# import os | |
# import os.path as osp | |
# import copy | |
# import math | |
# import numpy as np | |
# import torch | |
# import torch.nn as nn | |
# import torch.nn.functional as F | |
# from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
# from Utils.ASR.models import ASRCNN | |
# from Utils.JDC.model import JDCNet | |
# from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution | |
# from Modules.diffusion.modules import Transformer1d, StyleTransformer1d | |
# from Modules.diffusion.diffusion import AudioDiffusionConditional | |
# from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator | |
# from munch import Munch | |
# import yaml | |
# from hflayers import Hopfield, HopfieldPooling, HopfieldLayer | |
# from hflayers.auxiliary.data import BitPatternSet | |
# # Import auxiliary modules. | |
# from distutils.version import LooseVersion | |
# from typing import List, Tuple | |
# import math | |
# import torch | |
# from xlstm import ( | |
# xLSTMBlockStack, | |
# xLSTMBlockStackConfig, | |
# mLSTMBlockConfig, | |
# mLSTMLayerConfig, | |
# sLSTMBlockConfig, | |
# sLSTMLayerConfig, | |
# FeedForwardConfig, | |
# ) | |
# class LearnedDownSample(nn.Module): | |
# def __init__(self, layer_type, dim_in): | |
# super().__init__() | |
# self.layer_type = layer_type | |
# if self.layer_type == 'none': | |
# self.conv = nn.Identity() | |
# elif self.layer_type == 'timepreserve': | |
# self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0))) | |
# elif self.layer_type == 'half': | |
# self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) | |
# else: | |
# raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
# def forward(self, x): | |
# return self.conv(x) | |
# class LearnedUpSample(nn.Module): | |
# def __init__(self, layer_type, dim_in): | |
# super().__init__() | |
# self.layer_type = layer_type | |
# if self.layer_type == 'none': | |
# self.conv = nn.Identity() | |
# elif self.layer_type == 'timepreserve': | |
# self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0)) | |
# elif self.layer_type == 'half': | |
# self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1) | |
# else: | |
# raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
# def forward(self, x): | |
# return self.conv(x) | |
# class DownSample(nn.Module): | |
# def __init__(self, layer_type): | |
# super().__init__() | |
# self.layer_type = layer_type | |
# def forward(self, x): | |
# if self.layer_type == 'none': | |
# return x | |
# elif self.layer_type == 'timepreserve': | |
# return F.avg_pool2d(x, (2, 1)) | |
# elif self.layer_type == 'half': | |
# if x.shape[-1] % 2 != 0: | |
# x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
# return F.avg_pool2d(x, 2) | |
# else: | |
# raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
# class UpSample(nn.Module): | |
# def __init__(self, layer_type): | |
# super().__init__() | |
# self.layer_type = layer_type | |
# def forward(self, x): | |
# if self.layer_type == 'none': | |
# return x | |
# elif self.layer_type == 'timepreserve': | |
# return F.interpolate(x, scale_factor=(2, 1), mode='nearest') | |
# elif self.layer_type == 'half': | |
# return F.interpolate(x, scale_factor=2, mode='nearest') | |
# else: | |
# raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
# class ResBlk(nn.Module): | |
# def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
# normalize=False, downsample='none'): | |
# super().__init__() | |
# self.actv = actv | |
# self.normalize = normalize | |
# self.downsample = DownSample(downsample) | |
# self.downsample_res = LearnedDownSample(downsample, dim_in) | |
# self.learned_sc = dim_in != dim_out | |
# self._build_weights(dim_in, dim_out) | |
# def _build_weights(self, dim_in, dim_out): | |
# self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) | |
# self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) | |
# if self.normalize: | |
# self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) | |
# self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) | |
# if self.learned_sc: | |
# self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
# def _shortcut(self, x): | |
# if self.learned_sc: | |
# x = self.conv1x1(x) | |
# if self.downsample: | |
# x = self.downsample(x) | |
# return x | |
# def _residual(self, x): | |
# if self.normalize: | |
# x = self.norm1(x) | |
# x = self.actv(x) | |
# x = self.conv1(x) | |
# x = self.downsample_res(x) | |
# if self.normalize: | |
# x = self.norm2(x) | |
# x = self.actv(x) | |
# x = self.conv2(x) | |
# return x | |
# def forward(self, x): | |
# x = self._shortcut(x) + self._residual(x) | |
# return x / math.sqrt(2) # unit variance | |
# class StyleEncoder(nn.Module): | |
# def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384): | |
# super().__init__() | |
# blocks = [] | |
# blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
# repeat_num = 4 | |
# for _ in range(repeat_num): | |
# dim_out = min(dim_in*2, max_conv_dim) | |
# blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
# dim_in = dim_out | |
# blocks += [nn.LeakyReLU(0.2)] | |
# blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
# blocks += [nn.AdaptiveAvgPool2d(1)] | |
# blocks += [nn.LeakyReLU(0.2)] | |
# self.shared = nn.Sequential(*blocks) | |
# self.unshared = nn.Linear(dim_out, style_dim) | |
# def forward(self, x): | |
# h = self.shared(x) | |
# h = h.view(h.size(0), -1) | |
# s = self.unshared(h) | |
# return s | |
# class LinearNorm(torch.nn.Module): | |
# def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
# super(LinearNorm, self).__init__() | |
# self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
# torch.nn.init.xavier_uniform_( | |
# self.linear_layer.weight, | |
# gain=torch.nn.init.calculate_gain(w_init_gain)) | |
# def forward(self, x): | |
# return self.linear_layer(x) | |
# class Discriminator2d(nn.Module): | |
# def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4): | |
# super().__init__() | |
# blocks = [] | |
# blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
# for lid in range(repeat_num): | |
# dim_out = min(dim_in*2, max_conv_dim) | |
# blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
# dim_in = dim_out | |
# blocks += [nn.LeakyReLU(0.2)] | |
# blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
# blocks += [nn.LeakyReLU(0.2)] | |
# blocks += [nn.AdaptiveAvgPool2d(1)] | |
# blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))] | |
# self.main = nn.Sequential(*blocks) | |
# def get_feature(self, x): | |
# features = [] | |
# for l in self.main: | |
# x = l(x) | |
# features.append(x) | |
# out = features[-1] | |
# out = out.view(out.size(0), -1) # (batch, num_domains) | |
# return out, features | |
# def forward(self, x): | |
# out, features = self.get_feature(x) | |
# out = out.squeeze() # (batch) | |
# return out, features | |
# class ResBlk1d(nn.Module): | |
# def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
# normalize=False, downsample='none', dropout_p=0.2): | |
# super().__init__() | |
# self.actv = actv | |
# self.normalize = normalize | |
# self.downsample_type = downsample | |
# self.learned_sc = dim_in != dim_out | |
# self._build_weights(dim_in, dim_out) | |
# self.dropout_p = dropout_p | |
# if self.downsample_type == 'none': | |
# self.pool = nn.Identity() | |
# else: | |
# self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1)) | |
# def _build_weights(self, dim_in, dim_out): | |
# self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) | |
# self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
# if self.normalize: | |
# self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) | |
# self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) | |
# if self.learned_sc: | |
# self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
# def downsample(self, x): | |
# if self.downsample_type == 'none': | |
# return x | |
# else: | |
# if x.shape[-1] % 2 != 0: | |
# x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
# return F.avg_pool1d(x, 2) | |
# def _shortcut(self, x): | |
# if self.learned_sc: | |
# x = self.conv1x1(x) | |
# x = self.downsample(x) | |
# return x | |
# def _residual(self, x): | |
# if self.normalize: | |
# x = self.norm1(x) | |
# x = self.actv(x) | |
# x = F.dropout(x, p=self.dropout_p, training=self.training) | |
# x = self.conv1(x) | |
# x = self.pool(x) | |
# if self.normalize: | |
# x = self.norm2(x) | |
# x = self.actv(x) | |
# x = F.dropout(x, p=self.dropout_p, training=self.training) | |
# x = self.conv2(x) | |
# return x | |
# def forward(self, x): | |
# x = self._shortcut(x) + self._residual(x) | |
# return x / math.sqrt(2) # unit variance | |
# class LayerNorm(nn.Module): | |
# def __init__(self, channels, eps=1e-5): | |
# super().__init__() | |
# self.channels = channels | |
# self.eps = eps | |
# self.gamma = nn.Parameter(torch.ones(channels)) | |
# self.beta = nn.Parameter(torch.zeros(channels)) | |
# def forward(self, x): | |
# x = x.transpose(1, -1) | |
# x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
# return x.transpose(1, -1) | |
# class TextEncoder(nn.Module): | |
# def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): | |
# super().