minicpm-guidance / configuration_siglip.py
Cuiunbo's picture
Upload configuration_siglip.py with huggingface_hub
2436b13 verified
raw
history blame
13.9 kB
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Siglip model configuration"""
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json",
}
class SiglipTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`SiglipModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 64):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
pad_token_id (`int`, *optional*, defaults to 1):
The id of the padding token in the vocabulary.
bos_token_id (`int`, *optional*, defaults to 49406):
The id of the beginning-of-sequence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 49407):
The id of the end-of-sequence token in the vocabulary.
Example:
```python
>>> from transformers import SiglipTextConfig, SiglipTextModel
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipTextConfig()
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_text_model"
def __init__(
self,
vocab_size=32000,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=64,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
# This differs from `CLIPTokenizer`'s default and from openai/siglip
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
pad_token_id=1,
bos_token_id=49406,
eos_token_id=49407,
_flash_attn_2_enabled=True,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.attention_dropout = attention_dropout
self._flash_attn_2_enabled = _flash_attn_2_enabled
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from SiglipConfig
if config_dict.get("model_type") == "siglip":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class SiglipVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
Example:
```python
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipVisionConfig()
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
_flash_attn_2_enabled=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self._flash_attn_2_enabled = _flash_attn_2_enabled
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from SiglipConfig
if config_dict.get("model_type") == "siglip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class SiglipConfig(PretrainedConfig):
r"""
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import SiglipConfig, SiglipModel
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipConfig()
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
>>> # Initializing a SiglipText and SiglipVision configuration
>>> config_text = SiglipTextConfig()
>>> config_vision = SiglipVisionConfig()
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "siglip"
def __init__(self, text_config=None, vision_config=None, **kwargs):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
self.text_config = SiglipTextConfig(**text_config)
self.vision_config = SiglipVisionConfig(**vision_config)
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
r"""
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
model configuration.
Returns:
[`SiglipConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)