RichardErkhov commited on
Commit
d9dfb25
1 Parent(s): 32ce72e

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +192 -0
README.md ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ llama-3-8b-gpt-4o-ru1.0 - GGUF
11
+ - Model creator: https://huggingface.co/ruslandev/
12
+ - Original model: https://huggingface.co/ruslandev/llama-3-8b-gpt-4o-ru1.0/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [llama-3-8b-gpt-4o-ru1.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q2_K.gguf) | Q2_K | 2.96GB |
18
+ | [llama-3-8b-gpt-4o-ru1.0.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
19
+ | [llama-3-8b-gpt-4o-ru1.0.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.IQ3_S.gguf) | IQ3_S | 3.43GB |
20
+ | [llama-3-8b-gpt-4o-ru1.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
21
+ | [llama-3-8b-gpt-4o-ru1.0.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.IQ3_M.gguf) | IQ3_M | 3.52GB |
22
+ | [llama-3-8b-gpt-4o-ru1.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q3_K.gguf) | Q3_K | 3.74GB |
23
+ | [llama-3-8b-gpt-4o-ru1.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
24
+ | [llama-3-8b-gpt-4o-ru1.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
25
+ | [llama-3-8b-gpt-4o-ru1.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
26
+ | [llama-3-8b-gpt-4o-ru1.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q4_0.gguf) | Q4_0 | 4.34GB |
27
+ | [llama-3-8b-gpt-4o-ru1.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
28
+ | [llama-3-8b-gpt-4o-ru1.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
29
+ | [llama-3-8b-gpt-4o-ru1.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q4_K.gguf) | Q4_K | 4.58GB |
30
+ | [llama-3-8b-gpt-4o-ru1.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
31
+ | [llama-3-8b-gpt-4o-ru1.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q4_1.gguf) | Q4_1 | 4.78GB |
32
+ | [llama-3-8b-gpt-4o-ru1.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q5_0.gguf) | Q5_0 | 5.21GB |
33
+ | [llama-3-8b-gpt-4o-ru1.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
34
+ | [llama-3-8b-gpt-4o-ru1.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q5_K.gguf) | Q5_K | 5.34GB |
35
+ | [llama-3-8b-gpt-4o-ru1.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
36
+ | [llama-3-8b-gpt-4o-ru1.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q5_1.gguf) | Q5_1 | 5.65GB |
37
+ | [llama-3-8b-gpt-4o-ru1.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q6_K.gguf) | Q6_K | 6.14GB |
38
+ | [llama-3-8b-gpt-4o-ru1.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/ruslandev_-_llama-3-8b-gpt-4o-ru1.0-gguf/blob/main/llama-3-8b-gpt-4o-ru1.0.Q8_0.gguf) | Q8_0 | 7.95GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: llama3
46
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
47
+ tags:
48
+ - generated_from_trainer
49
+ model-index:
50
+ - name: >-
51
+ home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru
52
+ results: []
53
+ datasets:
54
+ - ruslandev/tagengo-rus-gpt-4o
55
+ ---
56
+
57
+ # Llama-3 8B GPT-4o-RU1.0
58
+
59
+ [[Dataset]](https://huggingface.co/datasets/ruslandev/tagengo-rus-gpt-4o)
60
+
61
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
62
+ The idea behind this model is to train on a dataset derived from a smaller subset of the [tagengo-gpt4](https://huggingface.co/datasets/lightblue/tagengo-gpt4), but with improved data quality.
63
+ I tried to achieve higher data quality by prompting GPT-4o, the latest OpenAI's LLM with better multilingual capabilities. The training objective is primarily focused on the Russian language (80% of the training examples).
64
+ After training for 1 epoch on 2 NVIDIA A100 the model shows promising results on the MT-Bench evaluation benchmark, surpassing GPT-3.5-turbo and being on par with [Suzume](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) in Russian language scores,
65
+ even though the latter is trained on 8x bigger and more diverse dataset.
66
+
67
+ ## How to use
68
+
69
+ The easiest way to use this model on your own computer is to use the GGUF version of this model ([ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf](https://huggingface.co/ruslandev/llama-3-8b-gpt-4o-ru1.0-gguf)) using a program such as [llama.cpp](https://github.com/ggerganov/llama.cpp).
70
+ If you want to use this model directly with the Huggingface Transformers stack, I recommend using my framework [gptchain](https://github.com/RuslanPeresy/gptchain).