__init__() | |
# self.embedding = nn.Embedding(n_symbols, channels) | |
# padding = (kernel_size - 1) // 2 | |
# self.cnn = nn.ModuleList() | |
# for _ in range(depth): | |
# self.cnn.append(nn.Sequential( | |
# weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), | |
# LayerNorm(channels), | |
# actv, | |
# nn.Dropout(0.2), | |
# )) | |
# # self.cnn = nn.Sequential(*self.cnn) | |
# self.lstm = Hopfield(input_size=channels, | |
# hidden_size=channels // 2, | |
# num_heads=32, | |
# # scaling=.75, | |
# add_zero_association=True, | |
# batch_first=True) | |
# def forward(self, x, input_lengths, m): | |
# x = self.embedding(x) # [B, T, emb] | |
# x = x.transpose(1, 2) # [B, emb, T] | |
# m = m.to(input_lengths.device).unsqueeze(1) | |
# x.masked_fill_(m, 0.0) | |
# for c in self.cnn: | |
# x = c(x) | |
# x.masked_fill_(m, 0.0) | |
# x = x.transpose(1, 2) # [B, T, chn] | |
# input_lengths = input_lengths.cpu().numpy() | |
# # x = nn.utils.rnn.pack_padded_sequence( | |
# # x, input_lengths, batch_first=True, enforce_sorted=False) | |
# # self.lstm.flatten_parameters() | |
# x = self.lstm(x) | |
# # x, _ = nn.utils.rnn.pad_packed_sequence( | |
# # x, batch_first=True) | |
# x = x.transpose(-1, -2) | |
# # x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
# # x_pad[:, :, :x.shape[-1]] = x | |
# # x = x_pad.to(x.device) | |
# x.masked_fill_(m, 0.0) | |
# return x | |
# def inference(self, x): | |
# x = self.embedding(x) | |
# x = x.transpose(1, 2) | |
# x = self.cnn(x) | |
# x = x.transpose(1, 2) | |
# # self.lstm.flatten_parameters() | |
# x = self.lstm(x) | |
# return x | |
# def length_to_mask(self, lengths): | |
# mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
# mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
# return mask | |
# class AdaIN1d(nn.Module): | |
# def __init__(self, style_dim, num_features): | |
# super().__init__() | |
# self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
# self.fc = nn.Linear(style_dim, num_features*2) | |
# def forward(self, x, s): | |
# h = self.fc(s) | |
# h = h.view(h.size(0), h.size(1), 1) | |
# gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
# return (1 + gamma) * self.norm(x) + beta | |
# class UpSample1d(nn.Module): | |
# def __init__(self, layer_type): | |
# super().__init__() | |
# self.layer_type = layer_type | |
# def forward(self, x): | |
# if self.layer_type == 'none': | |
# return x | |
# else: | |
# return F.interpolate(x, scale_factor=2, mode='nearest') | |
# class AdainResBlk1d(nn.Module): | |
# def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), | |
# upsample='none', dropout_p=0.0): | |
# super().__init__() | |
# self.actv = actv | |
# self.upsample_type = upsample | |
# self.upsample = UpSample1d(upsample) | |
# self.learned_sc = dim_in != dim_out | |
# self._build_weights(dim_in, dim_out, style_dim) | |
# self.dropout = nn.Dropout(dropout_p) | |
# if upsample == 'none': | |
# self.pool = nn.Identity() | |
# else: | |
# self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) | |
# def _build_weights(self, dim_in, dim_out, style_dim): | |
# self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
# self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
# self.norm1 = AdaIN1d(style_dim, dim_in) | |
# self.norm2 = AdaIN1d(style_dim, dim_out) | |
# if self.learned_sc: | |
# self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
# def _shortcut(self, x): | |
# x = self.upsample(x) | |
# if self.learned_sc: | |
# x = self.conv1x1(x) | |
# return x | |
# def _residual(self, x, s): | |
# x = self.norm1(x, s) | |
# x = self.actv(x) | |
# x = self.pool(x) | |
# x = self.conv1(self.dropout(x)) | |
# x = self.norm2(x, s) | |
# x = self.actv(x) | |
# x = self.conv2(self.dropout(x)) | |
# return x | |
# def forward(self, x, s): | |
# out = self._residual(x, s) | |
# out = (out + self._shortcut(x)) / math.sqrt(2) | |
# return out | |
# class AdaLayerNorm(nn.Module): | |
# def __init__(self, style_dim, channels, eps=1e-5): | |
# super().__init__() | |
# self.channels = channels | |
# self.eps = eps | |
# self.fc = nn.Linear(style_dim, channels*2) | |
# def forward(self, x, s): | |
# x = x.transpose(-1, -2) | |
# x = x.transpose(1, -1) | |
# h = self.fc(s) | |
# h = h.view(h.size(0), h.size(1), 1) | |
# gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
# gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) | |
# x = F.layer_norm(x, (self.channels,), eps=self.eps) | |
# x = (1 + gamma) * x + beta | |
# return x.transpose(1, -1).transpose(-1, -2) | |
# # class ProsodyPredictor(nn.Module): | |
# # def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
# # super().__init__() | |
# # self.text_encoder = DurationEncoder(sty_dim=style_dim, | |
# # d_model=d_hid, | |
# # nlayers=nlayers, | |
# # dropout=dropout) | |
# # self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
# # self.duration_proj = LinearNorm(d_hid, max_dur) | |
# # self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
# # self.F0 = nn.ModuleList() | |
# # self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
# # self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
# # self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
# # self.N = nn.ModuleList() | |
# # self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
# # self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
# # self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
# # self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
# # self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
# # def forward(self, texts, style, text_lengths, alignment, m): | |
# # d = self.text_encoder(texts, style, text_lengths, m) | |
# # batch_size = d.shape[0] | |
# # text_size = d.shape[1] | |
# # # predict duration | |
# # input_lengths = text_lengths.cpu().numpy() | |
# # x = nn.utils.rnn.pack_padded_sequence( | |
# # d, input_lengths, batch_first=True, enforce_sorted=False) | |
# # m = m.to(text_lengths.device).unsqueeze(1) | |
# # self.lstm.flatten_parameters() | |
# # x, _ = self.lstm(x) | |
# # x, _ = nn.utils.rnn.pad_packed_sequence( | |
# # x, batch_first=True) | |
# # x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) | |
# # x_pad[:, :x.shape[1], :] = x | |
# # x = x_pad.to(x.device) | |
# # duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training)) | |
# # en = (d.transpose(-1, -2) @ alignment) | |
# # return duration.squeeze(-1), en | |
# class ProsodyPredictor(nn.Module): | |
# def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
# super().__init__() | |
# self.text_encoder = DurationEncoder(sty_dim=style_dim, | |
# d_model=d_hid, | |
# nlayers=nlayers, | |
# dropout=dropout) | |
# self.lstm = Hopfield(input_size=d_hid + style_dim, | |
# hidden_size=d_hid // 2, | |
# num_heads=32, | |
# # scaling=.75, | |
# add_zero_association=True, | |
# batch_first=True) | |
# self.prepare_projection = nn.Linear(d_hid + style_dim, d_hid) | |
# self.duration_proj = LinearNorm(d_hid , max_dur) | |
# self.shared = Hopfield(input_size=d_hid + style_dim, | |
# hidden_size=d_hid // 2, | |
# num_heads=32, | |
# # scaling=.75, | |
# add_zero_association=True, | |
# batch_first=True) | |
# #self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
# self.F0 = nn.ModuleList() | |
# self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
# self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
# self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
# self.N = nn.ModuleList() | |
# self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
# self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
# self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
# self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
# self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
# def forward(self, texts, style, text_lengths, alignment, m): | |
# d = self.text_encoder(texts, style, text_lengths, m) | |
# batch_size = d.shape[0] | |
# text_size = d.shape[1] | |
# # predict duration | |
# input_lengths = text_lengths.cpu().numpy() | |
# # x = nn.utils.rnn.pack_padded_sequence( | |
# # d, input_lengths, batch_first=True, enforce_sorted=False) | |
# x = d # this dude can handle variable seq len so no need for packing | |
# m = m.to(text_lengths.device).unsqueeze(1) | |
# # self.lstm.flatten_parameters() | |
# x = self.lstm(x) # no longer using lstm | |
# x = self.prepare_projection(x) | |
# # x, _ = nn.utils.rnn.pad_packed_sequence( | |
# # x, batch_first=True) | |
# x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) | |
# x_pad[:, :x.shape[1], :] = x | |
# x = x_pad.to(x.device) | |
# x = x.transpose(-1,-2) | |
# x = x.permute(0,2,1) | |
# duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training)) | |
# en = (d.transpose(-1, -2) @ alignment) | |
# return duration.squeeze(-1), en | |
# def F0Ntrain(self, x, s): | |
# x = self.shared(x.transpose(-1, -2)) | |
# x = self.prepare_projection(x) | |
# F0 = x.transpose(-1, -2) | |
# for block in self.F0: | |
# F0 = block(F0, s) | |
# F0 = self.F0_proj(F0) | |
# N = x.transpose(-1, -2) | |
# for block in self.N: | |
# N = block(N, s) | |
# N = self.N_proj(N) | |
# return F0.squeeze(1), N.squeeze(1) | |
# def length_to_mask(self, lengths): | |
# mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
# mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
# return mask | |
# class DurationEncoder(nn.Module): | |
# def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): | |
# super().