Upload folder using huggingface_hub
Browse files- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/config.json +30 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/generation_config.json +10 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/latest +1 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00001-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00002-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00003-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00004-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00005-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00006-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model.safetensors.index.json +370 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_0.pth +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_1.pth +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_2.pth +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_3.pth +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_4.pth +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_5.pth +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_6.pth +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_7.pth +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/scheduler.pt +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/special_tokens_map.json +24 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/tokenizer.json +0 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/tokenizer.model +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/tokenizer_config.json +43 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/trainer_state.json +880 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/training_args.bin +3 -0
- uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/zero_to_fp32.py +592 -0
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/data/tungtran/output_model/irish_llama2_data_v3/checkpoint-2200",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 5120,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 13824,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_key_value_heads": 40,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.46.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 35483
|
30 |
+
}
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.46.3"
|
10 |
+
}
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step240
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e32a550dac47b3428d854b8e5840f4001d28ba2773ced745a8b0639f2f22994
|
3 |
+
size 4961502800
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0ddb7bb93ad25304ffc3845be6906d824597d20ecc10fc19b4115fda1ba15ab
|
3 |
+
size 4970422232
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dca4d2585037cbd7bbf1edcc8108888294e672f7adf8ddd142edef8c4e1369b0
|
3 |
+
size 4881272584
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a05d89b22f45d107403fdf727ac7bbd5773c926ee5abb8232138643f439a0173
|
3 |
+
size 4933722216
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69af8af278208f4e0bfc35a9263aa236965c362b92e8e2d193090f2bca71c730
|
3 |
+
size 4933722208
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe391188be56360a8ea8e26c57f1f3177225624372c7aae4d93b40473b07cad9
|
3 |
+
size 1422460712
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26103060480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
369 |
+
}
|
370 |
+
}
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f844294abe6264ef19c56e592a74b30b59be59850b8bdfe54f1ae2ca3f69bbf
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d07da124bacdee0aae69d9670909e15f6a83dfeb2fb0e2897451a493b5d64c73
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76a1de36faa29d7fa2a51be459cbc31bf294bc0127abdafaac8cd01501aec7da
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffae4183d0cb6dc4160ebf4c5ec37f2c41a24dbe3dccbc45df7d29351c7e2246
