RichardErkhov commited on
Commit
f43452a
·
verified ·
1 Parent(s): 3e7b1c2

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ ValueLlama-3-8B - GGUF
11
+ - Model creator: https://huggingface.co/Value4AI/
12
+ - Original model: https://huggingface.co/Value4AI/ValueLlama-3-8B/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [ValueLlama-3-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q2_K.gguf) | Q2_K | 2.96GB |
18
+ | [ValueLlama-3-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
19
+ | [ValueLlama-3-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_S.gguf) | IQ3_S | 3.43GB |
20
+ | [ValueLlama-3-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
21
+ | [ValueLlama-3-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_M.gguf) | IQ3_M | 3.52GB |
22
+ | [ValueLlama-3-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K.gguf) | Q3_K | 3.74GB |
23
+ | [ValueLlama-3-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
24
+ | [ValueLlama-3-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
25
+ | [ValueLlama-3-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
26
+ | [ValueLlama-3-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_0.gguf) | Q4_0 | 4.34GB |
27
+ | [ValueLlama-3-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
28
+ | [ValueLlama-3-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
29
+ | [ValueLlama-3-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K.gguf) | Q4_K | 4.58GB |
30
+ | [ValueLlama-3-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
31
+ | [ValueLlama-3-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_1.gguf) | Q4_1 | 4.78GB |
32
+ | [ValueLlama-3-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_0.gguf) | Q5_0 | 5.21GB |
33
+ | [ValueLlama-3-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
34
+ | [ValueLlama-3-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K.gguf) | Q5_K | 5.34GB |
35
+ | [ValueLlama-3-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
36
+ | [ValueLlama-3-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_1.gguf) | Q5_1 | 5.65GB |
37
+ | [ValueLlama-3-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q6_K.gguf) | Q6_K | 6.14GB |
38
+ | [ValueLlama-3-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q8_0.gguf) | Q8_0 | 7.95GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ library_name: transformers
46
+ tags:
47
+ - llama-factory
48
+ license: llama3
49
+ datasets:
50
+ - allenai/ValuePrism
51
+ - Value4AI/ValueBench
52
+ language:
53
+ - en
54
+ ---
55
+
56
+ # Model Card for ValueLlama
57
+
58
+
59
+ ## Model Description
60
+
61
+
62
+ ValueLlama is designed for perception-level value measurement in an open-ended value space, which includes two tasks: (1) Relevance classification determines whether a perception is relevant to a value; and (2) Valence classification determines whether a perception supports, opposes, or remains neutral (context-dependent) towards a value. Both tasks are formulated as generating a label given a value and a perception.
63
+
64
+ - **Model type:** Language model
65
+ - **Language(s) (NLP):** en
66
+ - **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
67
+
68
+ ## Paper
69
+
70
+
71
+ For more information, please refer to our paper: [*Measuring Human and AI Values based on Generative Psychometrics with Large Language Models*](https://arxiv.org/abs/2409.12106).
72
+
73
+ ## Uses
74
+
75
+ It is intended for use in **research** to measure human/AI values and conduct related analyses.
76
+
77
+ See our codebase for more details: [https://github.com/Value4AI/gpv](https://github.com/Value4AI/gpv).
78
+
79
+
80
+ ## BibTeX:
81
+
82
+ If you find this model helpful, we would appreciate it if you cite our paper:
83
+
84
+ ```bibtex
85
+ @misc{ye2024gpv,
86
+ title={Measuring Human and AI Values based on Generative Psychometrics with Large Language Models},
87
+ author={Haoran Ye and Yuhang Xie and Yuanyi Ren and Hanjun Fang and Xin Zhang and Guojie Song},
88
+ year={2024},
89
+ eprint={2409.12106},
90
+ archivePrefix={arXiv},
91
+ primaryClass={cs.CL},
92
+ url={https://arxiv.org/abs/2409.12106},
93
+ }
94
+ ```
95
+
96
+
97
+