__init__() | |
# self.lstms = nn.ModuleList() | |
# for _ in range(nlayers): | |
# self.lstms.append(nn.GRU(d_model + sty_dim, | |
# d_model // 2, | |
# num_layers=1, | |
# batch_first=True, | |
# bidirectional=True, | |
# dropout=dropout)) | |
# self.lstms.append(AdaLayerNorm(sty_dim, d_model)) | |
# self.dropout = dropout | |
# self.d_model = d_model | |
# self.sty_dim = sty_dim | |
# def forward(self, x, style, text_lengths, m): | |
# masks = m.to(text_lengths.device) | |
# x = x.permute(2, 0, 1) | |
# s = style.expand(x.shape[0], x.shape[1], -1) | |
# x = torch.cat([x, s], axis=-1) | |
# x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) | |
# x = x.transpose(0, 1) | |
# input_lengths = text_lengths.cpu().numpy() | |
# x = x.transpose(-1, -2) | |
# for block in self.lstms: | |
# if isinstance(block, AdaLayerNorm): | |
# x = block(x.transpose(-1, -2), style).transpose(-1, -2) | |
# x = torch.cat([x, s.permute(1, -1, 0)], axis=1) | |
# x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) | |
# else: | |
# x = x.transpose(-1, -2) | |
# x = nn.utils.rnn.pack_padded_sequence( | |
# x, input_lengths, batch_first=True, enforce_sorted=False) | |
# block.flatten_parameters() | |
# x, _ = block(x) | |
# x, _ = nn.utils.rnn.pad_packed_sequence( | |
# x, batch_first=True) | |
# x = F.dropout(x, p=self.dropout, training=self.training) | |
# x = x.transpose(-1, -2) | |
# x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
# x_pad[:, :, :x.shape[-1]] = x | |
# x = x_pad.to(x.device) | |
# return x.transpose(-1, -2) | |
# def inference(self, x, style): | |
# x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model) | |
# style = style.expand(x.shape[0], x.shape[1], -1) | |
# x = torch.cat([x, style], axis=-1) | |
# src = self.pos_encoder(x) | |
# output = self.transformer_encoder(src).transpose(0, 1) | |
# return output | |
# def length_to_mask(self, lengths): | |
# mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
# mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
# return mask | |
# def inference(self, x, style): | |
# x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model) | |
# style = style.expand(x.shape[0], x.shape[1], -1) | |
# x = torch.cat([x, style], axis=-1) | |
# src = self.pos_encoder(x) | |
# output = self.transformer_encoder(src).transpose(0, 1) | |
# return output | |
# def length_to_mask(self, lengths): | |
# mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
# mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
# return mask | |
# def load_F0_models(path): | |
# # load F0 model | |
# F0_model = JDCNet(num_class=1, seq_len=192) | |
# params = torch.load(path, map_location='cpu')['net'] | |
# F0_model.load_state_dict(params) | |
# _ = F0_model.train() | |
# return F0_model | |
# def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG): | |
# # load ASR model | |
# def _load_config(path): | |
# with open(path) as f: | |
# config = yaml.safe_load(f) | |
# model_config = config['model_params'] | |
# return model_config | |
# def _load_model(model_config, model_path): | |
# model = ASRCNN(**model_config) | |
# params = torch.load(model_path, map_location='cpu')['model'] | |
# model.load_state_dict(params) | |
# return model | |
# asr_model_config = _load_config(ASR_MODEL_CONFIG) | |
# asr_model = _load_model(asr_model_config, ASR_MODEL_PATH) | |
# _ = asr_model.train() | |
# return asr_model | |
# def build_model(args, text_aligner, pitch_extractor, bert): | |
# assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown' | |
# if args.decoder.type == "istftnet": | |
# from Modules.istftnet import Decoder | |
# decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
# resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
# upsample_rates = args.decoder.upsample_rates, | |
# upsample_initial_channel=args.decoder.upsample_initial_channel, | |
# resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
# upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, | |
# gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size) | |
# else: | |
# from Modules.hifigan import Decoder | |
# decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
# resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
# upsample_rates = args.decoder.upsample_rates, | |
# upsample_initial_channel=args.decoder.upsample_initial_channel, | |
# resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
# upsample_kernel_sizes=args.decoder.upsample_kernel_sizes) | |
# text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token) | |
# predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout) | |
# style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder | |
# predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder | |
# # define diffusion model | |
# if args.multispeaker: | |
# transformer = StyleTransformer1d(channels=args.style_dim*2, | |
# context_embedding_features=bert.config.hidden_size, | |
# context_features=args.style_dim*2, | |
# **args.diffusion.transformer) | |
# else: | |
# transformer = Transformer1d(channels=args.style_dim*2, | |
# context_embedding_features=bert.config.hidden_size, | |
# **args.diffusion.transformer) | |
# diffusion = AudioDiffusionConditional( | |
# in_channels=1, | |
# embedding_max_length=bert.config.max_position_embeddings, | |
# embedding_features=bert.config.hidden_size, | |
# embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements, | |
# channels=args.style_dim*2, | |
# context_features=args.style_dim*2, | |
# ) | |
# diffusion.diffusion = KDiffusion( | |
# net=diffusion.unet, | |
# sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std), | |
# sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model | |
# dynamic_threshold=0.0 | |
# ) | |
# diffusion.diffusion.net = transformer | |
# diffusion.unet = transformer | |
# nets = Munch( | |
# bert=bert, | |
# bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim), | |
# predictor=predictor, | |
# decoder=decoder, | |
# text_encoder=text_encoder, | |
# predictor_encoder=predictor_encoder, | |
# style_encoder=style_encoder, | |
# diffusion=diffusion, | |
# text_aligner = text_aligner, | |
# pitch_extractor=pitch_extractor, | |
# mpd = MultiPeriodDiscriminator(), | |
# msd = MultiResSpecDiscriminator(), | |
# # slm discriminator head | |
# wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel), | |
# ) | |
# return nets | |
# def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]): | |
# state = torch.load(path, map_location='cpu') | |
# params = state['net'] | |
# for key in model: | |
# if key in params and key not in ignore_modules: | |
# print('%s loaded' % key) | |
# try: | |
# model[key].load_state_dict(params[key], strict=True) | |
# except: | |
# from collections import OrderedDict | |
# state_dict = params[key] | |
# new_state_dict = OrderedDict() | |
# print(f'{key} key length: {len(model[key].state_dict().keys())}, state_dict length: {len(state_dict.keys())}') | |
# for (k_m, v_m), (k_c, v_c) in zip(model[key].state_dict().items(), state_dict.items()): | |
# new_state_dict[k_m] = v_c | |
# model[key].load_state_dict(new_state_dict, strict=True) | |
# _ = [model[key].eval() for key in model] | |
# if not load_only_params: | |
# epoch = state["epoch"] | |
# iters = state["iters"] | |
# optimizer.load_state_dict(state["optimizer"]) | |
# else: | |
# epoch = 0 | |
# iters = 0 | |
# return model, optimizer, epoch, iters | |
############################################################################################################## | |
############################################################################################################## | |
############################################################################################################## | |
# mLSTM | |
############################################################################################################## | |
############################################################################################################## | |
############################################################################################################## | |
import os | |
import os.path as osp | |
import copy | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from Utils.ASR.models import ASRCNN | |
from Utils.JDC.model import JDCNet | |
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution | |
from Modules.diffusion.modules import Transformer1d, StyleTransformer1d | |
from Modules.diffusion.diffusion import AudioDiffusionConditional | |
from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator | |
from munch import Munch | |
import yaml | |
# from hflayers import Hopfield, HopfieldPooling, HopfieldLayer | |
# from hflayers.auxiliary.data import BitPatternSet | |
# Import auxiliary modules. | |
from distutils.version import LooseVersion | |
from typing import List, Tuple | |
import math | |
# from liger_kernel.ops.layer_norm import LigerLayerNormFunction | |
# from liger_kernel.transformers.experimental.embedding import nn.Embedding | |
import torch | |
from xlstm import ( | |
xLSTMBlockStack, | |
xLSTMBlockStackConfig, | |
mLSTMBlockConfig, | |
mLSTMLayerConfig, | |
sLSTMBlockConfig, | |
sLSTMLayerConfig, | |
FeedForwardConfig, | |
) | |
class LearnedDownSample(nn.Module): | |
def __init__(self, layer_type, dim_in): | |
super().__init__() | |
self.layer_type = layer_type | |
if self.layer_type == 'none': | |
self.conv = nn.Identity() | |
elif self.layer_type == 'timepreserve': | |
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0))) | |
elif self.layer_type == 'half': | |
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) | |
else: | |
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
def forward(self, x): | |
return self.conv(x) | |
class LearnedUpSample(nn.Module): | |
def __init__(self, layer_type, dim_in): | |
super().__init__() | |
self.layer_type = layer_type | |
if self.layer_type == 'none': | |
self.conv = nn.Identity() | |
elif self.layer_type == 'timepreserve': | |
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0)) | |