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cac7e74b1492cf7a21760d2166afabdae6e1ecfc3dfc6a1eb6443157545bc76
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ecc790e68deafa73f0ced9bc1aad46989db7a6f52a1ad382ee60361a4f38176
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76f228d4a453e4e26a229bfca7cf8325fcb70fd91e723730f46675f0ec9bc59f
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:092953778802889bb4aef711a75d0776acf543285c30e9465df12b438da67245
|
3 |
+
size 15920
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7047df6e9db0fba642a2325decd980be9e3b8e3f2258256b286f7ba925c9c1f1
|
3 |
+
size 1064
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
|
3 |
+
size 558602
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/trainer_state.json
ADDED
@@ -0,0 +1,880 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 240,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0125,
|
13 |
+
"grad_norm": 1.001694627324715,
|
14 |
+
"learning_rate": 6.25e-06,
|
15 |
+
"loss": 1.636,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.025,
|
20 |
+
"grad_norm": 1.1232886991122528,
|
21 |
+
"learning_rate": 1.25e-05,
|
22 |
+
"loss": 1.6567,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.05,
|
27 |
+
"grad_norm": 0.30256479728273195,
|
28 |
+
"learning_rate": 2.5e-05,
|
29 |
+
"loss": 1.5177,
|
30 |
+
"step": 4
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.075,
|
34 |
+
"grad_norm": 0.4658390417272426,
|
35 |
+
"learning_rate": 3.7500000000000003e-05,
|
36 |
+
"loss": 1.3463,
|
37 |
+
"step": 6
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.1,
|
41 |
+
"grad_norm": 0.21524068836984556,
|
42 |
+
"learning_rate": 5e-05,
|
43 |
+
"loss": 1.2869,
|
44 |
+
"step": 8
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.125,
|
48 |
+
"grad_norm": 0.1290773408678012,
|
49 |
+
"learning_rate": 6.25e-05,
|
50 |
+
"loss": 1.2252,
|
51 |
+
"step": 10
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.15,
|
55 |
+
"grad_norm": 0.1305532990433957,
|
56 |
+
"learning_rate": 7.500000000000001e-05,
|
57 |
+
"loss": 1.2042,
|
58 |
+
"step": 12
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.175,
|
62 |
+
"grad_norm": 0.10470705468003734,
|
63 |
+
"learning_rate": 8.75e-05,
|
64 |
+
"loss": 1.1671,
|
65 |
+
"step": 14
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.2,
|
69 |
+
"grad_norm": 0.09317869840175187,
|
70 |
+
"learning_rate": 0.0001,
|
71 |
+
"loss": 1.1348,
|
72 |
+
"step": 16
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.225,
|
76 |
+
"grad_norm": 0.09202927639770621,
|
77 |
+
"learning_rate": 9.998932083939656e-05,
|
78 |
+
"loss": 1.0887,
|
79 |
+
"step": 18
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.25,
|
83 |
+
"grad_norm": 0.09563130912564372,
|
84 |
+
"learning_rate": 9.995728791936504e-05,
|
85 |
+
"loss": 1.0863,
|
86 |
+
"step": 20
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.275,
|
90 |
+
"grad_norm": 0.09781477340327718,
|
91 |
+
"learning_rate": 9.990391492329341e-05,
|
92 |
+
"loss": 1.0505,
|
93 |
+
"step": 22
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.3,
|
97 |
+
"grad_norm": 0.10054753783481035,
|
98 |
+
"learning_rate": 9.98292246503335e-05,
|
99 |
+
"loss": 1.038,
|
100 |
+
"step": 24
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.325,
|
104 |
+
"grad_norm": 0.11771731267013749,
|
105 |
+
"learning_rate": 9.973324900566213e-05,
|
106 |
+
"loss": 1.0093,
|
107 |
+
"step": 26
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.35,
|
111 |
+
"grad_norm": 0.07920039599178107,
|
112 |
+
"learning_rate": 9.961602898685226e-05,
|
113 |
+
"loss": 0.9599,
|
114 |
+
"step": 28
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.375,
|
118 |
+
"grad_norm": 0.08754297025513495,
|
119 |
+
