RichardErkhov commited on
Commit
18c13c1
1 Parent(s): df810d7

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ LLaMA-Pro-8B - GGUF
11
+ - Model creator: https://huggingface.co/TencentARC/
12
+ - Original model: https://huggingface.co/TencentARC/LLaMA-Pro-8B/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [LLaMA-Pro-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q2_K.gguf) | Q2_K | 2.91GB |
18
+ | [LLaMA-Pro-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ3_XS.gguf) | IQ3_XS | 3.22GB |
19
+ | [LLaMA-Pro-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ3_S.gguf) | IQ3_S | 3.39GB |
20
+ | [LLaMA-Pro-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q3_K_S.gguf) | Q3_K_S | 3.39GB |
21
+ | [LLaMA-Pro-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ3_M.gguf) | IQ3_M | 3.59GB |
22
+ | [LLaMA-Pro-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q3_K.gguf) | Q3_K | 3.8GB |
23
+ | [LLaMA-Pro-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q3_K_M.gguf) | Q3_K_M | 3.8GB |
24
+ | [LLaMA-Pro-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q3_K_L.gguf) | Q3_K_L | 4.15GB |
25
+ | [LLaMA-Pro-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ4_XS.gguf) | IQ4_XS | 4.2GB |
26
+ | [LLaMA-Pro-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_0.gguf) | Q4_0 | 4.41GB |
27
+ | [LLaMA-Pro-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ4_NL.gguf) | IQ4_NL | 4.44GB |
28
+ | [LLaMA-Pro-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_K_S.gguf) | Q4_K_S | 4.45GB |
29
+ | [LLaMA-Pro-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_K.gguf) | Q4_K | 4.71GB |
30
+ | [LLaMA-Pro-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_K_M.gguf) | Q4_K_M | 4.71GB |
31
+ | [LLaMA-Pro-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_1.gguf) | Q4_1 | 4.89GB |
32
+ | [LLaMA-Pro-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_0.gguf) | Q5_0 | 5.37GB |
33
+ | [LLaMA-Pro-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_K_S.gguf) | Q5_K_S | 5.37GB |
34
+ | [LLaMA-Pro-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_K.gguf) | Q5_K | 5.52GB |
35
+ | [LLaMA-Pro-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_K_M.gguf) | Q5_K_M | 5.52GB |
36
+ | [LLaMA-Pro-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_1.gguf) | Q5_1 | 5.85GB |
37
+ | [LLaMA-Pro-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q6_K.gguf) | Q6_K | 6.39GB |
38
+ | [LLaMA-Pro-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q8_0.gguf) | Q8_0 | 8.27GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: llama2
46
+ ---
47
+
48
+ # LLaMA-Pro-8B Model Card
49
+
50
+ ## Model Description
51
+ LLaMA-Pro is a progressive version of the original LLaMA model, enhanced by the addition of Transformer blocks. It specializes in integrating both general language understanding and domain-specific knowledge, particularly in programming and mathematics.
52
+
53
+ ## Development and Training
54
+ Developed by Tencent's ARC Lab, LLaMA-Pro is an 8.3 billion parameter model. It's an expansion of LLaMA2-7B, further trained on code and math corpora totaling 80 billion tokens.
55
+
56
+ ## Intended Use
57
+ This model is designed for a wide range of NLP tasks, with a focus on programming, mathematics, and general language tasks. It suits scenarios requiring integration of natural and programming languages.
58
+
59
+ ## Performance
60
+ LLaMA-Pro demonstrates advanced performance across various benchmarks. It outperforms existing models in the LLaMA series in handling diverse tasks, showcasing its capability as an intelligent language agent.
61
+
62
+ ### Overall Performance on Languages, math and code tasks
63
+
64
+ | Model | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K | GSM8K-PoT | HumanEval | MBPP | Avg |
65
+ | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
66
+ | LLAMA PRO (8B) | 54.10 | 77.94 | 47.88 | 39.04 | 73.95 | 17.89 | 25.42 | 28.66 | 33.20 | 44.2 |
67
+ | LLaMA2-7B | 53.07 | 78.59 | 46.87 | 38.76 | 74.03 | 14.48 | 17.68 | 13.05 | 20.09 | 39.62 |
68
+ | CodeLLaMA-7B | 39.93 | 60.80 | 31.12 | 37.82 | 64.01 | 5.16 | 25.20 | 33.50 | 41.40 | 37.66 |
69
+ | LLAMA PRO-INSTRUCT | 52.30 | 76.88 | 52.57 | 48.80 | 72.53 | 43.59 | 55.61 | 44.51 | 37.88 | 53.8 |
70
+
71
+ ### Performance on GPT4 Evaluation
72
+
73
+ | Model | MT Bench |
74
+ | :-: | :-: |
75
+ | Alpaca-13B | 4.53 |
76
+ | CodeLLaMA-7B-Instruct | 5.71 |
77
+ | Vicuna-7B | 6.17 |
78
+ | LLaMA2-7B-Chat | 6.27 |
79
+ | LLAMA PRO-INSTRUCT | 6.32 |
80
+
81
+ ## Limitations
82
+ While LLaMA-Pro addresses some limitations of previous models in the series, it may still encounter challenges specific to highly specialized domains or tasks.
83
+
84
+ ## Ethical Considerations
85
+ Users should be aware of potential biases in the model and use it responsibly, considering its impact on various applications.
86
+
87
+