elif self.layer_type == 'half': | |
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1) | |
else: | |
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
def forward(self, x): | |
return self.conv(x) | |
class DownSample(nn.Module): | |
def __init__(self, layer_type): | |
super().__init__() | |
self.layer_type = layer_type | |
def forward(self, x): | |
if self.layer_type == 'none': | |
return x | |
elif self.layer_type == 'timepreserve': | |
return F.avg_pool2d(x, (2, 1)) | |
elif self.layer_type == 'half': | |
if x.shape[-1] % 2 != 0: | |
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
return F.avg_pool2d(x, 2) | |
else: | |
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
class UpSample(nn.Module): | |
def __init__(self, layer_type): | |
super().__init__() | |
self.layer_type = layer_type | |
def forward(self, x): | |
if self.layer_type == 'none': | |
return x | |
elif self.layer_type == 'timepreserve': | |
return F.interpolate(x, scale_factor=(2, 1), mode='nearest') | |
elif self.layer_type == 'half': | |
return F.interpolate(x, scale_factor=2, mode='nearest') | |
else: | |
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
class ResBlk(nn.Module): | |
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
normalize=False, downsample='none'): | |
super().__init__() | |
self.actv = actv | |
self.normalize = normalize | |
self.downsample = DownSample(downsample) | |
self.downsample_res = LearnedDownSample(downsample, dim_in) | |
self.learned_sc = dim_in != dim_out | |
self._build_weights(dim_in, dim_out) | |
def _build_weights(self, dim_in, dim_out): | |
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) | |
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) | |
if self.normalize: | |
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) | |
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) | |
if self.learned_sc: | |
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def _shortcut(self, x): | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
if self.downsample: | |
x = self.downsample(x) | |
return x | |
def _residual(self, x): | |
if self.normalize: | |
x = self.norm1(x) | |
x = self.actv(x) | |
x = self.conv1(x) | |
x = self.downsample_res(x) | |
if self.normalize: | |
x = self.norm2(x) | |
x = self.actv(x) | |
x = self.conv2(x) | |
return x | |
def forward(self, x): | |
x = self._shortcut(x) + self._residual(x) | |
return x / math.sqrt(2) # unit variance | |
class StyleEncoder(nn.Module): | |
def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384): | |
super().__init__() | |
blocks = [] | |
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
repeat_num = 4 | |
for _ in range(repeat_num): | |
dim_out = min(dim_in*2, max_conv_dim) | |
blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
dim_in = dim_out | |
blocks += [nn.LeakyReLU(0.2)] | |
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
blocks += [nn.AdaptiveAvgPool2d(1)] | |
blocks += [nn.LeakyReLU(0.2)] | |
self.shared = nn.Sequential(*blocks) | |
self.unshared = nn.Linear(dim_out, style_dim) | |
def forward(self, x): | |
h = self.shared(x) | |
h = h.view(h.size(0), -1) | |
s = self.unshared(h) | |
return s | |
class LinearNorm(torch.nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
super(LinearNorm, self).__init__() | |
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.linear_layer.weight, | |
gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x): | |
return self.linear_layer(x) | |
class Discriminator2d(nn.Module): | |
def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4): | |
super().__init__() | |
blocks = [] | |
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
for lid in range(repeat_num): | |
dim_out = min(dim_in*2, max_conv_dim) | |
blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
dim_in = dim_out | |
blocks += [nn.LeakyReLU(0.2)] | |
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
blocks += [nn.LeakyReLU(0.2)] | |
blocks += [nn.AdaptiveAvgPool2d(1)] | |
blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))] | |
self.main = nn.Sequential(*blocks) | |
def get_feature(self, x): | |
features = [] | |
for l in self.main: | |
x = l(x) | |
features.append(x) | |
out = features[-1] | |
out = out.view(out.size(0), -1) # (batch, num_domains) | |
return out, features | |
def forward(self, x): | |
out, features = self.get_feature(x) | |
out = out.squeeze() # (batch) | |
return out, features | |
class ResBlk1d(nn.Module): | |
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
normalize=False, downsample='none', dropout_p=0.2): | |
super().__init__() | |
self.actv = actv | |
self.normalize = normalize | |
self.downsample_type = downsample | |
self.learned_sc = dim_in != dim_out | |
self._build_weights(dim_in, dim_out) | |
self.dropout_p = dropout_p | |
if self.downsample_type == 'none': | |
self.pool = nn.Identity() | |
else: | |
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1)) | |
def _build_weights(self, dim_in, dim_out): | |
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) | |
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
if self.normalize: | |
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) | |
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) | |
if self.learned_sc: | |
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def downsample(self, x): | |
if self.downsample_type == 'none': | |
return x | |
else: | |
if x.shape[-1] % 2 != 0: | |
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
return F.avg_pool1d(x, 2) | |
def _shortcut(self, x): | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
x = self.downsample(x) | |
return x | |
def _residual(self, x): | |
if self.normalize: | |
x = self.norm1(x) | |
x = self.actv(x) | |
x = F.dropout(x, p=self.dropout_p, training=self.training) | |
x = self.conv1(x) | |
x = self.pool(x) | |
if self.normalize: | |
x = self.norm2(x) | |
x = self.actv(x) | |
x = F.dropout(x, p=self.dropout_p, training=self.training) | |
x = self.conv2(x) | |
return x | |
def forward(self, x): | |
x = self._shortcut(x) + self._residual(x) | |
return x / math.sqrt(2) # unit variance | |
class LayerNorm(nn.Module): | |
def __init__(self, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = nn.Parameter(torch.ones(channels)) | |
self.beta = nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
x = x.transpose(1, -1) | |
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
return x.transpose(1, -1) | |
class TextEncoder(nn.Module): | |
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): | |
super().__init__() | |
self.embedding = nn.Embedding(n_symbols, channels) | |
self.prepare_projection=LinearNorm(channels,channels // 2) | |
self.post_projection=LinearNorm(channels // 2,channels) | |
self.cfg = xLSTMBlockStackConfig( | |
mlstm_block=mLSTMBlockConfig( | |
mlstm=mLSTMLayerConfig( | |
conv1d_kernel_size=4, qkv_proj_blocksize=4, num_heads=4 | |
) | |
), | |
# slstm_block=sLSTMBlockConfig( | |
# slstm=sLSTMLayerConfig( | |
# backend="cuda", | |
# num_heads=4, | |
# conv1d_kernel_size=4, | |
# bias_init="powerlaw_blockdependent", | |
# ), | |
# feedforward=FeedForwardConfig(proj_factor=1.3, act_fn="gelu"), | |
# ), | |
context_length=channels, | |
num_blocks=8, | |
embedding_dim=channels // 2, | |
# slstm_at=[1], | |
) | |
padding = (kernel_size - 1) // 2 | |
self.cnn = nn.ModuleList() | |
for _ in range(depth): | |
self.cnn.append(nn.Sequential( | |
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), | |
LayerNorm(channels), | |
actv, | |
nn.Dropout(0.2), | |
)) | |
# self.cnn = nn.Sequential(*self.cnn) | |
self.lstm = xLSTMBlockStack(self.cfg) | |
def forward(self, x, input_lengths, m): | |
x = self.embedding(x) # [B, T, emb] | |
x = x.transpose(1, 2) # [B, emb, T] | |
m = m.to(input_lengths.device).unsqueeze(1) | |
x.masked_fill_(m, 0.0) | |
for c in self.cnn: | |
x = c(x) | |
x.masked_fill_(m, 0.0) | |
x = x.transpose(1, 2) # [B, T, chn] | |
input_lengths = input_lengths.cpu().numpy() | |
x = self.prepare_projection(x) | |
# x = nn.utils.rnn.pack_padded_sequence( | |
# x, input_lengths, batch_first=True, enforce_sorted=False) | |
# self.lstm.flatten_parameters() | |
x = self.lstm(x) | |
x = self.post_projection(x) | |
# x, _ = nn.utils.rnn.pad_packed_sequence( | |
# x, batch_first=True) | |
x = x.transpose(-1, -2) | |
# x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
# x_pad[:, :, :x.shape[-1]] = x | |
# x = x_pad.to(x.device) | |
x.masked_fill_(m, 0.0) | |
return x | |
def inference(self, x): | |
x = self.embedding(x) | |
x = x.transpose(1, 2) | |
x = self.cnn(x) | |
x = x.transpose(1, 2) | |
# self.lstm.flatten_parameters() | |
x = self.lstm(x) | |
return x | |
def length_to_mask(self, lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
class AdaIN1d(nn.Module): | |
def __init__(self, style_dim, num_features): | |
super().__init__() | |
self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
self.fc = nn.Linear(style_dim, num_features*2) | |
def forward(self, x, s): | |
h = self.fc(s) | |
h = h.view(h.size(0), h.size(1), 1) | |
gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
return (1 + gamma) * self.norm(x) + beta | |
class UpSample1d(nn.Module): | |
def __init__(self, layer_type): | |
super().__init__() | |
self.layer_type = layer_type | |
def forward(self, x): | |
if self.layer_type == 'none': | |
return x | |
else: | |
return F.interpolate(x, scale_factor=2, mode='nearest') | |
class AdainResBlk1d(nn.Module): | |
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), | |
upsample='none', dropout_p=0.0): | |
