NeMo_Canary
/
nemo
/collections
/multimodal_autoregressive
/tokenizer
/cosmos_multimodal_tokenizer.py
| # coding=utf-8 | |
| # Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tokenization classes Cosmos (Visual tokens and Text tokens).""" | |
| import base64 | |
| import logging | |
| import os | |
| import unicodedata | |
| from typing import Collection, Dict, List, Optional, Set, Tuple, Union | |
| import tiktoken | |
| from transformers import AddedToken, PreTrainedTokenizer | |
| logger = logging.getLogger(__name__) | |
| VOCAB_FILES_NAMES = { | |
| "vocab_file": "emu3.tiktoken", | |
| "special_tokens_file": "cosmos_vision_tokens.txt", | |
| } | |
| PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" # pylint: disable=line-too-long | |
| ENDOFTEXT = "<|endoftext|>" | |
| IMSTART = "<|im_start|>" | |
| IMEND = "<|im_end|>" | |
| # as the default behavior is changed to allow special tokens in | |
| # regular texts, the surface forms of special tokens need to be | |
| # as different as possible to minimize the impact | |
| EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205))) | |
| # changed to use actual index to avoid misconfiguration with vocabulary expansion | |
| SPECIAL_START_ID = 151643 | |
| def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]: | |
| with open(tiktoken_bpe_file, "rb") as f: | |
| contents = f.read() | |
| return { | |
| base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line) | |
| } | |
| class CosmosMultiModalTokenizer(PreTrainedTokenizer): | |
| """Emu3 tokenizer.""" | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| def __init__( | |
| self, | |
| vocab_file, | |
| special_tokens_file, | |
| errors="replace", | |
| bos_token="<|extra_203|>", | |
| eos_token="<|extra_204|>", | |
| pad_token="<|endoftext|>", | |
| img_token="<|image token|>", | |
| boi_token="<|image start|>", | |
| eoi_token="<|image end|>", | |
| eol_token="<|extra_200|>", | |
| eof_token="<|extra_201|>", | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| # how to handle errors in decoding UTF-8 byte sequences | |
| # use ignore if you are in streaming inference | |
| self.errors = errors | |
| self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) | |
| vision_tokens = [t.strip() for t in open(special_tokens_file).readlines() if len(t.strip()) > 0] | |
| SPECIAL_TOKENS = tuple( | |
| enumerate( | |
| ( | |
| ( | |
| ENDOFTEXT, | |
| IMSTART, | |
| IMEND, | |
| ) | |
| + EXTRAS | |
| + tuple(vision_tokens) | |
| ), | |
| start=SPECIAL_START_ID, | |
| ) | |
| ) | |
| self.special_tokens = {token: index for index, token in SPECIAL_TOKENS} | |
| self.special_tokens_set = set(t for _, t in SPECIAL_TOKENS) | |
| enc = tiktoken.Encoding( | |
| "Emu3", | |
| pat_str=PAT_STR, | |
| mergeable_ranks=self.mergeable_ranks, | |
| special_tokens=self.special_tokens, | |
| ) | |
| assert ( | |
| len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab | |
| ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding" | |
| self.decoder = {v: k for k, v in self.mergeable_ranks.items()} | |
| self.decoder.update({v: k for k, v in self.special_tokens.items()}) | |
| self.tokenizer = enc | |
| self.eod_id = self.tokenizer.eot_token | |
| self.bos_token = bos_token | |
| self.eos_token = eos_token | |
| self.pad_token = pad_token | |
| self.img_token = img_token | |
| self.boi_token = boi_token | |
| self.eoi_token = eoi_token | |
| self.eol_token = eol_token | |
| self.eof_token = eof_token | |
| def __getstate__(self): | |
| # for pickle lovers | |
| state = self.__dict__.copy() | |
| del state["tokenizer"] | |
| return state | |
| def __setstate__(self, state): | |
| # tokenizer is not python native; don't pass it; rebuild it | |
| self.__dict__.update(state) | |
| enc = tiktoken.Encoding( | |
| "Emu3", | |
| pat_str=PAT_STR, | |
| mergeable_ranks=self.mergeable_ranks, | |
| special_tokens=self.special_tokens, | |
| ) | |
| self.tokenizer = enc | |
| def __len__(self) -> int: | |
| return self.tokenizer.n_vocab | |
| def get_vocab(self) -> Dict[bytes, int]: | |
| """Returns the tokenizer vocab""" | |
| return self.mergeable_ranks | |
| def convert_tokens_to_ids(self, tokens: Union[bytes, str, List[Union[bytes, str]]]) -> List[int]: | |
| """Converts the computed tokens to their corresponding ids""" | |
| if isinstance(tokens, (str, bytes)): | |
| if tokens in self.special_tokens: | |
| return self.special_tokens[tokens] | |
| else: | |
| return self.mergeable_ranks.get(tokens) | |