"learning_rate": 9.947761466636014e-05,
|
120 |
+
"loss": 0.9471,
|
121 |
+
"step": 30
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.4,
|
125 |
+
"grad_norm": 0.09077767050752232,
|
126 |
+
"learning_rate": 9.931806517013612e-05,
|
127 |
+
"loss": 0.9325,
|
128 |
+
"step": 32
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.425,
|
132 |
+
"grad_norm": 0.07971857143163262,
|
133 |
+
"learning_rate": 9.913744865236798e-05,
|
134 |
+
"loss": 0.9195,
|
135 |
+
"step": 34
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.45,
|
139 |
+
"grad_norm": 0.09330919417037573,
|
140 |
+
"learning_rate": 9.893584226636772e-05,
|
141 |
+
"loss": 0.8926,
|
142 |
+
"step": 36
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.475,
|
146 |
+
"grad_norm": 0.09091187419808079,
|
147 |
+
"learning_rate": 9.871333213161438e-05,
|
148 |
+
"loss": 0.8811,
|
149 |
+
"step": 38
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.5,
|
153 |
+
"grad_norm": 0.07814948556942038,
|
154 |
+
"learning_rate": 9.847001329696653e-05,
|
155 |
+
"loss": 0.8259,
|
156 |
+
"step": 40
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.525,
|
160 |
+
"grad_norm": 0.0885696745070737,
|
161 |
+
"learning_rate": 9.820598970006069e-05,
|
162 |
+
"loss": 0.8208,
|
163 |
+
"step": 42
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.55,
|
167 |
+
"grad_norm": 0.11527129492074112,
|
168 |
+
"learning_rate": 9.792137412291265e-05,
|
169 |
+
"loss": 0.7918,
|
170 |
+
"step": 44
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.575,
|
174 |
+
"grad_norm": 0.11420680118812855,
|
175 |
+
"learning_rate": 9.761628814374073e-05,
|
176 |
+
"loss": 0.7764,
|
177 |
+
"step": 46
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.6,
|
181 |
+
"grad_norm": 0.11627802945679176,
|
182 |
+
"learning_rate": 9.729086208503174e-05,
|
183 |
+
"loss": 0.7509,
|
184 |
+
"step": 48
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.625,
|
188 |
+
"grad_norm": 0.09434304905330852,
|
189 |
+
"learning_rate": 9.694523495787149e-05,
|
190 |
+
"loss": 0.7338,
|
191 |
+
"step": 50
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.65,
|
195 |
+
"grad_norm": 0.09146753352106175,
|
196 |
+
"learning_rate": 9.657955440256395e-05,
|
197 |
+
"loss": 0.6889,
|
198 |
+
"step": 52
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.675,
|
202 |
+
"grad_norm": 0.11646616606039249,
|
203 |
+
"learning_rate": 9.619397662556435e-05,
|
204 |
+
"loss": 0.6962,
|
205 |
+
"step": 54
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.7,
|
209 |
+
"grad_norm": 0.1114311656394847,
|
210 |
+
"learning_rate": 9.578866633275288e-05,
|
211 |
+
"loss": 0.6692,
|
212 |
+
"step": 56
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.725,
|
216 |
+
"grad_norm": 0.0987205616293445,
|
217 |
+
"learning_rate": 9.5363796659078e-05,
|
218 |
+
"loss": 0.6304,
|
219 |
+
"step": 58
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.75,
|
223 |
+
"grad_norm": 0.10525188568247712,
|
224 |
+
"learning_rate": 9.491954909459895e-05,
|
225 |
+
"loss": 0.6277,
|
226 |
+
"step": 60
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.775,
|
230 |
+
"grad_norm": 0.10335096582160389,
|
231 |
+
"learning_rate": 9.445611340695926e-05,
|
232 |
+
"loss": 0.5979,
|
233 |
+
"step": 62
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.8,
|
237 |
+
"grad_norm": 0.09601224680804481,
|
238 |
+
"learning_rate": 9.397368756032445e-05,
|
239 |
+
"loss": 0.5705,
|
240 |
+
"step": 64
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.825,
|
244 |
+
"grad_norm": 0.11665075197978235,
|
245 |
+
"learning_rate": 9.347247763081835e-05,
|
246 |
+
"loss": 0.5553,
|
247 |
+
"step": 66
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.85,
|
251 |
+
"grad_norm": 0.17718968531566173,
|
252 |
+
"learning_rate": 9.295269771849427e-05,