super().__init__() | |
self.actv = actv | |
self.upsample_type = upsample | |
self.upsample = UpSample1d(upsample) | |
self.learned_sc = dim_in != dim_out | |
self._build_weights(dim_in, dim_out, style_dim) | |
self.dropout = nn.Dropout(dropout_p) | |
if upsample == 'none': | |
self.pool = nn.Identity() | |
else: | |
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) | |
def _build_weights(self, dim_in, dim_out, style_dim): | |
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
self.norm1 = AdaIN1d(style_dim, dim_in) | |
self.norm2 = AdaIN1d(style_dim, dim_out) | |
if self.learned_sc: | |
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def _shortcut(self, x): | |
x = self.upsample(x) | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
return x | |
def _residual(self, x, s): | |
x = self.norm1(x, s) | |
x = self.actv(x) | |
x = self.pool(x) | |
x = self.conv1(self.dropout(x)) | |
x = self.norm2(x, s) | |
x = self.actv(x) | |
x = self.conv2(self.dropout(x)) | |
return x | |
def forward(self, x, s): | |
out = self._residual(x, s) | |
out = (out + self._shortcut(x)) / math.sqrt(2) | |
return out | |
class AdaLayerNorm(nn.Module): | |
def __init__(self, style_dim, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.fc = nn.Linear(style_dim, channels*2) | |
def forward(self, x, s): | |
x = x.transpose(-1, -2) | |
x = x.transpose(1, -1) | |
h = self.fc(s) | |
h = h.view(h.size(0), h.size(1), 1) | |
gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) | |
x = F.layer_norm(x, (self.channels,), eps=self.eps) | |
x = (1 + gamma) * x + beta | |
return x.transpose(1, -1).transpose(-1, -2) | |
# class ProsodyPredictor(nn.Module): | |
# def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
# super().__init__() | |
# self.text_encoder = DurationEncoder(sty_dim=style_dim, | |
# d_model=d_hid, | |
# nlayers=nlayers, | |
# dropout=dropout) | |
# self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
# self.duration_proj = LinearNorm(d_hid, max_dur) | |
# self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
# self.F0 = nn.ModuleList() | |
# self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
# self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
# self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
# self.N = nn.ModuleList() | |
# self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
# self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
# self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
# self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
# self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
# def forward(self, texts, style, text_lengths, alignment, m): | |
# d = self.text_encoder(texts, style, text_lengths, m) | |
# batch_size = d.shape[0] | |
# text_size = d.shape[1] | |
# # predict duration | |
# input_lengths = text_lengths.cpu().numpy() | |
# x = nn.utils.rnn.pack_padded_sequence( | |
# d, input_lengths, batch_first=True, enforce_sorted=False) | |
# m = m.to(text_lengths.device).unsqueeze(1) | |
# self.lstm.flatten_parameters() | |
# x, _ = self.lstm(x) | |
# x, _ = nn.utils.rnn.pad_packed_sequence( | |
# x, batch_first=True) | |
# x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) | |
# x_pad[:, :x.shape[1], :] = x | |
# x = x_pad.to(x.device) | |
# duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training)) | |
# en = (d.transpose(-1, -2) @ alignment) | |
# return duration.squeeze(-1), en | |
class ProsodyPredictor(nn.Module): | |
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
super().__init__() | |
self.cfg = xLSTMBlockStackConfig( | |
mlstm_block=mLSTMBlockConfig( | |
mlstm=mLSTMLayerConfig( | |
conv1d_kernel_size=4, qkv_proj_blocksize=4, num_heads=4 | |
) | |
), | |
context_length=d_hid, | |
num_blocks=8, | |
embedding_dim=d_hid + style_dim, | |
) | |
self.cfg_pred = xLSTMBlockStackConfig( | |
mlstm_block=mLSTMBlockConfig( | |
mlstm=mLSTMLayerConfig( | |
conv1d_kernel_size=4, qkv_proj_blocksize=4, num_heads=4 | |
) | |
), | |
context_length=4096, | |
num_blocks=8, | |
embedding_dim=d_hid, | |
) | |
# self.shared = Hopfield(input_size=d_hid + style_dim, | |
# hidden_size=d_hid // 2, | |
# num_heads=32, | |
# # scaling=.75, | |
# add_zero_association=True, | |
# batch_first=True) | |
self.text_encoder = DurationEncoder(sty_dim=style_dim, | |
d_model=d_hid, | |
nlayers=nlayers, | |
dropout=dropout) | |
self.lstm = xLSTMBlockStack(self.cfg) | |
self.prepare_projection = nn.Linear(d_hid + style_dim, d_hid) | |
self.duration_proj = LinearNorm(d_hid , max_dur) | |
self.shared = xLSTMBlockStack(self.cfg) | |
# self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
self.F0 = nn.ModuleList() | |
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
self.N = nn.ModuleList() | |
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
def forward(self, texts, style, text_lengths=None, alignment=None, m=None, f0=False): | |
if f0: | |
x, s = texts, style | |
x = self.shared(x.transpose(-1, -2)) | |
x = self.prepare_projection(x) | |
F0 = x.transpose(-1, -2) | |
for block in self.F0: | |
F0 = block(F0, s) | |
F0 = self.F0_proj(F0) | |
N = x.transpose(-1, -2) | |
for block in self.N: | |
N = block(N, s) | |
N = self.N_proj(N) | |
return F0.squeeze(1), N.squeeze(1) | |
else: | |
# Problem is here | |
d = self.text_encoder(texts, style, text_lengths, m) | |
batch_size = d.shape[0] | |
text_size = d.shape[1] | |
# predict duration | |
input_lengths = text_lengths.cpu().numpy() | |
# x = nn.utils.rnn.pack_padded_sequence( | |
# d, input_lengths, batch_first=True, enforce_sorted=False) | |
x = d # this dude can handle variable seq len so no need for padding | |
m = m.to(text_lengths.device).unsqueeze(1) | |
# self.lstm.flatten_parameters() | |
x = self.lstm(x) # no longer using lstm | |
x = self.prepare_projection(x) | |
# x, _ = nn.utils.rnn.pad_packed_sequence( | |
# x, batch_first=True) | |
# x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) | |
# x_pad[:, :x.shape[1], :] = x | |
# x = x_pad.to(x.device) | |
x = x.transpose(-1,-2) | |
x = x.permute(0,2,1) | |
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training)) | |
en = (d.transpose(-1, -2) @ alignment) | |
return duration.squeeze(-1), en | |
def F0Ntrain(self, x, s): | |
# x = self.prepare_projection(x.transpose(-1, -2)) | |
# x = self.shared(x) | |
#### | |
x = self.shared(x.transpose(-1, -2)) | |
x = self.prepare_projection(x) | |
F0 = x.transpose(-1, -2) | |
for block in self.F0: | |
F0 = block(F0, s) | |
F0 = self.F0_proj(F0) | |
N = x.transpose(-1, -2) | |
for block in self.N: | |
N = block(N, s) | |
N = self.N_proj(N) | |
return F0.squeeze(1), N.squeeze(1) | |
def length_to_mask(self, lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
class DurationEncoder(nn.Module): | |
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): | |
super().__init__() | |
self.lstms = nn.ModuleList() | |
for _ in range(nlayers): | |
self.lstms.append(nn.LSTM(d_model + sty_dim, | |
d_model // 2, | |
num_layers=1, | |
batch_first=True, | |
bidirectional=True, | |
dropout=dropout)) | |
self.lstms.append(AdaLayerNorm(sty_dim, d_model)) | |
self.dropout = dropout | |
self.d_model = d_model | |
self.sty_dim = sty_dim | |
def forward(self, x, style, text_lengths, m): | |
masks = m.to(text_lengths.device) | |
x = x.permute(2, 0, 1) | |
s = style.expand(x.shape[0], x.shape[1], -1) | |
x = torch.cat([x, s], axis=-1) | |
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) | |
x = x.transpose(0, 1) | |
input_lengths = text_lengths.cpu().numpy() | |
x = x.transpose(-1, -2) | |
for block in self.lstms: | |
if isinstance(block, AdaLayerNorm): | |
x = block(x.transpose(-1, -2), style).transpose(-1, -2) | |
x = torch.cat([x, s.permute(1, -1, 0)], axis=1) | |
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) | |
else: | |
x = x.transpose(-1, -2) | |
x = nn.utils.rnn.pack_padded_sequence( | |
x, input_lengths, batch_first=True, enforce_sorted=False) | |
block.flatten_parameters() | |
x, _ = block(x) | |
x, _ = nn.utils.rnn.pad_packed_sequence( | |
x, batch_first=True) | |
x = F.dropout(x, p=self.dropout, training=self.training) | |
x = x.transpose(-1, -2) | |
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
x_pad[:, :, :x.shape[-1]] = x | |
x = x_pad.to(x.device) | |
return x.transpose(-1, -2) | |
def inference(self, x, style): | |
x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model) | |
style = style.expand(x.shape[0], x.shape[1], -1) | |
x = torch.cat([x, style], axis=-1) | |
src = self.pos_encoder(x) | |
output = self.transformer_encoder(src).transpose(0, 1) | |
return output | |
def length_to_mask(self, lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def inference(self, x, style): | |
x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model) | |
style = style.expand(x.shape[0], x.shape[1], -1) | |
x = torch.cat([x, style], axis=-1) | |
src = self.pos_encoder(x) | |
output = self.transformer_encoder(src).transpose(0, 1) | |
return output | |
def length_to_mask(self, lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def load_F0_models(path): | |
# load F0 model | |
F0_model = JDCNet(num_class=1, seq_len=192) | |
params = torch.load(path, map_location='cpu')['net'] | |
F0_model.load_state_dict(params) | |
_ = F0_model.train() | |
return F0_model | |
def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG): | |
# load ASR model | |
def _load_config(path): | |
with open(path) as f: | |
config = yaml.safe_load(f) | |
model_config = config['model_params'] | |
return model_config | |
def _load_model(model_config, model_path): | |
