RichardErkhov commited on
Commit
f11f1f7
1 Parent(s): 952d17d

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Llama-2-7b-pruned50-retrained - GGUF
11
+ - Model creator: https://huggingface.co/neuralmagic/
12
+ - Original model: https://huggingface.co/neuralmagic/Llama-2-7b-pruned50-retrained/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Llama-2-7b-pruned50-retrained.Q2_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q2_K.gguf) | Q2_K | 2.36GB |
18
+ | [Llama-2-7b-pruned50-retrained.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
19
+ | [Llama-2-7b-pruned50-retrained.IQ3_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ3_S.gguf) | IQ3_S | 2.75GB |
20
+ | [Llama-2-7b-pruned50-retrained.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
21
+ | [Llama-2-7b-pruned50-retrained.IQ3_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ3_M.gguf) | IQ3_M | 2.9GB |
22
+ | [Llama-2-7b-pruned50-retrained.Q3_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q3_K.gguf) | Q3_K | 3.07GB |
23
+ | [Llama-2-7b-pruned50-retrained.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
24
+ | [Llama-2-7b-pruned50-retrained.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
25
+ | [Llama-2-7b-pruned50-retrained.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
26
+ | [Llama-2-7b-pruned50-retrained.Q4_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_0.gguf) | Q4_0 | 3.56GB |
27
+ | [Llama-2-7b-pruned50-retrained.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
28
+ | [Llama-2-7b-pruned50-retrained.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
29
+ | [Llama-2-7b-pruned50-retrained.Q4_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_K.gguf) | Q4_K | 3.8GB |
30
+ | [Llama-2-7b-pruned50-retrained.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
31
+ | [Llama-2-7b-pruned50-retrained.Q4_1.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_1.gguf) | Q4_1 | 3.95GB |
32
+ | [Llama-2-7b-pruned50-retrained.Q5_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_0.gguf) | Q5_0 | 4.33GB |
33
+ | [Llama-2-7b-pruned50-retrained.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
34
+ | [Llama-2-7b-pruned50-retrained.Q5_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_K.gguf) | Q5_K | 4.45GB |
35
+ | [Llama-2-7b-pruned50-retrained.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
36
+ | [Llama-2-7b-pruned50-retrained.Q5_1.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_1.gguf) | Q5_1 | 4.72GB |
37
+ | [Llama-2-7b-pruned50-retrained.Q6_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q6_K.gguf) | Q6_K | 5.15GB |
38
+ | [Llama-2-7b-pruned50-retrained.Q8_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q8_0.gguf) | Q8_0 | 6.67GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ base_model: meta-llama/Llama-2-7b-hf
46
+ inference: true
47
+ model_type: llama
48
+ pipeline_tag: text-generation
49
+ datasets:
50
+ - cerebras/SlimPajama-627B
51
+ tags:
52
+ - sparse
53
+ ---
54
+
55
+ # Llama-2-7b-pruned50-retrained
56
+
57
+ This repo contains model files for a [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) model that has had 50% of the parameters pruned in one-shot with [SparseGPT](https://arxiv.org/abs/2301.00774), then retrained by [Cerebras](https://huggingface.co/cerebras) with 45B tokens from SlimPajama while maintaining sparsity.
58
+
59
+ Official model weights from [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594).
60
+
61
+ **Authors**: Neural Magic, Cerebras
62
+
63
+ ## Usage
64
+
65
+ Below we share some code snippets on how to get quickly started with running the model.
66
+
67
+ ### Sparse Transfer
68
+
69
+ By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
70
+
71
+ ### Running the model
72
+
73
+ This model has not been fine-tuned for instruction-following but may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).
74
+
75
+ ```python
76
+ # pip install transformers accelerate
77
+ from transformers import AutoTokenizer, AutoModelForCausalLM
78
+
79
+ tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-pruned50-retrained")
80
+ model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-pruned50-retrained", device_map="auto")
81
+
82
+ input_text = "Write me a poem about Machine Learning."
83
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
84
+
85
+ outputs = model.generate(**input_ids)
86
+ print(tokenizer.decode(outputs[0]))
87
+ ```
88
+
89
+ ## Evaluation Benchmark Results
90
+
91
+ Model evaluation metrics and results.
92
+
93
+ | Benchmark | Metric | Llama-2-7b | Llama-2-7b-pruned50-retrained |
94
+ |------------------------------------------------|---------------|-------------|-------------------------------|
95
+ | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot | 46.9% | 41.3% |
96
+ | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | 78.6% | 76.5% |
97
+ | [WinoGrande](https://arxiv.org/abs/1907.10641) | 5-shot | 74.0% | 72.1% |
98
+ | [ARC-c](https://arxiv.org/abs/1911.01547) | 25-shot | 53.1% | 49.8% |
99
+ | [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | 38.8% | 37.7% |
100
+ | [GSM8K](https://arxiv.org/abs/2110.14168) | 5-shot | 14.5% | 9.17% |
101
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 13.4% | 14.7% |
102
+
103
+ ## Model Training Details
104
+
105
+ Coming soon.
106
+
107
+ ## Help
108
+
109
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
110
+