RichardErkhov
commited on
Commit
•
01297b1
1
Parent(s):
9d8f9eb
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
sea-lion-7b - GGUF
|
11 |
+
- Model creator: https://huggingface.co/aisingapore/
|
12 |
+
- Original model: https://huggingface.co/aisingapore/sea-lion-7b/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [sea-lion-7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q2_K.gguf) | Q2_K | 3.07GB |
|
18 |
+
| [sea-lion-7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.IQ3_XS.gguf) | IQ3_XS | 3.35GB |
|
19 |
+
| [sea-lion-7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.IQ3_S.gguf) | IQ3_S | 3.42GB |
|
20 |
+
| [sea-lion-7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q3_K_S.gguf) | Q3_K_S | 3.42GB |
|
21 |
+
| [sea-lion-7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.IQ3_M.gguf) | IQ3_M | 3.72GB |
|
22 |
+
| [sea-lion-7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q3_K.gguf) | Q3_K | 3.97GB |
|
23 |
+
| [sea-lion-7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q3_K_M.gguf) | Q3_K_M | 3.97GB |
|
24 |
+
| [sea-lion-7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q3_K_L.gguf) | Q3_K_L | 4.27GB |
|
25 |
+
| [sea-lion-7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.IQ4_XS.gguf) | IQ4_XS | 4.07GB |
|
26 |
+
| [sea-lion-7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q4_0.gguf) | Q4_0 | 4.22GB |
|
27 |
+
| [sea-lion-7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.IQ4_NL.gguf) | IQ4_NL | 4.25GB |
|
28 |
+
| [sea-lion-7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q4_K_S.gguf) | Q4_K_S | 4.25GB |
|
29 |
+
| [sea-lion-7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q4_K.gguf) | Q4_K | 4.67GB |
|
30 |
+
| [sea-lion-7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q4_K_M.gguf) | Q4_K_M | 4.67GB |
|
31 |
+
| [sea-lion-7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q4_1.gguf) | Q4_1 | 4.6GB |
|
32 |
+
| [sea-lion-7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q5_0.gguf) | Q5_0 | 4.97GB |
|
33 |
+
| [sea-lion-7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q5_K_S.gguf) | Q5_K_S | 4.97GB |
|
34 |
+
| [sea-lion-7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q5_K.gguf) | Q5_K | 5.3GB |
|
35 |
+
| [sea-lion-7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q5_K_M.gguf) | Q5_K_M | 5.3GB |
|
36 |
+
| [sea-lion-7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q5_1.gguf) | Q5_1 | 5.35GB |
|
37 |
+
| [sea-lion-7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q6_K.gguf) | Q6_K | 5.77GB |
|
38 |
+
| [sea-lion-7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/aisingapore_-_sea-lion-7b-gguf/blob/main/sea-lion-7b.Q8_0.gguf) | Q8_0 | 7.46GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
license: mit
|
46 |
+
language:
|
47 |
+
- en
|
48 |
+
- zh
|
49 |
+
- id
|
50 |
+
- ms
|
51 |
+
- th
|
52 |
+
- vi
|
53 |
+
- fil
|
54 |
+
- ta
|
55 |
+
- my
|
56 |
+
- km
|
57 |
+
- lo
|
58 |
+
---
|
59 |
+
# SEA-LION
|
60 |
+
|
61 |
+
SEA-LION is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for the Southeast Asia (SEA) region.
|
62 |
+
The size of the models range from 3 billion to 7 billion parameters.
|
63 |
+
This is the card for the SEA-LION 7B base model.
|
64 |
+
|
65 |
+
SEA-LION stands for <i>Southeast Asian Languages In One Network</i>.
|
66 |
+
|
67 |
+
|
68 |
+
## Model Details
|
69 |
+
|
70 |
+
### Model Description
|
71 |
+
|
72 |
+
The SEA-LION model is a significant leap forward in the field of Natural Language Processing,
|
73 |
+
specifically trained to understand the SEA regional context.
|
74 |
+
|
75 |
+
SEA-LION is built on the robust MPT architecture and has a vocabulary size of 256K.
|
76 |
+
|
77 |
+
For tokenization, the model employs our custom SEABPETokenizer, which is specially tailored for SEA languages, ensuring optimal model performance.