model = ASRCNN(**model_config) | |
params = torch.load(model_path, map_location='cpu')['model'] | |
model.load_state_dict(params) | |
return model | |
asr_model_config = _load_config(ASR_MODEL_CONFIG) | |
asr_model = _load_model(asr_model_config, ASR_MODEL_PATH) | |
_ = asr_model.train() | |
return asr_model | |
def build_model(args, text_aligner, pitch_extractor, bert): | |
assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown' | |
if args.decoder.type == "istftnet": | |
from Modules.istftnet import Decoder | |
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
upsample_rates = args.decoder.upsample_rates, | |
upsample_initial_channel=args.decoder.upsample_initial_channel, | |
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, | |
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size) | |
else: | |
from Modules.hifigan import Decoder | |
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
upsample_rates = args.decoder.upsample_rates, | |
upsample_initial_channel=args.decoder.upsample_initial_channel, | |
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes) | |
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token) | |
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout) | |
style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder | |
predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder | |
# define diffusion model | |
if args.multispeaker: | |
transformer = StyleTransformer1d(channels=args.style_dim*2, | |
context_embedding_features=bert.config.hidden_size, | |
context_features=args.style_dim*2, | |
**args.diffusion.transformer) | |
else: | |
transformer = Transformer1d(channels=args.style_dim*2, | |
context_embedding_features=bert.config.hidden_size, | |
**args.diffusion.transformer) | |
diffusion = AudioDiffusionConditional( | |
in_channels=1, | |
embedding_max_length=bert.config.max_position_embeddings, | |
embedding_features=bert.config.hidden_size, | |
embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements, | |
channels=args.style_dim*2, | |
context_features=args.style_dim*2, | |
) | |
diffusion.diffusion = KDiffusion( | |
net=diffusion.unet, | |
sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std), | |
sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model | |
dynamic_threshold=0.0 | |
) | |
diffusion.diffusion.net = transformer | |
diffusion.unet = transformer | |
nets = Munch( | |
bert=bert, | |
bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim), | |
predictor=predictor, | |
decoder=decoder, | |
text_encoder=text_encoder, | |
predictor_encoder=predictor_encoder, | |
style_encoder=style_encoder, | |
diffusion=diffusion, | |
text_aligner = text_aligner, | |
pitch_extractor=pitch_extractor, | |
mpd = MultiPeriodDiscriminator(), | |
msd = MultiResSpecDiscriminator(), | |
# slm discriminator head | |
wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel), | |
) | |
return nets | |
# def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]): | |
# state = torch.load(path, map_location='cpu') | |
# params = state['net'] | |
# for key in model: | |
# if key in params and key not in ignore_modules: | |
# print('%s loaded' % key) | |
# model[key].load_state_dict(params[key], strict=False) | |
# _ = [model[key].eval() for key in model] | |
# if not load_only_params: | |
# epoch = state["epoch"] | |
# iters = state["iters"] | |
# optimizer.load_state_dict(state["optimizer"]) | |
# else: | |
# epoch = 0 | |
# iters = 0 | |
# return model, optimizer, epoch, iters | |
def load_checkpoint(model, optimizer, path, load_only_params=False, ignore_modules=[]): | |
state = torch.load(path, map_location='cpu') | |
params = state['net'] | |
print('loading the ckpt using the correct function.') | |
for key in model: | |
if key in params and key not in ignore_modules: | |
try: | |
model[key].load_state_dict(params[key], strict=True) | |
except: | |
from collections import OrderedDict | |
state_dict = params[key] | |
new_state_dict = OrderedDict() | |
print(f'{key} key length: {len(model[key].state_dict().keys())}, state_dict key length: {len(state_dict.keys())}') | |
for (k_m, v_m), (k_c, v_c) in zip(model[key].state_dict().items(), state_dict.items()): | |
new_state_dict[k_m] = v_c | |
model[key].load_state_dict(new_state_dict, strict=True) | |
print('%s loaded' % key) | |
if not load_only_params: | |
epoch = state["epoch"] | |
iters = state["iters"] | |
optimizer.load_state_dict(state["optimizer"]) | |
else: | |
epoch = 0 | |
iters = 0 | |
return model, optimizer, epoch, iters | |
################################################################################################ | |
################################################################################################ | |
################################################################################################ | |
# LSTM ORIGINAL | |
################################################################################################ | |
################################################################################################ | |
# # import os | |
# # import os.path as osp | |
# # import copy | |
# # import math | |
# # import numpy as np | |
# # import torch | |
# # import torch.nn as nn | |
# # import torch.nn.functional as F | |
# # from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
# # from Utils.ASR.models import ASRCNN | |
# # from Utils.JDC.model import JDCNet | |
# # from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution | |
# # from Modules.diffusion.modules import Transformer1d, StyleTransformer1d | |
# # from Modules.diffusion.diffusion import AudioDiffusionConditional | |
# # from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator | |
# # from munch import Munch | |
# # import yaml | |
# # class LearnedDownSample(nn.Module): | |
# # def __init__(self, layer_type, dim_in): | |
# # super().__init__() | |
# # self.layer_type = layer_type | |
# # if self.layer_type == 'none': | |
# # self.conv = nn.Identity() | |
# # elif self.layer_type == 'timepreserve': | |
# # self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0))) | |
# # elif self.layer_type == 'half': | |
# # self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) | |
# # else: | |
# # raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
# # def forward(self, x): | |
# # return self.conv(x) | |
# # class LearnedUpSample(nn.Module): | |
# # def __init__(self, layer_type, dim_in): | |
# # super().__init__() | |
# # self.layer_type = layer_type | |
# # if self.layer_type == 'none': | |
# # self.conv = nn.Identity() | |
# # elif self.layer_type == 'timepreserve': | |
# # self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0)) | |
# # elif self.layer_type == 'half': | |
# # self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1) | |
# # else: | |
# # raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
# # def forward(self, x): | |
# # return self.conv(x) | |
# # class DownSample(nn.Module): | |
# # def __init__(self, layer_type): | |
# # super().__init__() | |
# # self.layer_type = layer_type | |
# # def forward(self, x): | |
# # if self.layer_type == 'none': | |
# # return x | |
# # elif self.layer_type == 'timepreserve': | |
# # return F.avg_pool2d(x, (2, 1)) | |
# # elif self.layer_type == 'half': | |
# # if x.shape[-1] % 2 != 0: | |
# # x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
# # return F.avg_pool2d(x, 2) | |
# # else: | |
# # raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
# # class UpSample(nn.Module): | |
# # def __init__(self, layer_type): | |
# # super().__init__() | |
# # self.layer_type = layer_type | |
# # def forward(self, x): | |
# # if self.layer_type == 'none': | |
# # return x | |
# # elif self.layer_type == 'timepreserve': | |
# # return F.interpolate(x, scale_factor=(2, 1), mode='nearest') | |
# # elif self.layer_type == 'half': | |
# # return F.interpolate(x, scale_factor=2, mode='nearest') | |
# # else: | |
# # raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
# # class ResBlk(nn.Module): | |
# # def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
# # normalize=False, downsample='none'): | |
# # super().__init__() | |
# # self.actv = actv | |
# # self.normalize = normalize | |
# # self.downsample = DownSample(downsample) | |
# # self.downsample_res = LearnedDownSample(downsample, dim_in) | |
# # self.learned_sc = dim_in != dim_out | |
# # self._build_weights(dim_in, dim_out) | |
# # def _build_weights(self, dim_in, dim_out): | |
# # self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) | |
# # self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) | |
# # if self.normalize: | |
# # self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) | |
# # self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) | |
# # if self.learned_sc: | |
# # self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
# # def _shortcut(self, x): | |
# # if self.learned_sc: | |
# # x = self.conv1x1(x) | |
# # if self.downsample: | |
# # x = self.downsample(x) | |
# # return x | |
# # def _residual(self, x): | |
# # if self.normalize: | |
# # x = self.norm1(x) | |
# # x = self.actv(x) | |
# # x = self.conv1(x) | |
# # x = self.downsample_res(x) | |
# # if self.normalize: | |
# # x = self.norm2(x) | |
# # x = self.actv(x) | |
# # x = self.conv2(x) | |
# # return x | |
# # def forward(self, x): | |
# # x = self._shortcut(x) + self._residual(x) | |
# # return x / math.sqrt(2) # unit variance | |
# # class StyleEncoder(nn.Module): | |
# # def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384): | |
# # super().