RichardErkhov commited on
Commit
2d4eab5
1 Parent(s): 2a68044

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +132 -0
README.md ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ CodeLlama-13b-Instruct-hf - GGUF
11
+ - Model creator: https://huggingface.co/codellama/
12
+ - Original model: https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [CodeLlama-13b-Instruct-hf.Q2_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q2_K.gguf) | Q2_K | 4.52GB |
18
+ | [CodeLlama-13b-Instruct-hf.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.IQ3_XS.gguf) | IQ3_XS | 4.99GB |
19
+ | [CodeLlama-13b-Instruct-hf.IQ3_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.IQ3_S.gguf) | IQ3_S | 5.27GB |
20
+ | [CodeLlama-13b-Instruct-hf.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q3_K_S.gguf) | Q3_K_S | 5.27GB |
21
+ | [CodeLlama-13b-Instruct-hf.IQ3_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.IQ3_M.gguf) | IQ3_M | 5.57GB |
22
+ | [CodeLlama-13b-Instruct-hf.Q3_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q3_K.gguf) | Q3_K | 5.9GB |
23
+ | [CodeLlama-13b-Instruct-hf.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q3_K_M.gguf) | Q3_K_M | 5.9GB |
24
+ | [CodeLlama-13b-Instruct-hf.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q3_K_L.gguf) | Q3_K_L | 6.45GB |
25
+ | [CodeLlama-13b-Instruct-hf.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.IQ4_XS.gguf) | IQ4_XS | 6.54GB |
26
+ | [CodeLlama-13b-Instruct-hf.Q4_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q4_0.gguf) | Q4_0 | 6.86GB |
27
+ | [CodeLlama-13b-Instruct-hf.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.IQ4_NL.gguf) | IQ4_NL | 6.9GB |
28
+ | [CodeLlama-13b-Instruct-hf.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q4_K_S.gguf) | Q4_K_S | 6.91GB |
29
+ | [CodeLlama-13b-Instruct-hf.Q4_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q4_K.gguf) | Q4_K | 7.33GB |
30
+ | [CodeLlama-13b-Instruct-hf.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q4_K_M.gguf) | Q4_K_M | 7.33GB |
31
+ | [CodeLlama-13b-Instruct-hf.Q4_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q4_1.gguf) | Q4_1 | 7.61GB |
32
+ | [CodeLlama-13b-Instruct-hf.Q5_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q5_0.gguf) | Q5_0 | 8.36GB |
33
+ | [CodeLlama-13b-Instruct-hf.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q5_K_S.gguf) | Q5_K_S | 8.36GB |
34
+ | [CodeLlama-13b-Instruct-hf.Q5_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q5_K.gguf) | Q5_K | 8.6GB |
35
+ | [CodeLlama-13b-Instruct-hf.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q5_K_M.gguf) | Q5_K_M | 8.6GB |
36
+ | [CodeLlama-13b-Instruct-hf.Q5_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q5_1.gguf) | Q5_1 | 9.1GB |
37
+ | [CodeLlama-13b-Instruct-hf.Q6_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-Instruct-hf-gguf/blob/main/CodeLlama-13b-Instruct-hf.Q6_K.gguf) | Q6_K | 9.95GB |
38
+
39
+
40
+
41
+
42
+ Original model description:
43
+ ---
44
+ language:
45
+ - code
46
+ pipeline_tag: text-generation
47
+ tags:
48
+ - llama-2
49
+ license: llama2
50
+ ---
51
+ # **Code Llama**
52
+ Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the 13 instruct-tuned version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom.
53
+
54
+ > [!NOTE]
55
+ > This is a non-official Code Llama repo. You can find the official Meta repository in the [Meta Llama organization](https://huggingface.co/meta-llama/CodeLlama-13b-Instruct-hf).
56
+
57
+ | | Base Model | Python | Instruct |
58
+ | --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
59
+ | 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) |
60
+ | 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) |
61
+ | 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) |
62
+ | 70B | [codellama/CodeLlama-70b-hf](https://huggingface.co/codellama/CodeLlama-70b-hf) | [codellama/CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf) | [codellama/CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) |
63
+
64
+ ## Model Use
65
+
66
+ To use this model, please make sure to install transformers:
67
+
68
+ ```bash
69
+ pip install transformers.git accelerate
70
+ ```
71
+
72
+ Model capabilities:
73
+
74
+ - [x] Code completion.
75
+ - [x] Infilling.
76
+ - [x] Instructions / chat.
77
+ - [ ] Python specialist.
78
+
79
+ ## Model Details
80
+ *Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
81
+
82
+ **Model Developers** Meta
83
+
84
+ **Variations** Code Llama comes in three model sizes, and three variants:
85
+
86
+ * Code Llama: base models designed for general code synthesis and understanding
87
+ * Code Llama - Python: designed specifically for Python
88
+ * Code Llama - Instruct: for instruction following and safer deployment
89
+
90
+ All variants are available in sizes of 7B, 13B and 34B parameters.
91
+
92
+ **This repository contains the Instruct version of the 13B parameters model.**
93
+
94
+ **Input** Models input text only.
95
+
96
+ **Output** Models generate text only.
97
+
98
+ **Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture.
99
+
100
+ **Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
101
+
102
+ **Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
103
+
104
+ **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
105
+
106
+ **Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950).
107
+
108
+ ## Intended Use
109
+ **Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
110
+
111
+ **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
112
+
113
+ ## Hardware and Software
114
+ **Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
115
+
116
+ **Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
117
+
118
+ ## Training Data
119
+
120
+ All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
121
+
122
+ ## Evaluation Results
123
+
124
+ See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
125
+
126
+
127
+ ## Ethical Considerations and Limitations
128
+
129
+ Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
130
+
131
+ Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
132
+