|
78 |
+
|
79 |
+
The training data for SEA-LION encompasses 980B tokens.
|
80 |
+
|
81 |
+
- **Developed by:** Products Pillar, AI Singapore
|
82 |
+
- **Funded by:** Singapore NRF
|
83 |
+
- **Model type:** Decoder
|
84 |
+
- **Languages:** English, Chinese, Indonesian, Malay, Thai, Vietnamese, Filipino, Tamil, Burmese, Khmer, Lao
|
85 |
+
- **License:** MIT License
|
86 |
+
|
87 |
+
### Performance Benchmarks
|
88 |
+
|
89 |
+
SEA-LION has an average performance on general tasks in English (as measured by Hugging Face's LLM Leaderboard):
|
90 |
+
|
91 |
+
| Model | ARC | HellaSwag | MMLU | TruthfulQA | Average |
|
92 |
+
|-------------|:-----:|:---------:|:-----:|:----------:|:-------:|
|
93 |
+
| SEA-LION 7B | 39.93 | 68.51 | 26.87 | 35.09 | 42.60 |
|
94 |
+
|
95 |
+
## Training Details
|
96 |
+
|
97 |
+
### Data
|
98 |
+
|
99 |
+
SEA-LION was trained on 980B tokens of the following data:
|
100 |
+
|
101 |
+
| Data Source | Unique Tokens | Multiplier | Total Tokens | Percentage |
|
102 |
+
|---------------------------|:-------------:|:----------:|:------------:|:----------:|
|
103 |
+
| RefinedWeb - English | 571.3B | 1 | 571.3B | 58.20% |
|
104 |
+
| mC4 - Chinese | 91.2B | 1 | 91.2B | 9.29% |
|
105 |
+
| mC4 - Indonesian | 3.68B | 4 | 14.7B | 1.50% |
|
106 |
+
| mC4 - Malay | 0.72B | 4 | 2.9B | 0.29% |
|
107 |
+
| mC4 - Filipino | 1.32B | 4 | 5.3B | 0.54% |
|
108 |
+
| mC4 - Burmese | 1.2B | 4 | 4.9B | 0.49% |
|
109 |
+
| mC4 - Vietnamese | 63.4B | 1 | 63.4B | 6.46% |
|
110 |
+
| mC4 - Thai | 5.8B | 2 | 11.6B | 1.18% |
|
111 |
+
| WangChanBERTa - Thai | 5B | 2 | 10B | 1.02% |
|
112 |
+
| mC4 - Lao | 0.27B | 4 | 1.1B | 0.12% |
|
113 |
+
| mC4 - Khmer | 0.97B | 4 | 3.9B | 0.40% |
|
114 |
+
| mC4 - Tamil | 2.55B | 4 | 10.2B | 1.04% |
|
115 |
+
| the Stack - Python | 20.9B | 2 | 41.8B | 4.26% |
|
116 |
+
| the Stack - Javascript | 55.6B | 1 | 55.6B | 5.66% |
|
117 |
+
| the Stack - Shell | 1.2B5 | 2 | 2.5B | 0.26% |
|
118 |
+
| the Stack - SQL | 6.4B | 2 | 12.8B | 1.31% |
|
119 |
+
| the Stack - Markdown | 26.6B | 1 | 26.6B | 2.71% |
|
120 |
+
| RedPajama - StackExchange | 21.2B | 1 | 21.2B | 2.16% |
|
121 |
+
| RedPajama - ArXiv | 30.6B | 1 | 30.6B | 3.12% |
|
122 |
+
|
123 |
+
### Infrastructure
|
124 |
+
|
125 |
+
SEA-LION was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
|
126 |
+
on the following hardware:
|
127 |
+
|
128 |
+
| Training Details | SEA-LION 7B |
|
129 |
+
|----------------------|:------------:|
|
130 |
+
| AWS EC2 p4d.24xlarge | 32 instances |
|
131 |
+
| Nvidia A100 40GB GPU | 256 |
|
132 |
+
| Training Duration | 22 days |
|
133 |
+
|
134 |
+
|
135 |
+
### Configuration
|
136 |
+
|
137 |
+
| HyperParameter | SEA-LION 7B |
|
138 |
+
|-------------------|:------------------:|
|
139 |
+
| Precision | bfloat16 |
|
140 |
+
| Optimizer | decoupled_adamw |
|
141 |
+
| Scheduler | cosine_with_warmup |
|
142 |
+
| Learning Rate | 6.0e-5 |
|
143 |
+
| Global Batch Size | 2048 |
|
144 |
+
| Micro Batch Size | 4 |
|
145 |
+
|
146 |
+
|
147 |
+
## Technical Specifications
|
148 |
+
|
149 |
+
### Model Architecture and Objective
|
150 |
+
|
151 |
+
SEA-LION is a decoder model using the MPT architecture.