__init__() | |
# # blocks = [] | |
# # blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
# # repeat_num = 4 | |
# # for _ in range(repeat_num): | |
# # dim_out = min(dim_in*2, max_conv_dim) | |
# # blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
# # dim_in = dim_out | |
# # blocks += [nn.LeakyReLU(0.2)] | |
# # blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
# # blocks += [nn.AdaptiveAvgPool2d(1)] | |
# # blocks += [nn.LeakyReLU(0.2)] | |
# # self.shared = nn.Sequential(*blocks) | |
# # self.unshared = nn.Linear(dim_out, style_dim) | |
# # def forward(self, x): | |
# # h = self.shared(x) | |
# # h = h.view(h.size(0), -1) | |
# # s = self.unshared(h) | |
# # return s | |
# # class LinearNorm(torch.nn.Module): | |
# # def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
# # super(LinearNorm, self).__init__() | |
# # self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
# # torch.nn.init.xavier_uniform_( | |
# # self.linear_layer.weight, | |
# # gain=torch.nn.init.calculate_gain(w_init_gain)) | |
# # def forward(self, x): | |
# # return self.linear_layer(x) | |
# # class Discriminator2d(nn.Module): | |
# # def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4): | |
# # super().__init__() | |
# # blocks = [] | |
# # blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
# # for lid in range(repeat_num): | |
# # dim_out = min(dim_in*2, max_conv_dim) | |
# # blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
# # dim_in = dim_out | |
# # blocks += [nn.LeakyReLU(0.2)] | |
# # blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
# # blocks += [nn.LeakyReLU(0.2)] | |
# # blocks += [nn.AdaptiveAvgPool2d(1)] | |
# # blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))] | |
# # self.main = nn.Sequential(*blocks) | |
# # def get_feature(self, x): | |
# # features = [] | |
# # for l in self.main: | |
# # x = l(x) | |
# # features.append(x) | |
# # out = features[-1] | |
# # out = out.view(out.size(0), -1) # (batch, num_domains) | |
# # return out, features | |
# # def forward(self, x): | |
# # out, features = self.get_feature(x) | |
# # out = out.squeeze() # (batch) | |
# # return out, features | |
# # class ResBlk1d(nn.Module): | |
# # def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
# # normalize=False, downsample='none', dropout_p=0.2): | |
# # super().__init__() | |
# # self.actv = actv | |
# # self.normalize = normalize | |
# # self.downsample_type = downsample | |
# # self.learned_sc = dim_in != dim_out | |
# # self._build_weights(dim_in, dim_out) | |
# # self.dropout_p = dropout_p | |
# # if self.downsample_type == 'none': | |
# # self.pool = nn.Identity() | |
# # else: | |
# # self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1)) | |
# # def _build_weights(self, dim_in, dim_out): | |
# # self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) | |
# # self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
# # if self.normalize: | |
# # self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) | |
# # self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) | |
# # if self.learned_sc: | |
# # self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
# # def downsample(self, x): | |
# # if self.downsample_type == 'none': | |
# # return x | |
# # else: | |
# # if x.shape[-1] % 2 != 0: | |
# # x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
# # return F.avg_pool1d(x, 2) | |
# # def _shortcut(self, x): | |
# # if self.learned_sc: | |
# # x = self.conv1x1(x) | |
# # x = self.downsample(x) | |
# # return x | |
# # def _residual(self, x): | |
# # if self.normalize: | |
# # x = self.norm1(x) | |
# # x = self.actv(x) | |
# # x = F.dropout(x, p=self.dropout_p, training=self.training) | |
# # x = self.conv1(x) | |
# # x = self.pool(x) | |
# # if self.normalize: | |
# # x = self.norm2(x) | |
# # x = self.actv(x) | |
# # x = F.dropout(x, p=self.dropout_p, training=self.training) | |
# # x = self.conv2(x) | |
# # return x | |
# # def forward(self, x): | |
# # x = self._shortcut(x) + self._residual(x) | |
# # return x / math.sqrt(2) # unit variance | |
# # class LayerNorm(nn.Module): | |
# # def __init__(self, channels, eps=1e-5): | |
# # super().__init__() | |
# # self.channels = channels | |
# # self.eps = eps | |
# # self.gamma = nn.Parameter(torch.ones(channels)) | |
# # self.beta = nn.Parameter(torch.zeros(channels)) | |
# # def forward(self, x): | |
# # x = x.transpose(1, -1) | |
# # x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
# # return x.transpose(1, -1) | |
# # class TextEncoder(nn.Module): | |
# # def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): | |
# # super().__init__() | |
# # self.embedding = nn.Embedding(n_symbols, channels) | |
# # padding = (kernel_size - 1) // 2 | |
# # self.cnn = nn.ModuleList() | |
# # for _ in range(depth): | |
# # self.cnn.append(nn.Sequential( | |
# # weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), | |
# # LayerNorm(channels), | |
# # actv, | |
# # nn.Dropout(0.2), | |
# # )) | |
# # # self.cnn = nn.Sequential(*self.cnn) | |
# # self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True) | |
# # def forward(self, x, input_lengths, m): | |
# # x = self.embedding(x) # [B, T, emb] | |
# # x = x.transpose(1, 2) # [B, emb, T] | |
# # m = m.to(input_lengths.device).unsqueeze(1) | |
# # x.masked_fill_(m, 0.0) | |
# # for c in self.cnn: | |
# # x = c(x) | |
# # x.masked_fill_(m, 0.0) | |
# # x = x.transpose(1, 2) # [B, T, chn] | |
# # input_lengths = input_lengths.cpu().numpy() | |
# # x = nn.utils.rnn.pack_padded_sequence( | |
# # x, input_lengths, batch_first=True, enforce_sorted=False) | |
# # self.lstm.flatten_parameters() | |
# # x, _ = self.lstm(x) | |
# # x, _ = nn.utils.rnn.pad_packed_sequence( | |
# # x, batch_first=True) | |
# # x = x.transpose(-1, -2) | |
# # x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
# # x_pad[:, :, :x.shape[-1]] = x | |
# # x = x_pad.to(x.device) | |
# # x.masked_fill_(m, 0.0) | |
# # return x | |
# # def inference(self, x): | |
# # x = self.embedding(x) | |
# # x = x.transpose(1, 2) | |
# # x = self.cnn(x) | |
# # x = x.transpose(1, 2) | |
# # self.lstm.flatten_parameters() | |
# # x, _ = self.lstm(x) | |
# # return x | |
# # def length_to_mask(self, lengths): | |
# # mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
# # mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
# # return mask | |
# # class AdaIN1d(nn.Module): | |
# # def __init__(self, style_dim, num_features): | |
# # super().__init__() | |
# # self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
# # self.fc = nn.Linear(style_dim, num_features*2) | |
# # def forward(self, x, s): | |
# # h = self.fc(s) | |
# # h = h.view(h.size(0), h.size(1), 1) | |
# # gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
# # return (1 + gamma) * self.norm(x) + beta | |
# # class UpSample1d(nn.Module): | |
# # def __init__(self, layer_type): | |
# # super().__init__() | |
# # self.layer_type = layer_type | |
# # def forward(self, x): | |
# # if self.layer_type == 'none': | |
# # return x | |
# # else: | |
# # return F.interpolate(x, scale_factor=2, mode='nearest') | |
# # class AdainResBlk1d(nn.Module): | |
# # def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), | |
# # upsample='none', dropout_p=0.0): | |
# # super().__init__() | |
# # self.actv = actv | |
# # self.upsample_type = upsample | |
# # self.upsample = UpSample1d(upsample) | |
# # self.learned_sc = dim_in != dim_out | |
# # self._build_weights(dim_in, dim_out, style_dim) | |
# # self.dropout = nn.Dropout(dropout_p) | |
# # if upsample == 'none': | |
# # self.pool = nn.Identity() | |
# # else: | |
# # self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) | |
# # def _build_weights(self, dim_in, dim_out, style_dim): | |
# # self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
# # self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
# # self.norm1 = AdaIN1d(style_dim, dim_in) | |
# # self.norm2 = AdaIN1d(style_dim, dim_out) | |
# # if self.learned_sc: | |
# # self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
# # def _shortcut(self, x): | |
# # x = self.upsample(x) | |
# # if self.learned_sc: | |
# # x = self.conv1x1(x) | |
# # return x | |
# # def _residual(self, x, s): | |
# # x = self.norm1(x, s) | |
# # x = self.actv(x) | |
# # x = self.pool(x) | |
# # x = self.conv1(self.dropout(x)) | |
# # x = self.norm2(x, s) | |
# # x = self.actv(x) | |
# # x = self.conv2(self.dropout(x)) | |
# # return x | |
# # def forward(self, x, s): | |
# # out = self._residual(x, s) | |
# # out = (out + self._shortcut(x)) / math.sqrt(2) | |
# # return out | |
# # class AdaLayerNorm(nn.Module): | |
# # def __init__(self, style_dim, channels, eps=1e-5): | |
# # super().__init__() | |
# # self.channels = channels | |
# # self.eps = eps | |
# # self.fc = nn.Linear(style_dim, channels*2) | |
# # def forward(self, x, s): | |
# # x = x.transpose(-1, -2) | |
# # x = x.transpose(1, -1) | |
# # h = self.fc(s) | |
# # h = h.view(h.size(0), h.size(1), 1) | |
# # gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
# # gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) | |
# # x = F.layer_norm(x, (self.channels,), eps=self.eps) | |
# # x = (1 + gamma) * x + beta | |
# # return x.transpose(1, -1).transpose(-1, -2) | |
# # class ProsodyPredictor(nn.Module): | |
# # def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
# # super().