RichardErkhov
commited on
Commit
•
18c13c1
1
Parent(s):
df810d7
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
LLaMA-Pro-8B - GGUF
|
11 |
+
- Model creator: https://huggingface.co/TencentARC/
|
12 |
+
- Original model: https://huggingface.co/TencentARC/LLaMA-Pro-8B/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [LLaMA-Pro-8B.Q2_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q2_K.gguf) | Q2_K | 2.91GB |
|
18 |
+
| [LLaMA-Pro-8B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ3_XS.gguf) | IQ3_XS | 3.22GB |
|
19 |
+
| [LLaMA-Pro-8B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ3_S.gguf) | IQ3_S | 3.39GB |
|
20 |
+
| [LLaMA-Pro-8B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q3_K_S.gguf) | Q3_K_S | 3.39GB |
|
21 |
+
| [LLaMA-Pro-8B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ3_M.gguf) | IQ3_M | 3.59GB |
|
22 |
+
| [LLaMA-Pro-8B.Q3_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q3_K.gguf) | Q3_K | 3.8GB |
|
23 |
+
| [LLaMA-Pro-8B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q3_K_M.gguf) | Q3_K_M | 3.8GB |
|
24 |
+
| [LLaMA-Pro-8B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q3_K_L.gguf) | Q3_K_L | 4.15GB |
|
25 |
+
| [LLaMA-Pro-8B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ4_XS.gguf) | IQ4_XS | 4.2GB |
|
26 |
+
| [LLaMA-Pro-8B.Q4_0.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_0.gguf) | Q4_0 | 4.41GB |
|
27 |
+
| [LLaMA-Pro-8B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.IQ4_NL.gguf) | IQ4_NL | 4.44GB |
|
28 |
+
| [LLaMA-Pro-8B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_K_S.gguf) | Q4_K_S | 4.45GB |
|
29 |
+
| [LLaMA-Pro-8B.Q4_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_K.gguf) | Q4_K | 4.71GB |
|
30 |
+
| [LLaMA-Pro-8B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_K_M.gguf) | Q4_K_M | 4.71GB |
|
31 |
+
| [LLaMA-Pro-8B.Q4_1.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q4_1.gguf) | Q4_1 | 4.89GB |
|
32 |
+
| [LLaMA-Pro-8B.Q5_0.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_0.gguf) | Q5_0 | 5.37GB |
|
33 |
+
| [LLaMA-Pro-8B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_K_S.gguf) | Q5_K_S | 5.37GB |
|
34 |
+
| [LLaMA-Pro-8B.Q5_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_K.gguf) | Q5_K | 5.52GB |
|
35 |
+
| [LLaMA-Pro-8B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_K_M.gguf) | Q5_K_M | 5.52GB |
|
36 |
+
| [LLaMA-Pro-8B.Q5_1.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q5_1.gguf) | Q5_1 | 5.85GB |
|
37 |
+
| [LLaMA-Pro-8B.Q6_K.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q6_K.gguf) | Q6_K | 6.39GB |
|
38 |
+
| [LLaMA-Pro-8B.Q8_0.gguf](https://huggingface.co/RichardErkhov/TencentARC_-_LLaMA-Pro-8B-gguf/blob/main/LLaMA-Pro-8B.Q8_0.gguf) | Q8_0 | 8.27GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
license: llama2
|
46 |
+
---
|
47 |
+
|
48 |
+
# LLaMA-Pro-8B Model Card
|
49 |
+
|
50 |
+
## Model Description
|
51 |
+
LLaMA-Pro is a progressive version of the original LLaMA model, enhanced by the addition of Transformer blocks. It specializes in integrating both general language understanding and domain-specific knowledge, particularly in programming and mathematics.
|
52 |
+
|
53 |
+
## Development and Training
|
54 |
+
Developed by Tencent's ARC Lab, LLaMA-Pro is an 8.3 billion parameter model. It's an expansion of LLaMA2-7B, further trained on code and math corpora totaling 80 billion tokens.
|
55 |
+
|
56 |
+
## Intended Use
|
57 |
+
This model is designed for a wide range of NLP tasks, with a focus on programming, mathematics, and general language tasks. It suits scenarios requiring integration of natural and programming languages.
|
58 |
+
|
59 |
+
## Performance
|
60 |
+
LLaMA-Pro demonstrates advanced performance across various benchmarks. It outperforms existing models in the LLaMA series in handling diverse tasks, showcasing its capability as an intelligent language agent.
|
61 |
+
|
62 |
+
### Overall Performance on Languages, math and code tasks
|
63 |
+
|
64 |
+
| Model | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K | GSM8K-PoT | HumanEval | MBPP | Avg |
|
65 |
+
| :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
66 |
+
| LLAMA PRO (8B) | 54.10 | 77.94 | 47.88 | 39.04 | 73.95 | 17.89 | 25.42 | 28.66 | 33.20 | 44.2 |
|
67 |
+
| LLaMA2-7B | 53.07 | 78.59 | 46.87 | 38.76 | 74.03 | 14.48 | 17.68 | 13.05 | 20.09 | 39.62 |
|
68 |
+
| CodeLLaMA-7B | 39.93 | 60.80 | 31.12 | 37.82 | 64.01 | 5.16 | 25.20 | 33.50 | 41.40 | 37.66 |
|
69 |
+
| LLAMA PRO-INSTRUCT | 52.30 | 76.88 | 52.57 | 48.80 | 72.53 | 43.59 | 55.61 | 44.51 | 37.88 | 53.8 |
|
70 |
+
|
71 |
+
### Performance on GPT4 Evaluation
|
72 |
+
|
73 |
+
| Model | MT Bench |
|
74 |
+
| :-: | :-: |
|
75 |
+
| Alpaca-13B | 4.53 |
|
76 |
+
| CodeLLaMA-7B-Instruct | 5.71 |
|
77 |
+
| Vicuna-7B | 6.17 |
|
78 |
+
| LLaMA2-7B-Chat | 6.27 |
|
79 |
+
| LLAMA PRO-INSTRUCT | 6.32 |
|
80 |
+
|
81 |
+
## Limitations
|
82 |
+
While LLaMA-Pro addresses some limitations of previous models in the series, it may still encounter challenges specific to highly specialized domains or tasks.
|
83 |
+
|
84 |
+
## Ethical Considerations
|
85 |
+
Users should be aware of potential biases in the model and use it responsibly, considering its impact on various applications.
|
86 |
+
|
87 |
+
|