RichardErkhov commited on
Commit
0f3870e
1 Parent(s): b49221a

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +235 -0
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ BeagleLake-7B - GGUF
11
+ - Model creator: https://huggingface.co/fhai50032/
12
+ - Original model: https://huggingface.co/fhai50032/BeagleLake-7B/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [BeagleLake-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q2_K.gguf) | Q2_K | 2.53GB |
18
+ | [BeagleLake-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
19
+ | [BeagleLake-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.IQ3_S.gguf) | IQ3_S | 2.96GB |
20
+ | [BeagleLake-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
21
+ | [BeagleLake-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.IQ3_M.gguf) | IQ3_M | 3.06GB |
22
+ | [BeagleLake-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q3_K.gguf) | Q3_K | 3.28GB |
23
+ | [BeagleLake-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
24
+ | [BeagleLake-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
25
+ | [BeagleLake-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
26
+ | [BeagleLake-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q4_0.gguf) | Q4_0 | 3.83GB |
27
+ | [BeagleLake-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
28
+ | [BeagleLake-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
29
+ | [BeagleLake-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q4_K.gguf) | Q4_K | 4.07GB |
30
+ | [BeagleLake-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
31
+ | [BeagleLake-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q4_1.gguf) | Q4_1 | 4.24GB |
32
+ | [BeagleLake-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q5_0.gguf) | Q5_0 | 4.65GB |
33
+ | [BeagleLake-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
34
+ | [BeagleLake-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q5_K.gguf) | Q5_K | 4.78GB |
35
+ | [BeagleLake-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
36
+ | [BeagleLake-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q5_1.gguf) | Q5_1 | 5.07GB |
37
+ | [BeagleLake-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q6_K.gguf) | Q6_K | 5.53GB |
38
+ | [BeagleLake-7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/fhai50032_-_BeagleLake-7B-gguf/blob/main/BeagleLake-7B.Q8_0.gguf) | Q8_0 | 7.17GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: apache-2.0
46
+ tags:
47
+ - merge
48
+ - mergekit
49
+ - mistral
50
+ - fhai50032/RolePlayLake-7B
51
+ - mlabonne/NeuralBeagle14-7B
52
+ base_model:
53
+ - fhai50032/RolePlayLake-7B
54
+ - mlabonne/NeuralBeagle14-7B
55
+ model-index:
56
+ - name: BeagleLake-7B
57
+ results:
58
+ - task:
59
+ type: text-generation
60
+ name: Text Generation
61
+ dataset:
62
+ name: AI2 Reasoning Challenge (25-Shot)
63
+ type: ai2_arc
64
+ config: ARC-Challenge
65
+ split: test
66
+ args:
67
+ num_few_shot: 25
68
+ metrics:
69
+ - type: acc_norm
70
+ value: 70.39
71
+ name: normalized accuracy
72
+ source:
73
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
74
+ name: Open LLM Leaderboard
75
+ - task:
76
+ type: text-generation
77
+ name: Text Generation
78
+ dataset:
79
+ name: HellaSwag (10-Shot)
80
+ type: hellaswag
81
+ split: validation
82
+ args:
83
+ num_few_shot: 10
84
+ metrics:
85
+ - type: acc_norm
86
+ value: 87.38
87
+ name: normalized accuracy
88
+ source:
89
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
90
+ name: Open LLM Leaderboard
91
+ - task:
92
+ type: text-generation
93
+ name: Text Generation
94
+ dataset:
95
+ name: MMLU (5-Shot)
96
+ type: cais/mmlu
97
+ config: all
98
+ split: test
99
+ args:
100
+ num_few_shot: 5
101
+ metrics:
102
+ - type: acc
103
+ value: 64.25
104
+ name: accuracy
105
+ source:
106