__init__() | |
# # self.text_encoder = DurationEncoder(sty_dim=style_dim, | |
# # d_model=d_hid, | |
# # nlayers=nlayers, | |
# # dropout=dropout) | |
# # self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
# # self.duration_proj = LinearNorm(d_hid, max_dur) | |
# # self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
# # self.F0 = nn.ModuleList() | |
# # self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
# # self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
# # self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
# # self.N = nn.ModuleList() | |
# # self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
# # self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
# # self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
# # self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
# # self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
# # def forward(self, texts, style, text_lengths, alignment, m): | |
# # d = self.text_encoder(texts, style, text_lengths, m) | |
# # batch_size = d.shape[0] | |
# # text_size = d.shape[1] | |
# # # predict duration | |
# # input_lengths = text_lengths.cpu().numpy() | |
# # x = nn.utils.rnn.pack_padded_sequence( | |
# # d, input_lengths, batch_first=True, enforce_sorted=False) | |
# # m = m.to(text_lengths.device).unsqueeze(1) | |
# # self.lstm.flatten_parameters() | |
# # x, _ = self.lstm(x) | |
# # x, _ = nn.utils.rnn.pad_packed_sequence( | |
# # x, batch_first=True) | |
# # x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) | |
# # x_pad[:, :x.shape[1], :] = x | |
# # x = x_pad.to(x.device) | |
# # duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training)) | |
# # en = (d.transpose(-1, -2) @ alignment) | |
# # return duration.squeeze(-1), en | |
# # def F0Ntrain(self, x, s): | |
# # x, _ = self.shared(x.transpose(-1, -2)) | |
# # F0 = x.transpose(-1, -2) | |
# # for block in self.F0: | |
# # F0 = block(F0, s) | |
# # F0 = self.F0_proj(F0) | |
# # N = x.transpose(-1, -2) | |
# # for block in self.N: | |
# # N = block(N, s) | |
# # N = self.N_proj(N) | |
# # return F0.squeeze(1), N.squeeze(1) | |
# # def length_to_mask(self, lengths): | |
# # mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
# # mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
# # return mask | |
# # class DurationEncoder(nn.Module): | |
# # def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): | |
# # super().__init__() | |
# # self.lstms = nn.ModuleList() | |
# # for _ in range(nlayers): | |
# # self.lstms.append(nn.LSTM(d_model + sty_dim, | |
# # d_model // 2, | |
# # num_layers=1, | |
# # batch_first=True, | |
# # bidirectional=True, | |
# # dropout=dropout)) | |
# # self.lstms.append(AdaLayerNorm(sty_dim, d_model)) | |
# # self.dropout = dropout | |
# # self.d_model = d_model | |
# # self.sty_dim = sty_dim | |
# # def forward(self, x, style, text_lengths, m): | |
# # masks = m.to(text_lengths.device) | |
# # x = x.permute(2, 0, 1) | |
# # s = style.expand(x.shape[0], x.shape[1], -1) | |
# # x = torch.cat([x, s], axis=-1) | |
# # x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) | |
# # x = x.transpose(0, 1) | |
# # input_lengths = text_lengths.cpu().numpy() | |
# # x = x.transpose(-1, -2) | |
# # for block in self.lstms: | |
# # if isinstance(block, AdaLayerNorm): | |
# # x = block(x.transpose(-1, -2), style).transpose(-1, -2) | |
# # x = torch.cat([x, s.permute(1, -1, 0)], axis=1) | |
# # x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) | |
# # else: | |
# # x = x.transpose(-1, -2) | |
# # x = nn.utils.rnn.pack_padded_sequence( | |
# # x, input_lengths, batch_first=True, enforce_sorted=False) | |
# # block.flatten_parameters() | |
# # x, _ = block(x) | |
# # x, _ = nn.utils.rnn.pad_packed_sequence( | |
# # x, batch_first=True) | |
# # x = F.dropout(x, p=self.dropout, training=self.training) | |
# # x = x.transpose(-1, -2) | |
# # x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
# # x_pad[:, :, :x.shape[-1]] = x | |
# # x = x_pad.to(x.device) | |
# # return x.transpose(-1, -2) | |
# # def inference(self, x, style): | |
# # x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model) | |
# # style = style.expand(x.shape[0], x.shape[1], -1) | |
# # x = torch.cat([x, style], axis=-1) | |
# # src = self.pos_encoder(x) | |
# # output = self.transformer_encoder(src).transpose(0, 1) | |
# # return output | |
# # def length_to_mask(self, lengths): | |
# # mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
# # mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
# # return mask | |
# # def load_F0_models(path): | |
# # # load F0 model | |
# # F0_model = JDCNet(num_class=1, seq_len=192) | |
# # params = torch.load(path, map_location='cpu')['net'] | |
# # F0_model.load_state_dict(params) | |
# # _ = F0_model.train() | |
# # return F0_model | |
# # def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG): | |
# # # load ASR model | |
# # def _load_config(path): | |
# # with open(path) as f: | |
# # config = yaml.safe_load(f) | |
# # model_config = config['model_params'] | |
# # return model_config | |
# # def _load_model(model_config, model_path): | |
# # model = ASRCNN(**model_config) | |
# # params = torch.load(model_path, map_location='cpu')['model'] | |
# # model.load_state_dict(params) | |
# # return model | |
# # asr_model_config = _load_config(ASR_MODEL_CONFIG) | |
# # asr_model = _load_model(asr_model_config, ASR_MODEL_PATH) | |
# # _ = asr_model.train() | |
# # return asr_model | |
# # def build_model(args, text_aligner, pitch_extractor, bert): | |
# # assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown' | |
# # if args.decoder.type == "istftnet": | |
# # from Modules.istftnet import Decoder | |
# # decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
# # resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
# # upsample_rates = args.decoder.upsample_rates, | |
# # upsample_initial_channel=args.decoder.upsample_initial_channel, | |
# # resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
# # upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, | |
# # gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size) | |
# # else: | |
# # from Modules.hifigan import Decoder | |
# # decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
# # resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
# # upsample_rates = args.decoder.upsample_rates, | |
# # upsample_initial_channel=args.decoder.upsample_initial_channel, | |
# # resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
# # upsample_kernel_sizes=args.decoder.upsample_kernel_sizes) | |
# # text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token) | |
# # predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout) | |
# # style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder | |
# # predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder | |
# # # define diffusion model | |
# # if args.multispeaker: | |
# # transformer = StyleTransformer1d(channels=args.style_dim*2, | |
# # context_embedding_features=bert.config.hidden_size, | |
# # context_features=args.style_dim*2, | |
# # **args.diffusion.transformer) | |
# # else: | |
# # transformer = Transformer1d(channels=args.style_dim*2, | |
# # context_embedding_features=bert.config.hidden_size, | |
# # **args.diffusion.transformer) | |
# # diffusion = AudioDiffusionConditional( | |
# # in_channels=1, | |
# # embedding_max_length=bert.config.max_position_embeddings, | |
# # embedding_features=bert.config.hidden_size, | |
# # embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements, | |
# # channels=args.style_dim*2, | |
# # context_features=args.style_dim*2, | |
# # ) | |
# # diffusion.diffusion = KDiffusion( | |
# # net=diffusion.unet, | |
# # sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std), | |
# # sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model | |
# # dynamic_threshold=0.0 | |
# # ) | |
# # diffusion.diffusion.net = transformer | |
# # diffusion.unet = transformer | |
# # nets = Munch( | |
# # bert=bert, | |
# # bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim), | |
# # predictor=predictor, | |
# # decoder=decoder, | |
# # text_encoder=text_encoder, | |
# # predictor_encoder=predictor_encoder, | |
# # style_encoder=style_encoder, | |
# # diffusion=diffusion, | |
# # text_aligner = text_aligner, | |
# # pitch_extractor=pitch_extractor, | |
# # mpd = MultiPeriodDiscriminator(), | |
# # msd = MultiResSpecDiscriminator(), | |
# # # slm discriminator head | |
# # wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel), | |
# # ) | |
# # return nets | |
# # def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]): | |
# # state = torch.load(path, map_location='cpu') | |
# # params = state['net'] | |
# # for key in model: | |
# # if key in params and key not in ignore_modules: | |
# # print('%s loaded' % key) | |
# # try: | |
# # model[key].load_state_dict(params[key], strict=True) | |
# # except: | |
# # from collections import OrderedDict | |
# # state_dict = params[key] | |
# # new_state_dict = OrderedDict() | |
# # print(f'{key} key length: {len(model[key].state_dict().keys())}, state_dict length: {len(state_dict.keys())}') | |
# # for (k_m, v_m), (k_c, v_c) in zip(model[key].state_dict().items(), state_dict.items()): | |
# # new_state_dict[k_m] = v_c | |
# # model[key].load_state_dict(new_state_dict, strict=True) | |
# # _ = [model[key].eval() for key in model] | |
# # if not load_only_params: | |
# # epoch = state["epoch"] | |
# # iters = state["iters"] | |
# # optimizer.load_state_dict(state["optimizer"]) | |
# # else: | |
# # epoch = 0 | |
# # iters = 0 | |
# # return model, optimizer, epoch, iters |