RichardErkhov commited on
Commit
be8ae27
1 Parent(s): d46c5aa

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +200 -0
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ PowerLM-3b - GGUF
11
+ - Model creator: https://huggingface.co/ibm/
12
+ - Original model: https://huggingface.co/ibm/PowerLM-3b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [PowerLM-3b.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q2_K.gguf) | Q2_K | 1.25GB |
18
+ | [PowerLM-3b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.IQ3_XS.gguf) | IQ3_XS | 1.38GB |
19
+ | [PowerLM-3b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.IQ3_S.gguf) | IQ3_S | 1.45GB |
20
+ | [PowerLM-3b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q3_K_S.gguf) | Q3_K_S | 1.45GB |
21
+ | [PowerLM-3b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.IQ3_M.gguf) | IQ3_M | 1.52GB |
22
+ | [PowerLM-3b.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q3_K.gguf) | Q3_K | 1.62GB |
23
+ | [PowerLM-3b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q3_K_M.gguf) | Q3_K_M | 1.62GB |
24
+ | [PowerLM-3b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q3_K_L.gguf) | Q3_K_L | 1.76GB |
25
+ | [PowerLM-3b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.IQ4_XS.gguf) | IQ4_XS | 1.79GB |
26
+ | [PowerLM-3b.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q4_0.gguf) | Q4_0 | 1.87GB |
27
+ | [PowerLM-3b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.IQ4_NL.gguf) | IQ4_NL | 1.89GB |
28
+ | [PowerLM-3b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q4_K_S.gguf) | Q4_K_S | 1.89GB |
29
+ | [PowerLM-3b.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q4_K.gguf) | Q4_K | 2.0GB |
30
+ | [PowerLM-3b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q4_K_M.gguf) | Q4_K_M | 2.0GB |
31
+ | [PowerLM-3b.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q4_1.gguf) | Q4_1 | 2.07GB |
32
+ | [PowerLM-3b.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q5_0.gguf) | Q5_0 | 2.27GB |
33
+ | [PowerLM-3b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q5_K_S.gguf) | Q5_K_S | 2.27GB |
34
+ | [PowerLM-3b.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q5_K.gguf) | Q5_K | 2.33GB |
35
+ | [PowerLM-3b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q5_K_M.gguf) | Q5_K_M | 2.33GB |
36
+ | [PowerLM-3b.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q5_1.gguf) | Q5_1 | 2.47GB |
37
+ | [PowerLM-3b.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q6_K.gguf) | Q6_K | 2.69GB |
38
+ | [PowerLM-3b.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerLM-3b-gguf/blob/main/PowerLM-3b.Q8_0.gguf) | Q8_0 | 3.48GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ pipeline_tag: text-generation
46
+ inference: false
47
+ license: apache-2.0
48
+ library_name: transformers
49
+ model-index:
50
+ - name: ibm/PowerLM-3b
51
+ results:
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ type: lm-eval-harness
56
+ name: ARC
57
+ metrics:
58
+ - name: accuracy-norm
59
+ type: accuracy-norm
60
+ value: 60.5
61
+ verified: false
62
+ - task:
63
+ type: text-generation
64
+ dataset:
65
+ type: lm-eval-harness
66
+ name: BoolQ
67
+ metrics:
68
+ - name: accuracy
69
+ type: accuracy
70
+ value: 72.0
71
+ verified: false
72
+ - task:
73
+ type: text-generation
74
+ dataset:
75
+ type: lm-eval-harness
76
+ name: Hellaswag
77
+ metrics:
78
+ - name: accuracy-norm
79
+ type: accuracy-norm
80
+ value: 74.6
81
+ verified: false
82
+ - task:
83
+ type: text-generation
84
+ dataset:
85
+ type: lm-eval-harness
86
+ name: OpenBookQA
87
+ metrics:
88
+ - name: accuracy-norm
89
+ type: accuracy-norm
90
+ value: 43.6
91
+ verified: false
92
+ - task:
93
+ type: text-generation
94
+ dataset:
95
+ type: lm-eval-harness
96
+ name: PIQA
97
+ metrics:
98
+ - name: accuracy-norm
99
+ type: accuracy-norm
100
+ value: 79.9
101
+ verified: false
102
+ - task:
103
+ type: text-generation
104
+ dataset:
105
+ type: lm-eval-harness
106
+ name: Winogrande
107
+ metrics:
108
+ - name: accuracy-norm
109
+ type: accuracy-norm
110
+ value: 70.0
111
+ verified: false
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ type: lm-eval-harness
116
+ name: MMLU (5 shot)
117
+ metrics:
118
+ - name: accuracy
119
+ type: accuracy
120
+ value: 49.2
121
+ verified: false
122
+ - task:
123
+ type: text-generation
124
+ dataset:
125
+ type: lm-eval-harness
126
+ name: GSM8k (5 shot)
127
+ metrics:
128
+ - name: accuracy
129
+ type: accuracy
130
+ value: 34.9
131
+ verified: false
132
+ - task:
133
+ type: text-generation
134
+ dataset:
135
+ type: lm-eval-harness
136
+ name: math (4 shot)
137
+ metrics:
138
+ - name: accuracy
139
+ type: accuracy
140
+ value: 15.2
141
+ verified: false
142
+ - task:
143
+ type: text-generation
144
+ dataset:
145
+ type: bigcode-eval
146
+ name: humaneval
147
+ metrics:
148
+ - name: pass@1
149
+ type: pass@1
150
+ value: 26.8
151
+ verified: false
152
+ - task:
153
+ type: text-generation
154
+ dataset:
155
+ type: bigcode-eval
156
+ name: MBPP
157
+ metrics:
158
+ - name: pass@1
159
+ type: pass@1
160
+ value: 33.6
161
+ verified: false
162
+ ---
163
+
164
+ ## Model Summary
165
+ PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a mix of open-source and proprietary datasets. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
166
+ Paper: https://arxiv.org/abs/2408.13359
167
+
168
+ ## Usage
169
+ Note: Requires installing HF transformers from source.
170
+
171
+ ### Generation
172
+ This is a simple example of how to use **PowerLM-3b** model.
173
+
174
+ ```python
175
+ import torch
176
+ from transformers import AutoModelForCausalLM, AutoTokenizer
177
+ device = "cuda" # or "cpu"
178
+ model_path = "ibm/PowerLM-3b"
179
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
180
+ # drop device_map if running on CPU
181
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
182
+ model.eval()
183
+ # change input text as desired
184
+ prompt = "Write a code to find the maximum value in a list of numbers."
185
+ # tokenize the text
186
+ input_tokens = tokenizer(prompt, return_tensors="pt")
187
+ # transfer tokenized inputs to the device
188
+ for i in input_tokens:
189
+ input_tokens[i] = input_tokens[i].to(device)
190
+ # generate output tokens
191
+ output = model.generate(**input_tokens, max_new_tokens=100)
192
+ # decode output tokens into text
193
+ output = tokenizer.batch_decode(output)
194
+ # loop over the batch to print, in this example the batch size is 1
195
+ for i in output:
196
+ print(i)
197
+ ```
198
+
199
+
200
+ Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more quants, at much higher speed, than I would otherwise be able to.