uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
ValueLlama-3-8B - GGUF
|
11 |
+
- Model creator: https://huggingface.co/Value4AI/
|
12 |
+
- Original model: https://huggingface.co/Value4AI/ValueLlama-3-8B/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [ValueLlama-3-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q2_K.gguf) | Q2_K | 2.96GB |
|
18 |
+
| [ValueLlama-3-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_XS.gguf) | IQ3_XS | 3.28GB |
|
19 |
+
| [ValueLlama-3-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_S.gguf) | IQ3_S | 3.43GB |
|
20 |
+
| [ValueLlama-3-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_S.gguf) | Q3_K_S | 3.41GB |
|
21 |
+
| [ValueLlama-3-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ3_M.gguf) | IQ3_M | 3.52GB |
|
22 |
+
| [ValueLlama-3-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K.gguf) | Q3_K | 3.74GB |
|
23 |
+
| [ValueLlama-3-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_M.gguf) | Q3_K_M | 3.74GB |
|
24 |
+
| [ValueLlama-3-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q3_K_L.gguf) | Q3_K_L | 4.03GB |
|
25 |
+
| [ValueLlama-3-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ4_XS.gguf) | IQ4_XS | 4.18GB |
|
26 |
+
| [ValueLlama-3-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_0.gguf) | Q4_0 | 4.34GB |
|
27 |
+
| [ValueLlama-3-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.IQ4_NL.gguf) | IQ4_NL | 4.38GB |
|
28 |
+
| [ValueLlama-3-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K_S.gguf) | Q4_K_S | 4.37GB |
|
29 |
+
| [ValueLlama-3-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K.gguf) | Q4_K | 4.58GB |
|
30 |
+
| [ValueLlama-3-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_K_M.gguf) | Q4_K_M | 4.58GB |
|
31 |
+
| [ValueLlama-3-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q4_1.gguf) | Q4_1 | 4.78GB |
|
32 |
+
| [ValueLlama-3-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_0.gguf) | Q5_0 | 5.21GB |
|
33 |
+
| [ValueLlama-3-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K_S.gguf) | Q5_K_S | 5.21GB |
|
34 |
+
| [ValueLlama-3-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K.gguf) | Q5_K | 5.34GB |
|
35 |
+
| [ValueLlama-3-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_K_M.gguf) | Q5_K_M | 5.34GB |
|
36 |
+
| [ValueLlama-3-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q5_1.gguf) | Q5_1 | 5.65GB |
|
37 |
+
| [ValueLlama-3-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q6_K.gguf) | Q6_K | 6.14GB |
|
38 |
+
| [ValueLlama-3-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Value4AI_-_ValueLlama-3-8B-gguf/blob/main/ValueLlama-3-8B.Q8_0.gguf) | Q8_0 | 7.95GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
library_name: transformers
|
46 |
+
tags:
|
47 |
+
- llama-factory
|
48 |
+
license: llama3
|
49 |
+
datasets:
|
50 |
+
- allenai/ValuePrism
|
51 |
+
- Value4AI/ValueBench
|
52 |
+
language:
|
53 |
+
- en
|
54 |
+
---
|
55 |
+
|
56 |
+
# Model Card for ValueLlama
|
57 |
+
|
58 |
+
|
59 |
+
## Model Description
|
60 |
+
|
61 |
+
|
62 |
+
ValueLlama is designed for perception-level value measurement in an open-ended value space, which includes two tasks: (1) Relevance classification determines whether a perception is relevant to a value; and (2) Valence classification determines whether a perception supports, opposes, or remains neutral (context-dependent) towards a value. Both tasks are formulated as generating a label given a value and a perception.
|
63 |
+
|
64 |
+
- **Model type:** Language model
|
65 |
+
- **Language(s) (NLP):** en
|
66 |
+
- **Finetuned from model:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
67 |
+
|
68 |
+
## Paper
|
69 |
+
|
70 |
+
|
71 |
+
For more information, please refer to our paper: [*Measuring Human and AI Values based on Generative Psychometrics with Large Language Models*](https://arxiv.org/abs/2409.12106).
|
72 |
+
|
73 |
+
## Uses
|
74 |
+
|
75 |
+
It is intended for use in **research** to measure human/AI values and conduct related analyses.
|
76 |
+
|
77 |
+
See our codebase for more details: [https://github.com/Value4AI/gpv](https://github.com/Value4AI/gpv).
|
78 |
+
|
79 |
+
|
80 |
+
## BibTeX:
|
81 |
+
|
82 |
+
If you find this model helpful, we would appreciate it if you cite our paper:
|
83 |
+
|
84 |
+
```bibtex
|
85 |
+
@misc{ye2024gpv,
|
86 |
+
title={Measuring Human and AI Values based on Generative Psychometrics with Large Language Models},
|
87 |
+
author={Haoran Ye and Yuhang Xie and Yuanyi Ren and Hanjun Fang and Xin Zhang and Guojie Song},
|
88 |
+
year={2024},
|
89 |
+
eprint={2409.12106},
|
90 |
+
archivePrefix={arXiv},
|
91 |
+
primaryClass={cs.CL},
|
92 |
+
url={https://arxiv.org/abs/2409.12106},
|
93 |
+
}
|
94 |
+
```
|
95 |
+
|
96 |
+
|
97 |
+
|