RichardErkhov commited on
Commit
2004d94
1 Parent(s): 21cc0f1

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +151 -0
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Qwen2.5-7B-Instruct-abliterated-v3 - GGUF
11
+ - Model creator: https://huggingface.co/huihui-ai/
12
+ - Original model: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q2_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q2_K.gguf) | Q2_K | 2.81GB |
18
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_S.gguf) | Q3_K_S | 3.25GB |
19
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q3_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q3_K.gguf) | Q3_K | 3.55GB |
20
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_M.gguf) | Q3_K_M | 3.55GB |
21
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q3_K_L.gguf) | Q3_K_L | 3.81GB |
22
+ | [Qwen2.5-7B-Instruct-abliterated-v3.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.IQ4_XS.gguf) | IQ4_XS | 3.96GB |
23
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q4_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_0.gguf) | Q4_0 | 4.13GB |
24
+ | [Qwen2.5-7B-Instruct-abliterated-v3.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.IQ4_NL.gguf) | IQ4_NL | 4.16GB |
25
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_K_S.gguf) | Q4_K_S | 4.15GB |
26
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q4_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_K.gguf) | Q4_K | 4.36GB |
27
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_K_M.gguf) | Q4_K_M | 4.36GB |
28
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q4_1.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q4_1.gguf) | Q4_1 | 4.54GB |
29
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q5_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_0.gguf) | Q5_0 | 4.95GB |
30
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_K_S.gguf) | Q5_K_S | 4.95GB |
31
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q5_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_K.gguf) | Q5_K | 5.07GB |
32
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_K_M.gguf) | Q5_K_M | 5.07GB |
33
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q5_1.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q5_1.gguf) | Q5_1 | 5.36GB |
34
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q6_K.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q6_K.gguf) | Q6_K | 5.82GB |
35
+ | [Qwen2.5-7B-Instruct-abliterated-v3.Q8_0.gguf](https://huggingface.co/RichardErkhov/huihui-ai_-_Qwen2.5-7B-Instruct-abliterated-v3-gguf/blob/main/Qwen2.5-7B-Instruct-abliterated-v3.Q8_0.gguf) | Q8_0 | 7.54GB |
36
+
37
+
38
+
39
+
40
+ Original model description:
41
+ ---
42
+ library_name: transformers
43
+ license: apache-2.0
44
+ license_link: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3/blob/main/LICENSE
45
+ language:
46
+ - en
47
+ pipeline_tag: text-generation
48
+ base_model: Qwen/Qwen2.5-7B-Instruct
49
+ tags:
50
+ - chat
51
+ - abliterated
52
+ - uncensored
53
+ ---
54
+
55
+ # huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3
56
+
57
+
58
+ This is an uncensored version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it).
59
+ This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens.
60
+ The test results are not very good, but compared to before, there is much less [garbled text](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2/discussions/2).
61
+
62
+ ## Usage
63
+ You can use this model in your applications by loading it with Hugging Face's `transformers` library:
64
+
65
+
66
+ ```python
67
+ from transformers import AutoModelForCausalLM, AutoTokenizer
68
+
69
+ # Load the model and tokenizer
70
+ model_name = "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3"
71
+ model = AutoModelForCausalLM.from_pretrained(
72
+ model_name,
73
+ torch_dtype="auto",
74
+ device_map="auto"
75
+ )
76
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
77
+
78
+ # Initialize conversation context
79
+ initial_messages = [
80
+ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
81
+ ]
82
+ messages = initial_messages.copy() # Copy the initial conversation context
83
+
84
+ # Enter conversation loop
85
+ while True:
86
+ # Get user input
87
+ user_input = input("User: ").strip() # Strip leading and trailing spaces
88
+
89
+ # If the user types '/exit', end the conversation
90
+ if user_input.lower() == "/exit":
91
+ print("Exiting chat.")
92
+ break
93
+
94
+ # If the user types '/clean', reset the conversation context
95
+ if user_input.lower() == "/clean":
96
+ messages = initial_messages.copy() # Reset conversation context
97
+ print("Chat history cleared. Starting a new conversation.")
98
+ continue
99
+
100
+ # If input is empty, prompt the user and continue
101
+ if not user_input:
102
+ print("Input cannot be empty. Please enter something.")
103
+ continue
104
+
105
+ # Add user input to the conversation
106
+ messages.append({"role": "user", "content": user_input})
107
+
108
+ # Build the chat template
109
+ text = tokenizer.apply_chat_template(
110
+ messages,
111
+ tokenize=False,
112
+ add_generation_prompt=True
113
+ )
114
+
115
+ # Tokenize input and prepare it for the model
116
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
117
+
118
+ # Generate a response from the model
119
+ generated_ids = model.generate(
120
+ **model_inputs,
121
+ max_new_tokens=8192
122
+ )
123
+
124
+ # Extract model output, removing special tokens
125
+ generated_ids = [
126
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
127
+ ]
128
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
129
+
130
+ # Add the model's response to the conversation
131
+ messages.append({"role": "assistant", "content": response})
132
+
133
+ # Print the model's response
134
+ print(f"Qwen: {response}")
135
+
136
+ ```
137
+
138
+ ## Evaluations
139
+ The following data has been re-evaluated and calculated as the average for each test.
140
+
141
+ | Benchmark | Qwen2.5-7B-Instruct | Qwen2.5-7B-Instruct-abliterated-v3 | Qwen2.5-7B-Instruct-abliterated-v2 | Qwen2.5-7B-Instruct-abliterated |
142
+ |-------------|---------------------|------------------------------------|------------------------------------|---------------------------------|
143
+ | IF_Eval | 76.44 | 72.64 | **77.82** | 76.49 |
144
+ | MMLU Pro | **43.12** | 39.14 | 42.03 | 41.71 |
145
+ | TruthfulQA | 62.46 | 57.27 | 57.81 | **64.92** |
146
+ | BBH | **53.92** | 50.67 | 53.01 | 52.77 |
147
+ | GPQA | 31.91 | 31.65 | **32.17** | 31.97 |
148
+
149
+ The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3/blob/main/eval.sh)
150
+
151
+