|
253 |
+
"loss": 0.5239,
|
254 |
+
"step": 68
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.875,
|
258 |
+
"grad_norm": 0.12563855755365627,
|
259 |
+
"learning_rate": 9.241456985587868e-05,
|
260 |
+
"loss": 0.5232,
|
261 |
+
"step": 70
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.9,
|
265 |
+
"grad_norm": 0.16275531232300422,
|
266 |
+
"learning_rate": 9.185832391312644e-05,
|
267 |
+
"loss": 0.4977,
|
268 |
+
"step": 72
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.925,
|
272 |
+
"grad_norm": 0.15831678407865832,
|
273 |
+
"learning_rate": 9.12841974998278e-05,
|
274 |
+
"loss": 0.4823,
|
275 |
+
"step": 74
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.95,
|
279 |
+
"grad_norm": 0.13418888602939597,
|
280 |
+
"learning_rate": 9.069243586350975e-05,
|
281 |
+
"loss": 0.4665,
|
282 |
+
"step": 76
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.975,
|
286 |
+
"grad_norm": 0.14029302212481656,
|
287 |
+
"learning_rate": 9.008329178487442e-05,
|
288 |
+
"loss": 0.4309,
|
289 |
+
"step": 78
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 1.0,
|
293 |
+
"grad_norm": 0.13080984306217305,
|
294 |
+
"learning_rate": 8.945702546981969e-05,
|
295 |
+
"loss": 0.4144,
|
296 |
+
"step": 80
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.025,
|
300 |
+
"grad_norm": 0.1716051837075901,
|
301 |
+
"learning_rate": 8.881390443828787e-05,
|
302 |
+
"loss": 0.2687,
|
303 |
+
"step": 82
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 1.05,
|
307 |
+
"grad_norm": 0.12051065792645782,
|
308 |
+
"learning_rate": 8.815420340999033e-05,
|
309 |
+
"loss": 0.2484,
|
310 |
+
"step": 84
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 1.075,
|
314 |
+
"grad_norm": 0.1331773298071305,
|
315 |
+
"learning_rate": 8.74782041870563e-05,
|
316 |
+
"loss": 0.2316,
|
317 |
+
"step": 86
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 1.1,
|
321 |
+
"grad_norm": 0.09086971507936274,
|
322 |
+
"learning_rate": 8.678619553365659e-05,
|
323 |
+
"loss": 0.2152,
|
324 |
+
"step": 88
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.125,
|
328 |
+
"grad_norm": 0.10120733178425682,
|
329 |
+
"learning_rate": 8.60784730526531e-05,
|
330 |
+
"loss": 0.2195,
|
331 |
+
"step": 90
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.15,
|
335 |
+
"grad_norm": 0.07559304119756692,
|
336 |
+
"learning_rate": 8.535533905932738e-05,
|
337 |
+
"loss": 0.2092,
|
338 |
+
"step": 92
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.175,
|
342 |
+
"grad_norm": 0.0700251183868583,
|
343 |
+
"learning_rate": 8.461710245224148e-05,
|
344 |
+
"loss": 0.2087,
|
345 |
+
"step": 94
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.2,
|
349 |
+
"grad_norm": 0.07733361851858198,
|
350 |
+
"learning_rate": 8.386407858128706e-05,
|
351 |
+
"loss": 0.2003,
|
352 |
+
"step": 96
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.225,
|
356 |
+
"grad_norm": 0.06936595290783064,
|
357 |
+
"learning_rate": 8.309658911297834e-05,
|
358 |
+
"loss": 0.205,
|
359 |
+
"step": 98
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.25,
|
363 |
+
"grad_norm": 0.07214457895226337,
|
364 |
+
"learning_rate": 8.231496189304704e-05,
|
365 |
+
"loss": 0.1916,
|
366 |
+
"step": 100
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.275,
|
370 |
+
"grad_norm": 0.07972049863157102,
|
371 |
+
"learning_rate": 8.151953080639775e-05,
|
372 |
+
"loss": 0.1842,
|
373 |
+
"step": 102
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 1.3,
|
377 |
+
"grad_norm": 0.0678370243606489,
|
378 |
+
"learning_rate": 8.07106356344834e-05,
|
379 |
+
"loss": 0.2015,
|
380 |
+
"step": 104
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.325,
|
384 |
+
"grad_norm": 0.06355327798399048,
|
385 |
+
"learning_rate": 7.988862191016205e-05,