|
152 |
+
|
153 |
+
| Parameter | SEA-LION 7B |
|
154 |
+
|-----------------|:-----------:|
|
155 |
+
| Layers | 32 |
|
156 |
+
| d_model | 4096 |
|
157 |
+
| head_dim | 32 |
|
158 |
+
| Vocabulary | 256000 |
|
159 |
+
| Sequence Length | 2048 |
|
160 |
+
|
161 |
+
|
162 |
+
### Tokenizer Details
|
163 |
+
|
164 |
+
We sample 20M lines from the training data to train the tokenizer.<br>
|
165 |
+
The framework for training is [SentencePiece](https://github.com/google/sentencepiece).<br>
|
166 |
+
The tokenizer type is Byte-Pair Encoding (BPE).
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
## The Team
|
171 |
+
|
172 |
+
Lam Wen Zhi Clarence<br>
|
173 |
+
Leong Wei Qi<br>
|
174 |
+
Li Yier<br>
|
175 |
+
Liu Bing Jie Darius<br>
|
176 |
+
Lovenia Holy<br>
|
177 |
+
Montalan Jann Railey<br>
|
178 |
+
Ng Boon Cheong Raymond<br>
|
179 |
+
Ngui Jian Gang<br>
|
180 |
+
Nguyen Thanh Ngan<br>
|
181 |
+
Ong Tat-Wee David<br>
|
182 |
+
Rengarajan Hamsawardhini<br>
|
183 |
+
Susanto Yosephine<br>
|
184 |
+
Tai Ngee Chia<br>
|
185 |
+
Tan Choon Meng<br>
|
186 |
+
Teo Jin Howe<br>
|
187 |
+
Teo Eng Sipp Leslie<br>
|
188 |
+
Teo Wei Yi<br>
|
189 |
+
Tjhi William<br>
|
190 |
+
Yeo Yeow Tong<br>
|
191 |
+
Yong Xianbin<br>
|
192 |
+
|
193 |
+
## Acknowledgements
|
194 |
+
|
195 |
+
AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
|
196 |
+
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
|
197 |
+
|
198 |
+
## Contact
|
199 |
+
|
200 |
+
For more info, please contact us using this [SEA-LION Inquiry Form](https://forms.gle/sLCUVb95wmGf43hi6)
|
201 |
+
|
202 |
+
[Link to SEA-LION's GitHub repository](https://github.com/aisingapore/sealion)
|
203 |
+
|
204 |
+
|
205 |
+
## Disclaimer
|
206 |
+
|
207 |
+
This the repository for the base model.
|
208 |
+
The model has _not_ been aligned for safety.
|
209 |
+
Developers and users should perform their own safety fine-tuning and related security measures.
|
210 |
+
In no event shall the authors be held liable for any claim, damages, or other liability
|
211 |
+
arising from the use of the released weights and codes.
|
212 |
+
|
213 |
+
|
214 |
+
## References
|
215 |
+
|
216 |
+
```bibtex
|
217 |
+
@misc{lowphansirikul2021wangchanberta,
|
218 |
+
title={WangchanBERTa: Pretraining transformer-based Thai Language Models},
|
219 |
+
author={Lalita Lowphansirikul and Charin Polpanumas and Nawat Jantrakulchai and Sarana Nutanong},
|
220 |
+
year={2021},
|
221 |
+
eprint={2101.09635},
|
222 |
+
archivePrefix={arXiv},
|
223 |
+
primaryClass={cs.CL}
|
224 |
+
}
|
225 |
+
```
|
226 |
+
|