End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1654102148.algo-1.54.0 +2 -2
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- sms_spam
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: MiniLMv2-L12-H384-distilled-finetuned-spam-detection
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Text Classification
|
13 |
+
type: text-classification
|
14 |
+
dataset:
|
15 |
+
name: sms_spam
|
16 |
+
type: sms_spam
|
17 |
+
args: plain_text
|
18 |
+
metrics:
|
19 |
+
- name: Accuracy
|
20 |
+
type: accuracy
|
21 |
+
value: 0.978494623655914
|
22 |
+
---
|
23 |
+
|
24 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
25 |
+
should probably proofread and complete it, then remove this comment. -->
|
26 |
+
|
27 |
+
# MiniLMv2-L12-H384-distilled-finetuned-spam-detection
|
28 |
+
|
29 |
+
This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the sms_spam dataset.
|
30 |
+
It achieves the following results on the evaluation set:
|
31 |
+
- Loss: 0.4473
|
32 |
+
- Accuracy: 0.9785
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 0.0001
|
52 |
+
- train_batch_size: 32
|
53 |
+
- eval_batch_size: 32
|
54 |
+
- seed: 33
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 10
|
58 |
+
- mixed_precision_training: Native AMP
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
63 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
64 |
+
| 4.1186 | 1.0 | 18 | 3.4012 | 0.8351 |
|
65 |
+
| 2.9893 | 2.0 | 36 | 2.9206 | 0.8351 |
|
66 |
+
| 2.6718 | 3.0 | 54 | 2.8932 | 0.8351 |
|
67 |
+
| 2.5495 | 4.0 | 72 | 2.8916 | 0.8351 |
|
68 |
+
| 1.7213 | 5.0 | 90 | 0.6804 | 0.9821 |
|
69 |
+
| 0.7464 | 6.0 | 108 | 0.6017 | 0.9713 |
|
70 |
+
| 1.2052 | 7.0 | 126 | 0.3425 | 0.9857 |
|
71 |
+
| 0.438 | 8.0 | 144 | 0.2136 | 0.9857 |
|
72 |
+
| 0.2282 | 9.0 | 162 | 0.4539 | 0.9785 |
|
73 |
+
| 0.438 | 10.0 | 180 | 0.4473 | 0.9785 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.17.0
|
79 |
+
- Pytorch 1.10.2+cu113
|
80 |
+
- Datasets 1.18.4
|
81 |
+
- Tokenizers 0.12.1
|
logs/events.out.tfevents.1654102148.algo-1.54.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c53e36c0ba2fbb8a3b600ebad76991c9d3a3e9c6115ae7f8dbc541bb53942df7
|
3 |
+
size 8553
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 163856237
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9828a7f075c16995335a55a81c034f590cd52919e4bfd2af56f27e7b84331fc9
|
3 |
size 163856237
|