|
386 |
+
"loss": 0.1739,
|
387 |
+
"step": 106
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.35,
|
391 |
+
"grad_norm": 0.06793476682915373,
|
392 |
+
"learning_rate": 7.905384077009693e-05,
|
393 |
+
"loss": 0.1979,
|
394 |
+
"step": 108
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 1.375,
|
398 |
+
"grad_norm": 0.06479689090271346,
|
399 |
+
"learning_rate": 7.820664880476256e-05,
|
400 |
+
"loss": 0.1722,
|
401 |
+
"step": 110
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.4,
|
405 |
+
"grad_norm": 0.06872666246517939,
|
406 |
+
"learning_rate": 7.734740790612136e-05,
|
407 |
+
"loss": 0.1639,
|
408 |
+
"step": 112
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.425,
|
412 |
+
"grad_norm": 0.06601551408324573,
|
413 |
+
"learning_rate": 7.647648511303544e-05,
|
414 |
+
"loss": 0.1574,
|
415 |
+
"step": 114
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.45,
|
419 |
+
"grad_norm": 0.06324892382211052,
|
420 |
+
"learning_rate": 7.559425245448006e-05,
|
421 |
+
"loss": 0.1609,
|
422 |
+
"step": 116
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.475,
|
426 |
+
"grad_norm": 0.056937237831200214,
|
427 |
+
"learning_rate": 7.470108679062521e-05,
|
428 |
+
"loss": 0.1589,
|
429 |
+
"step": 118
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.5,
|
433 |
+
"grad_norm": 0.05372959808134079,
|
434 |
+
"learning_rate": 7.379736965185368e-05,
|
435 |
+
"loss": 0.165,
|
436 |
+
"step": 120
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.525,
|
440 |
+
"grad_norm": 0.050807581441291834,
|
441 |
+
"learning_rate": 7.288348707578408e-05,
|
442 |
+
"loss": 0.1655,
|
443 |
+
"step": 122
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.55,
|
447 |
+
"grad_norm": 0.05154835426969918,
|
448 |
+
"learning_rate": 7.195982944236851e-05,
|
449 |
+
"loss": 0.1576,
|
450 |
+
"step": 124
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.575,
|
454 |
+
"grad_norm": 0.058296170975419254,
|
455 |
+
"learning_rate": 7.102679130713537e-05,
|
456 |
+
"loss": 0.1474,
|
457 |
+
"step": 126
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.6,
|
461 |
+
"grad_norm": 0.047503910224261196,
|
462 |
+
"learning_rate": 7.008477123264848e-05,
|
463 |
+
"loss": 0.15,
|
464 |
+
"step": 128
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.625,
|
468 |
+
"grad_norm": 0.04885400630069184,
|
469 |
+
"learning_rate": 6.91341716182545e-05,
|
470 |
+
"loss": 0.1398,
|
471 |
+
"step": 130
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.65,
|
475 |
+
"grad_norm": 0.056761777137180336,
|
476 |
+
"learning_rate": 6.817539852819149e-05,
|
477 |
+
"loss": 0.1642,
|
478 |
+
"step": 132
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.675,
|
482 |
+
"grad_norm": 0.045569753914067236,
|
483 |
+
"learning_rate": 6.720886151813194e-05,
|
484 |
+
"loss": 0.1381,
|
485 |
+
"step": 134
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.7,
|
489 |
+
"grad_norm": 0.04690592784785931,
|
490 |
+
"learning_rate": 6.623497346023418e-05,
|
491 |
+
"loss": 0.1435,
|
492 |
+
"step": 136
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.725,
|
496 |
+
"grad_norm": 0.04713745634435082,
|
497 |
+
"learning_rate": 6.525415036677744e-05,
|
498 |
+
"loss": 0.1319,
|
499 |
+
"step": 138
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.75,
|
503 |
+
"grad_norm": 0.04503944493700146,
|
504 |
+
"learning_rate": 6.426681121245527e-05,
|
505 |
+
"loss": 0.128,
|
506 |
+
"step": 140
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.775,
|
510 |
+
"grad_norm": 0.04747702878359576,
|
511 |
+
"learning_rate": 6.327337775540362e-05,
|
512 |
+
"loss": 0.1366,
|
513 |
+
"step": 142
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.8,
|
517 |
+
"grad_norm": 0.04364714218227801,
|
518 |
+
"learning_rate": 6.227427435703997e-05,
