.38.0 or newer
63
+ - **Primary Language(s)**: Thai 🇹🇭 and English 🇬🇧
64
+ - **License**: [**Llama 3 Community License**](https://llama.meta.com/llama3/license/)
65
+
66
+ ## **Performance**
67
+
68
+ We evaluated the model's performance in **Language & Knowledge Capabilities** and **Instruction Following Capabilities**.
69
+
70
+ - **Language & Knowledge Capabilities**:
71
+ - Assessed using multiple-choice question-answering datasets such as ThaiExam and MMLU.
72
+ - **Instruction Following Capabilities**:
73
+ - Evaluated based on beta users' feedback, focusing on two factors:
74
+ - **Human Alignment & Reasoning**: Ability to generate responses that are clear and logically structured across multiple steps.
75
+ - Evaluated using [MT-Bench](https://arxiv.org/abs/2306.05685) — How LLMs can align with human needs.
76
+ - **Instruction-following**: Ability to adhere to specified constraints in the instructions.
77
+ - Evaluated using [IFEval](https://arxiv.org/abs/2311.07911) — How LLMs can follow specified constraints, such as formatting and brevity.
78
+ - **Agentic Capabilities**:
79
+ - Evaluated in agent use-cases using [Hugging Face's Transformer Agents](https://huggingface.co/blog/agents) and the associated [benchmark](https://huggingface.co/blog/open-source-llms-as-agents).
80
+
81
+ Remark: We developed the Thai (TH) pairs by translating the original datasets into Thai through machine and human methods.
82
+
83
+ ### ThaiExam
84
+
85
+ | Model | ONET | IC | TGAT | TPAT-1 | A-Level | Average (ThaiExam) | MMLU |
86
+ | --- | --- | --- | --- | --- | --- | --- | --- |
87
+ | Typhoon-1.5X 70B | **0.565** | 0.68 | **0.778** | **0.517** | 0.56 | **0.620** | 0.7945 |
88
+ | gpt-4-0612 | 0.493 | **0.69** | 0.744 | 0.509 | **0.616** | 0.610 | **0.864**** |
89
+ | --- | --- | --- | --- | --- | --- | --- | --- |
90
+ | gpt-4o | 0.62 | 0.63 | 0.789 | 0.56 | 0.623 | 0.644 | 0.887** |
91
+
92
+ ** We report the MMLU score that is reported in [GPT-4o Tech Report](https://openai.com/index/hello-gpt-4o/).
93
+
94
+ ### MT-Bench
95
+
96
+ | Model | MT-Bench Thai | MT-Bench English |
97
+ | --- | --- | --- |
98
+ | Typhoon-1.5X 70B | **8.029** | **8.797** |
99
+ | gpt-4-0612 | 7.801 | 8.671 |
100
+ | --- | --- | --- |
101
+ | gpt-4o | 8.514 | 9.184 |
102
+
103
+ ### IFEval
104
+
105
+ | Model | IFEval Thai | IFEval English |
106
+ | --- | --- | --- |
107
+ | Typhoon-1.5X 70B | **0.645** | **0.810** |
108
+ | gpt-4-0612 | 0.612 | 0.793* |
109
+ | --- | --- | --- |
110
+ | gpt-4o | 0.737 | 0.871 |
111
+
112
+ * We report the number from IFEval paper.
113
+
114
+ ### Agent
115
+
116
+ | Model | GAIA - Thai/English | GSM8K - Thai/English | HotpotQA - Thai/English |
117
+ | --- | --- | --- | --- |
118
+ | gpt-3.5-turbo-0125 | **18.42**/37.5 | 70/80 | 39.56/59 |
119
+ | Typhoon-1.5X 70B | 17.10/36.25 | 80/95 | 52.7/65.83 |
120
+ | gpt-4-0612 | 17.10/**38.75** | **90**/**100** | **56.41**/**76.25** |
121
+ | --- | --- | --- | --- |
122
+ | gpt-4o | 44.73/57.5 | 100/100 | 71.64/76.58 |
123
+
124
+ ## Insight
125
+
126
+ We utilized **model editing** techniques and found that the most critical feature for generating accurate Thai answers is located in the backend (the upper layers of the transformer block). Accordingly, we incorporated a high ratio of Typhoon components in these backend layers to enhance our model’s performance.
127
+
128
+ ## **Usage Example**
129
+
130
+ ```python
131
+ from transformers import AutoTokenizer, AutoModelForCausalLM
132
+ import torch
133
+
134
+ model_id = "scb10x/llama-3-typhoon-v1.5x-70b-instruct"
135
+
136
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
137
+ model = AutoModelForCausalLM.from_pretrained(
138
+ model_id,
139
+ torch_dtype=torch.bfloat16,
140
+ device_map="auto",
141
+ ) # We don't recommend using BNB 4-bit (load_in_4bit) here. Instead, use AWQ, as detailed here: https://huggingface.co/scb10x/llama-3-typhoon-v1.5x-70b-instruct-awq.
142
+
143
+ messages = [...] # add message here
144
+
145
+ input_ids = tokenizer.apply_chat_template(
146
+ messages,
147
+ add_generation_prompt=True,
148
+ return_tensors="pt"
149
+ ).to(model.device)
150
+
151
+ terminators = [
152
+ tokenizer.eos_token_id,
153
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
154
+ ]
155
+
156
+ outputs = model.generate(
157
+ input_ids,
158
+ max_new_tokens=512,
159
+ eos_token_id=terminators,
160
+ do_sample=True,
161
+ temperature=0.4,
162
+ top_p=0.95,
163
+ )
164
+ response = outputs[0][input_ids.shape[-1]:]
165
+ print(tokenizer.decode(response, skip_special_tokens=True))
166
+ ```
167
+
168
+ ## **Chat Template**
169
+
170
+ We use the Llama 3 chat template.
171
+
172
+ ```python
173
+ {% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}
174
+ ```
175
+
176
+ ## **Intended Uses & Limitations**
177
+
178
+ This model is experimental and might not be fully evaluated for all use cases. Developers should assess risks in the context of their specific applications.
179
+
180
+ ## **Follow us**
181
+
182
+ [**https://twitter.com/opentyphoon**](https://twitter.com/opentyphoon)
183
+
184
+ ## **Support**
185
+
186
+ [**https://discord.gg/CqyBscMFpg**](https://discord.gg/CqyBscMFpg)
187
+
188
+ ## **SCB 10X Typhoon Team**
189
+
190
+ - Kunat Pipatanakul, Potsawee Manakul, Sittipong Sripaisarnmongkol, Natapong Nitarach, Pathomporn Chokchainant, Kasima Tharnpipitchai
191
+ - If you find Typhoon-1.5X useful for your work, please cite it using:
192
+
193
+ ```
194
+ @article{pipatanakul2023typhoon,
195
+ title={Typhoon: Thai Large Language Models},
196
+ author={Kunat Pipatanakul and Phatrasek Jirabovonvisut and Potsawee Manakul and Sittipong Sripaisarnmongkol and Ruangsak Patomwong and Pathomporn Chokchainant and Kasima Tharnpipitchai},
197
+ year={2023},
198
+ journal={arXiv preprint arXiv:2312.13951},
199
+ url={https://arxiv.org/abs/2312.13951}
200
+ }
201
+ ```
202
+
203
+ ## **Contact Us**
204
+
205
+ - General & Collaboration: [**kasima@scb10x.com**](mailto:kasima@scb10x.com), [**pathomporn@scb10x.com**](mailto:pathomporn@scb10x.com)
206
+ - Technical: [**kunat@scb10x.com**](mailto:kunat@scb10x.com)
207
+