RichardErkhov
commited on
Commit
•
f11f1f7
1
Parent(s):
952d17d
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Llama-2-7b-pruned50-retrained - GGUF
|
11 |
+
- Model creator: https://huggingface.co/neuralmagic/
|
12 |
+
- Original model: https://huggingface.co/neuralmagic/Llama-2-7b-pruned50-retrained/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [Llama-2-7b-pruned50-retrained.Q2_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q2_K.gguf) | Q2_K | 2.36GB |
|
18 |
+
| [Llama-2-7b-pruned50-retrained.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
|
19 |
+
| [Llama-2-7b-pruned50-retrained.IQ3_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ3_S.gguf) | IQ3_S | 2.75GB |
|
20 |
+
| [Llama-2-7b-pruned50-retrained.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
|
21 |
+
| [Llama-2-7b-pruned50-retrained.IQ3_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ3_M.gguf) | IQ3_M | 2.9GB |
|
22 |
+
| [Llama-2-7b-pruned50-retrained.Q3_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q3_K.gguf) | Q3_K | 3.07GB |
|
23 |
+
| [Llama-2-7b-pruned50-retrained.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
|
24 |
+
| [Llama-2-7b-pruned50-retrained.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
|
25 |
+
| [Llama-2-7b-pruned50-retrained.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
|
26 |
+
| [Llama-2-7b-pruned50-retrained.Q4_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_0.gguf) | Q4_0 | 3.56GB |
|
27 |
+
| [Llama-2-7b-pruned50-retrained.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
|
28 |
+
| [Llama-2-7b-pruned50-retrained.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
|
29 |
+
| [Llama-2-7b-pruned50-retrained.Q4_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_K.gguf) | Q4_K | 3.8GB |
|
30 |
+
| [Llama-2-7b-pruned50-retrained.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
|
31 |
+
| [Llama-2-7b-pruned50-retrained.Q4_1.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q4_1.gguf) | Q4_1 | 3.95GB |
|
32 |
+
| [Llama-2-7b-pruned50-retrained.Q5_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_0.gguf) | Q5_0 | 4.33GB |
|
33 |
+
| [Llama-2-7b-pruned50-retrained.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
|
34 |
+
| [Llama-2-7b-pruned50-retrained.Q5_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_K.gguf) | Q5_K | 4.45GB |
|
35 |
+
| [Llama-2-7b-pruned50-retrained.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
|
36 |
+
| [Llama-2-7b-pruned50-retrained.Q5_1.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q5_1.gguf) | Q5_1 | 4.72GB |
|
37 |
+
| [Llama-2-7b-pruned50-retrained.Q6_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q6_K.gguf) | Q6_K | 5.15GB |
|
38 |
+
| [Llama-2-7b-pruned50-retrained.Q8_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-pruned50-retrained-gguf/blob/main/Llama-2-7b-pruned50-retrained.Q8_0.gguf) | Q8_0 | 6.67GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
base_model: meta-llama/Llama-2-7b-hf
|
46 |
+
inference: true
|
47 |
+
model_type: llama
|
48 |
+
pipeline_tag: text-generation
|
49 |
+
datasets:
|
50 |
+
- cerebras/SlimPajama-627B
|
51 |
+
tags:
|
52 |
+
- sparse
|
53 |
+
---
|
54 |
+
|
55 |
+
# Llama-2-7b-pruned50-retrained
|
56 |
+
|
57 |
+
This repo contains model files for a [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) model that has had 50% of the parameters pruned in one-shot with [SparseGPT](https://arxiv.org/abs/2301.00774), then retrained by [Cerebras](https://huggingface.co/cerebras) with 45B tokens from SlimPajama while maintaining sparsity.
|
58 |
+
|
59 |
+
Official model weights from [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594).
|
60 |
+
|
61 |
+
**Authors**: Neural Magic, Cerebras
|
62 |
+
|
63 |
+
## Usage
|
64 |
+
|
65 |
+
Below we share some code snippets on how to get quickly started with running the model.
|
66 |
+
|
67 |
+
### Sparse Transfer
|
68 |
+
|
69 |
+
By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
|
70 |
+
|
71 |
+
### Running the model
|
72 |
+
|
73 |
+
This model has not been fine-tuned for instruction-following but may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).
|
74 |
+
|
75 |
+
```python
|
76 |
+
# pip install transformers accelerate
|
77 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
78 |
+
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-pruned50-retrained")
|
80 |
+
model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-pruned50-retrained", device_map="auto")
|
81 |
+
|
82 |
+
input_text = "Write me a poem about Machine Learning."
|
83 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
84 |
+
|
85 |
+
outputs = model.generate(**input_ids)
|
86 |
+
print(tokenizer.decode(outputs[0]))
|
87 |
+
```
|
88 |
+
|
89 |
+
## Evaluation Benchmark Results
|
90 |
+
|
91 |
+
Model evaluation metrics and results.
|
92 |
+
|
93 |
+
| Benchmark | Metric | Llama-2-7b | Llama-2-7b-pruned50-retrained |
|
94 |
+
|------------------------------------------------|---------------|-------------|-------------------------------|
|
95 |
+
| [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot | 46.9% | 41.3% |
|
96 |
+
| [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | 78.6% | 76.5% |
|
97 |
+
| [WinoGrande](https://arxiv.org/abs/1907.10641) | 5-shot | 74.0% | 72.1% |
|
98 |
+
| [ARC-c](https://arxiv.org/abs/1911.01547) | 25-shot | 53.1% | 49.8% |
|
99 |
+
| [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | 38.8% | 37.7% |
|
100 |
+
| [GSM8K](https://arxiv.org/abs/2110.14168) | 5-shot | 14.5% | 9.17% |
|
101 |
+
| [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 13.4% | 14.7% |
|
102 |
+
|
103 |
+
## Model Training Details
|
104 |
+
|
105 |
+
Coming soon.
|
106 |
+
|
107 |
+
## Help
|
108 |
+
|
109 |
+
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
|
110 |
+
|