| ids = [] | |
| for token in tokens: | |
| if token in self.special_tokens: | |
| ids.append(self.special_tokens[token]) | |
| else: | |
| ids.append(self.mergeable_ranks.get(token)) | |
| return ids | |
| def _add_tokens( | |
| self, | |
| new_tokens: Union[List[str], List[AddedToken]], | |
| special_tokens: bool = False, | |
| ) -> int: | |
| if not special_tokens and new_tokens: | |
| raise ValueError("Adding regular tokens is not supported") | |
| for token in new_tokens: | |
| surface_form = token.content if isinstance(token, AddedToken) else token | |
| if surface_form not in self.special_tokens_set: | |
| raise ValueError("Adding unknown special tokens is not supported") | |
| return 0 | |
| def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]: | |
| """ | |
| Save only the vocabulary of the tokenizer (vocabulary). | |
| Returns: | |
| `Tuple(str)`: Paths to the files saved. | |
| """ | |
| regular_file_path = os.path.join(save_directory, self.vocab_files_names["vocab_file"]) | |
| with open(regular_file_path, 'w', encoding="utf8") as w: | |
| for k, v in self.mergeable_ranks.items(): | |
| line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n" | |
| w.write(line) | |
| excluded_special_tokens = set( | |
| ( | |
| ENDOFTEXT, | |
| IMSTART, | |
| IMEND, | |
| ) | |
| + EXTRAS | |
| ) | |
| special_file_path = os.path.join(save_directory, self.vocab_files_names["special_tokens_file"]) | |
| with open(special_file_path, 'w', encoding="utf8") as w: | |
| for k in self.special_tokens: | |
| if k not in excluded_special_tokens: | |
| print(k, file=w) | |
| return (regular_file_path, special_file_path) | |
| def tokenize( | |
| self, | |
| text: str, | |
| allowed_special: Union[Set, str] = "all", | |
| disallowed_special: Union[Collection, str] = (), | |
| **kwargs, | |
| ) -> List[Union[bytes, str]]: | |
| """ | |
| Converts a string in a sequence of tokens. | |
| Args: | |
| text (`str`): | |
| The sequence to be encoded. | |
| allowed_special (`Literal["all"]` or `set`): | |
| The surface forms of the tokens to be encoded as special tokens in regular texts. | |
| Default to "all". | |
| disallowed_special (`Literal["all"]` or `Collection`): | |
| The surface forms of the tokens that should not be in regular texts and trigger errors. | |
| Default to an empty tuple. | |
| kwargs (additional keyword arguments, *optional*): | |
| Will be passed to the underlying model specific encode method. | |
| Returns: | |
| `List[bytes|str]`: The list of tokens. | |
| """ | |
| tokens = [] | |
| text = unicodedata.normalize("NFC", text) | |
| # this implementation takes a detour: text -> token id -> token surface forms | |
| for t in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special): | |
| tokens.append(self.decoder[t]) | |
| return tokens | |
| def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str: | |
| """ | |
| Converts a sequence of tokens in a single string. | |
| """ | |
| text = "" | |
| temp = b"" | |
| for t in tokens: | |
| if isinstance(t, str): | |
| if temp: | |
| text += temp.decode("utf-8", errors=self.errors) | |
| temp = b"" | |
| text += t | |
| elif isinstance(t, bytes): | |
| temp += t | |
| else: | |
| raise TypeError("token should only be of type types or str") | |
| if temp: | |
| text += temp.decode("utf-8", errors=self.errors) | |
| return text | |
| def vocab_size(self): | |
| """Returns the vocab size""" | |
| return self.tokenizer.n_vocab | |
| def _convert_id_to_token(self, index: int) -> Union[bytes, str]: | |
| """Converts an id to a token, special tokens included""" | |
| if index in self.decoder: | |
| return self.decoder[index] | |
| raise ValueError("unknown ids") | |
| def _convert_token_to_id(self, token: Union[bytes, str]) -> int: | |
| """Converts a token to an id using the vocab, special tokens included""" | |
| if token in self.special_tokens: | |
| return self.special_tokens[token] | |
| if token in self.mergeable_ranks: | |
| return self.mergeable_ranks[token] | |
| raise ValueError("unknown token") | |
| def _decode( | |
| self, | |
| token_ids: Union[int, List[int]], | |
| skip_special_tokens: bool = False, | |
| errors: Optional[str] = None, | |
| **kwargs, | |
| ) -> str: | |
| if isinstance(token_ids, int): | |
| token_ids = [token_ids] | |
| if skip_special_tokens: | |
| token_ids = [i for i in token_ids if i < self.eod_id] | |
| return self.tokenizer.decode(token_ids, errors=errors or self.errors) | |