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
107
+ name: Open LLM Leaderboard
108
+ - task:
109
+ type: text-generation
110
+ name: Text Generation
111
+ dataset:
112
+ name: TruthfulQA (0-shot)
113
+ type: truthful_qa
114
+ config: multiple_choice
115
+ split: validation
116
+ args:
117
+ num_few_shot: 0
118
+ metrics:
119
+ - type: mc2
120
+ value: 64.92
121
+ source:
122
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
123
+ name: Open LLM Leaderboard
124
+ - task:
125
+ type: text-generation
126
+ name: Text Generation
127
+ dataset:
128
+ name: Winogrande (5-shot)
129
+ type: winogrande
130
+ config: winogrande_xl
131
+ split: validation
132
+ args:
133
+ num_few_shot: 5
134
+ metrics:
135
+ - type: acc
136
+ value: 83.19
137
+ name: accuracy
138
+ source:
139
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
140
+ name: Open LLM Leaderboard
141
+ - task:
142
+ type: text-generation
143
+ name: Text Generation
144
+ dataset:
145
+ name: GSM8k (5-shot)
146
+ type: gsm8k
147
+ config: main
148
+ split: test
149
+ args:
150
+ num_few_shot: 5
151
+ metrics:
152
+ - type: acc
153
+ value: 63.91
154
+ name: accuracy
155
+ source:
156
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B
157
+ name: Open LLM Leaderboard
158
+ ---
159
+
160
+ # BeagleLake-7B
161
+
162
+ BeagleLake-7B is a merge of the following models :
163
+ * [fhai50032/RolePlayLake-7B](https://huggingface.co/fhai50032/RolePlayLake-7B)
164
+ * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
165
+
166
+
167
+ Merging models are not powerful but are helpful in the case that it can work like Transfer Learning similar idk.. But they perform high on Leaderboard
168
+ For ex. NeuralBeagle is powerful model with lot of potential to grow and RolePlayLake is Suitable for RP (No-Simping) and is significantly uncensored and nice obligations
169
+ Fine-tuning a Merged model as a base model is surely a way to look forward and see a lot of potential going forward..
170
+
171
+ Much thanks to [Charles Goddard](https://huggingface.co/chargoddard) for making simple interface ['mergekit' ](https://github.com/cg123/mergekit)
172
+
173
+
174
+
175
+ ## 🧩 Configuration
176
+
177
+ ```yaml
178
+ models:
179
+ - model: mlabonne/NeuralBeagle14-7B
180
+ # no params for base model
181
+ - model: fhai50032/RolePlayLake-7B
182
+ parameters:
183
+ weight: 0.8
184
+ density: 0.6
185
+ - model: mlabonne/NeuralBeagle14-7B
186
+ parameters:
187
+ weight: 0.3
188
+ density: [0.1,0.3,0.5,0.7,1]
189
+ merge_method: dare_ties
190
+ base_model: mlabonne/NeuralBeagle14-7B
191
+ parameters:
192
+ normalize: true
193
+ int8_mask: true
194
+ dtype: float16
195
+ ```
196
+
197
+ ## 💻 Usage
198
+
199
+ ```python
200
+ !pip install -qU transformers accelerate
201
+
202
+ from transformers import AutoTokenizer
203
+ import transformers
204
+ import torch
205
+
206
+ model = "fhai50032/BeagleLake-7B"
207
+ messages = [{"role": "user", "content": "What is a large language model?"}]
208
+
209
+ tokenizer = AutoTokenizer.from_pretrained(model)
210
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
211
+ pipeline = transformers.pipeline(
212
+ "text-generation",
213
+ model=model,
214
+ torch_dtype=torch.float16,
215
+ device_map="auto",
216
+ )
217
+
218
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
219
+ print(outputs[0]["generated_text"])
220
+ ```
221
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
222
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__BeagleLake-7B)
223
+
224
+ | Metric |Value|
225
+ |---------------------------------|----:|
226
+ |Avg. |72.34|
227
+ |AI2 Reasoning Challenge (25-Shot)|70.39|
228
+ |HellaSwag (10-Shot) |87.38|
229
+ |MMLU (5-Shot) |64.25|
230
+ |TruthfulQA (0-shot) |64.92|
231
+ |Winogrande (5-shot) |83.19|
232
+ |GSM8k (5-shot) |63.91|
233
+
234
+
235
+