RichardErkhov
commited on
Commit
•
7eec58a
1
Parent(s):
0395e80
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
llama-2-26b-trenchcoat-stack - GGUF
|
11 |
+
- Model creator: https://huggingface.co/chargoddard/
|
12 |
+
- Original model: https://huggingface.co/chargoddard/llama-2-26b-trenchcoat-stack/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [llama-2-26b-trenchcoat-stack.Q2_K.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q2_K.gguf) | Q2_K | 8.87GB |
|
18 |
+
| [llama-2-26b-trenchcoat-stack.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.IQ3_XS.gguf) | IQ3_XS | 9.8GB |
|
19 |
+
| [llama-2-26b-trenchcoat-stack.IQ3_S.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.IQ3_S.gguf) | IQ3_S | 10.35GB |
|
20 |
+
| [llama-2-26b-trenchcoat-stack.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q3_K_S.gguf) | Q3_K_S | 10.35GB |
|
21 |
+
| [llama-2-26b-trenchcoat-stack.IQ3_M.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.IQ3_M.gguf) | IQ3_M | 10.96GB |
|
22 |
+
| [llama-2-26b-trenchcoat-stack.Q3_K.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q3_K.gguf) | Q3_K | 11.62GB |
|
23 |
+
| [llama-2-26b-trenchcoat-stack.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q3_K_M.gguf) | Q3_K_M | 11.62GB |
|
24 |
+
| [llama-2-26b-trenchcoat-stack.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q3_K_L.gguf) | Q3_K_L | 12.72GB |
|
25 |
+
| [llama-2-26b-trenchcoat-stack.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.IQ4_XS.gguf) | IQ4_XS | 2.4GB |
|
26 |
+
| [llama-2-26b-trenchcoat-stack.Q4_0.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q4_0.gguf) | Q4_0 | 13.51GB |
|
27 |
+
| [llama-2-26b-trenchcoat-stack.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.IQ4_NL.gguf) | IQ4_NL | 13.59GB |
|
28 |
+
| [llama-2-26b-trenchcoat-stack.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q4_K_S.gguf) | Q4_K_S | 9.59GB |
|
29 |
+
| [llama-2-26b-trenchcoat-stack.Q4_K.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q4_K.gguf) | Q4_K | 14.44GB |
|
30 |
+
| [llama-2-26b-trenchcoat-stack.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q4_K_M.gguf) | Q4_K_M | 5.12GB |
|
31 |
+
| [llama-2-26b-trenchcoat-stack.Q4_1.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q4_1.gguf) | Q4_1 | 14.99GB |
|
32 |
+
| [llama-2-26b-trenchcoat-stack.Q5_0.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q5_0.gguf) | Q5_0 | 16.48GB |
|
33 |
+
| [llama-2-26b-trenchcoat-stack.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q5_K_S.gguf) | Q5_K_S | 16.48GB |
|
34 |
+
| [llama-2-26b-trenchcoat-stack.Q5_K.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q5_K.gguf) | Q5_K | 16.96GB |
|
35 |
+
| [llama-2-26b-trenchcoat-stack.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q5_K_M.gguf) | Q5_K_M | 16.96GB |
|
36 |
+
| [llama-2-26b-trenchcoat-stack.Q5_1.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q5_1.gguf) | Q5_1 | 17.97GB |
|
37 |
+
| [llama-2-26b-trenchcoat-stack.Q6_K.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q6_K.gguf) | Q6_K | 19.64GB |
|
38 |
+
| [llama-2-26b-trenchcoat-stack.Q8_0.gguf](https://huggingface.co/RichardErkhov/chargoddard_-_llama-2-26b-trenchcoat-stack-gguf/blob/main/llama-2-26b-trenchcoat-stack.Q8_0.gguf) | Q8_0 | 25.44GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
license: llama2
|
46 |
+
tags:
|
47 |
+
- merge
|
48 |
+
- mergekit
|
49 |
+
---
|
50 |
+
|
51 |
+
Llama 2 13b is a pretty decent language model. You know what's probably better? *Two* Llama 2 13b models. In a trenchcoat.
|
52 |
+
|
53 |
+
Produced by [`bakllama.py`](https://github.com/cg123/mergekit/blob/main/bakllama.py) with this config file:
|
54 |
+
```yml
|
55 |
+
layer_slices:
|
56 |
+
- model: TheBloke/Llama-2-13B-fp16
|
57 |
+
start: 0
|
58 |
+
end: 40
|
59 |
+
- model: TheBloke/Llama-2-13B-fp16
|
60 |
+
start: 0
|
61 |
+
end: 40
|
62 |
+
```
|
63 |
+
|
64 |
+
No fine tuning was done on this model. Yes, it's still coherent somehow.
|
65 |
+
|
66 |
+
Benchmark results:
|
67 |
+
| Benchmark | Llama2-13b | Llama2-26b-tcs | Percent Change |
|
68 |
+
| --- | --- | --- | --- |
|
69 |
+
| ARC | 59.3 | 55.03 | -7.2% |
|
70 |
+
| HellaSwag | 82.15 | 79.9 | -2.74% |
|
71 |
+
| MMLU | 55.67 | 53.73| -3.48% |
|
72 |
+
| TruthfulQA | 37.39 | 40.48 | +5.59% |
|
73 |
+
| Average | 58.63 | 57.29 | -2.29% |
|
74 |
+
| Average Minus TQA | 65.70 | 62.85 | -4.34% |
|
75 |
+
|
76 |
+
|
77 |
+
This tells us two very important things:
|
78 |
+
1. TruthfulQA is a perfect benchmark in every way.
|
79 |
+
2. Llama models are amazingly robust to being fed their own output.
|
80 |
+
|