|
{ |
|
"best_metric": 0.14495012164115906, |
|
"best_model_checkpoint": "./test-small-bert-with-loss-weight/checkpoint-1500", |
|
"epoch": 1.4763779527559056, |
|
"global_step": 1500, |
|
"is_hyper_param_search": false, |
|
"is_local_process_zero": true, |
|
"is_world_process_zero": true, |
|
"log_history": [ |
|
{ |
|
"epoch": 0.49, |
|
"learning_rate": 4.1797900262467194e-05, |
|
"loss": 0.1546, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 0.49, |
|
"eval_accuracy": 0.8429757067519668, |
|
"eval_f1": 0.27041574613376174, |
|
"eval_loss": 0.14738939702510834, |
|
"eval_precision": 0.8877752868257945, |
|
"eval_recall": 0.1594996090695856, |
|
"eval_runtime": 8.7195, |
|
"eval_samples_per_second": 1128.732, |
|
"eval_steps_per_second": 4.473, |
|
"step": 500 |
|
}, |
|
{ |
|
"epoch": 0.98, |
|
"learning_rate": 3.3595800524934386e-05, |
|
"loss": 0.1506, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 0.98, |
|
"eval_accuracy": 0.8417091726463214, |
|
"eval_f1": 0.2548480963718129, |
|
"eval_loss": 0.14584653079509735, |
|
"eval_precision": 0.9028258362168397, |
|
"eval_recall": 0.14836401544767455, |
|
"eval_runtime": 8.6401, |
|
"eval_samples_per_second": 1139.107, |
|
"eval_steps_per_second": 4.514, |
|
"step": 1000 |
|
}, |
|
{ |
|
"epoch": 1.48, |
|
"learning_rate": 2.5393700787401574e-05, |
|
"loss": 0.1485, |
|
"step": 1500 |
|
}, |
|
{ |
|
"epoch": 1.48, |
|
"eval_accuracy": 0.8470173770208351, |
|
"eval_f1": 0.30824260667305176, |
|
"eval_loss": 0.14495012164115906, |
|
"eval_precision": 0.8806120169756534, |
|
"eval_recall": 0.18681735257184828, |
|
"eval_runtime": 8.8318, |
|
"eval_samples_per_second": 1114.387, |
|
"eval_steps_per_second": 4.416, |
|
"step": 1500 |
|
} |
|
], |
|
"max_steps": 3048, |
|
"num_train_epochs": 3, |
|
"total_flos": 465852985957632.0, |
|
"trial_name": null, |
|
"trial_params": null |
|
} |
|
|