71
+
72
+ ```
73
+ git clone https://github.com/RuslanPeresy/gptchain.git
74
+ cd gptchain
75
+ pip install -r requirements-train.txt
76
+ python gptchain.py chat -m ruslandev/llama-3-8b-gpt-4o-ru1.0 \
77
+ --chatml true \
78
+ -q '[{"from": "human", "value": "Из чего состоит нейронная сеть?"}]'
79
+ ```
80
+
81
+ ## Evaluation scores
82
+
83
+ I achieved the following scores on Ru/En MT-Bench:
84
+ | |meta-llama/Meta-Llama-3-8B-Instruct | ruslandev/llama-3-8b-gpt-4o-ru1.0 | lightblue/suzume-llama-3-8B-multilingual | Nexusflow/Starling-LM-7B-beta | gpt-3.5-turbo |
85
+ |:----------:|:----------------------------------:|:---------------------------------:|:----------------------------------------:|:-----------------------------:|:-------------:|
86
+ | Russian 🇷🇺 | NaN | 8.12 | 8.19 | 8.06 | 7.94 |
87
+ | English 🇺🇸 | 7.98 | 8.01 | 7.73 | 7.92 | 8.26 |
88
+
89
+ ## Training procedure
90
+
91
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
92
+ <details><summary>See axolotl config</summary>
93
+
94
+ axolotl version: `0.4.1`
95
+ ```yaml
96
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
97
+ model_type: LlamaForCausalLM
98
+ tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
99
+
100
+ load_in_8bit: false
101
+ load_in_4bit: false
102
+ strict: false
103
+
104
+ datasets:
105
+ - path: ruslandev/tagengo-rus-gpt-4o
106
+ type: sharegpt
107
+ conversation: llama-3
108
+ dataset_prepared_path: /home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/prepared_tagengo_rus
109
+ val_set_size: 0.01
110
+ output_dir: /home/ubuntu/llm_training/axolotl/llama3-8b-gpt-4o-ru/output_llama3_8b_gpt_4o_ru
111
+
112
+ sequence_len: 8192
113
+ sample_packing: true
114
+ pad_to_sequence_len: true
115
+ eval_sample_packing: false
116
+
117
+ use_wandb: false
118
+ #wandb_project: axolotl
119
+ #wandb_entity: wandb_entity
120
+ #wandb_name: llama_3_8b_gpt_4o_ru
121
+
122
+ gradient_accumulation_steps: 2
123
+ micro_batch_size: 2
124
+ num_epochs: 1
125
+ optimizer: paged_adamw_8bit
126
+ lr_scheduler: cosine
127
+ learning_rate: 1e-5
128
+
129
+ train_on_inputs: false
130
+ group_by_length: false
131
+ bf16: auto
132
+ fp16:
133
+ tf32: false
134
+
135
+ gradient_checkpointing: true
136
+ gradient_checkpointing_kwargs:
137
+ use_reentrant: false
138
+ early_stopping_patience:
139
+ resume_from_checkpoint:
140
+ logging_steps: 1
141
+ xformers_attention:
142
+ flash_attention: true
143
+
144
+ warmup_steps: 10
145
+ evals_per_epoch: 5
146
+ eval_table_size:
147
+ saves_per_epoch: 1
148
+ debug:
149
+ deepspeed: /home/ubuntu/axolotl/deepspeed_configs/zero2.json
150
+ weight_decay: 0.0
151
+ special_tokens:
152
+ pad_token: <|end_of_text|>
153
+
154
+ ```
155
+
156
+ </details><br>
157
+
158
+ ### Training hyperparameters
159
+
160
+ The following hyperparameters were used during training:
161
+ - learning_rate: 1e-05
162
+ - train_batch_size: 2
163
+ - eval_batch_size: 2
164
+ - seed: 42
165
+ - distributed_type: multi-GPU
166
+ - num_devices: 2
167
+ - gradient_accumulation_steps: 2
168
+ - total_train_batch_size: 8
169
+ - total_eval_batch_size: 4
170
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
171
+ - lr_scheduler_type: cosine
172
+ - lr_scheduler_warmup_steps: 10
173
+ - num_epochs: 1
174
+
175
+ ### Training results
176
+
177
+ | Training Loss | Epoch | Step | Validation Loss |
178
+ |:-------------:|:-----:|:----:|:---------------:|
179
+ | 1.1347 | 0.016 | 1 | 1.1086 |
180
+ | 0.916 | 0.208 | 13 | 0.8883 |
181
+ | 0.8494 | 0.416 | 26 | 0.8072 |
182
+ | 0.8657 | 0.624 | 39 | 0.7814 |
183
+ | 0.8077 | 0.832 | 52 | 0.7702 |
184
+
185
+
186
+ ### Framework versions
187
+
188
+ - Transformers 4.41.1
189
+ - Pytorch 2.2.2+cu121
190
+ - Datasets 2.19.1
191
+ - Tokenizers 0.19.1
192
+