|
519 |
+
"loss": 0.13,
|
520 |
+
"step": 144
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.825,
|
524 |
+
"grad_norm": 0.04395461532437832,
|
525 |
+
"learning_rate": 6.126992780079031e-05,
|
526 |
+
"loss": 0.1373,
|
527 |
+
"step": 146
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.85,
|
531 |
+
"grad_norm": 0.04928547488841982,
|
532 |
+
"learning_rate": 6.026076710978171e-05,
|
533 |
+
"loss": 0.1221,
|
534 |
+
"step": 148
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.875,
|
538 |
+
"grad_norm": 0.043656495356946795,
|
539 |
+
"learning_rate": 5.924722336357793e-05,
|
540 |
+
"loss": 0.1157,
|
541 |
+
"step": 150
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.9,
|
545 |
+
"grad_norm": 0.0456896816676112,
|
546 |
+
"learning_rate": 5.8229729514036705e-05,
|
547 |
+
"loss": 0.1334,
|
548 |
+
"step": 152
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.925,
|
552 |
+
"grad_norm": 0.9649846981742741,
|
553 |
+
"learning_rate": 5.720872020036734e-05,
|
554 |
+
"loss": 0.1512,
|
555 |
+
"step": 154
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.95,
|
559 |
+
"grad_norm": 0.042819929229098184,
|
560 |
+
"learning_rate": 5.618463156346739e-05,
|
561 |
+
"loss": 0.1183,
|
562 |
+
"step": 156
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.975,
|
566 |
+
"grad_norm": 0.04425179814586883,
|
567 |
+
"learning_rate": 5.515790105961786e-05,
|
568 |
+
"loss": 0.1169,
|
569 |
+
"step": 158
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 2.0,
|
573 |
+
"grad_norm": 0.1568815116859502,
|
574 |
+
"learning_rate": 5.4128967273616625e-05,
|
575 |
+
"loss": 0.1398,
|
576 |
+
"step": 160
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 2.025,
|
580 |
+
"grad_norm": 0.04736859283207987,
|
581 |
+
"learning_rate": 5.3098269731429736e-05,
|
582 |
+
"loss": 0.0649,
|
583 |
+
"step": 162
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 2.05,
|
587 |
+
"grad_norm": 1.0009419802762844,
|
588 |
+
"learning_rate": 5.2066248712440656e-05,
|
589 |
+
"loss": 0.0676,
|
590 |
+
"step": 164
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 2.075,
|
594 |
+
"grad_norm": 0.10084215910400005,
|
595 |
+
"learning_rate": 5.103334506137772e-05,
|
596 |
+
"loss": 0.0729,
|
597 |
+
"step": 166
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 2.1,
|
601 |
+
"grad_norm": 0.05492736250059767,
|
602 |
+
"learning_rate": 5e-05,
|
603 |
+
"loss": 0.0652,
|
604 |
+
"step": 168
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 2.125,
|
608 |
+
"grad_norm": 0.041812562536590804,
|
609 |
+
"learning_rate": 4.8966654938622295e-05,
|
610 |
+
"loss": 0.0687,
|
611 |
+
"step": 170
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 2.15,
|
615 |
+
"grad_norm": 0.05580872609288073,
|
616 |
+
"learning_rate": 4.7933751287559335e-05,
|
617 |
+
"loss": 0.0667,
|
618 |
+
"step": 172
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 2.175,
|
622 |
+
"grad_norm": 0.056542636206061606,
|
623 |
+
"learning_rate": 4.6901730268570275e-05,
|
624 |
+
"loss": 0.068,
|
625 |
+
"step": 174
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 2.2,
|
629 |
+
"grad_norm": 0.04274229535119481,
|
630 |
+
"learning_rate": 4.5871032726383386e-05,
|
631 |
+
"loss": 0.0646,
|
632 |
+
"step": 176
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 2.225,
|
636 |
+
"grad_norm": 0.03831634022116529,
|
637 |
+
"learning_rate": 4.4842098940382155e-05,
|
638 |
+
"loss": 0.0649,
|
639 |
+
"step": 178
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 2.25,
|
643 |
+
"grad_norm": 0.03778729638405323,
|
644 |
+
"learning_rate": 4.381536843653262e-05,
|
645 |
+
"loss": 0.0694,
|
646 |
+
"step": 180
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 2.275,
|
650 |
+
"grad_norm": 0.037105014536606744,
|
651 |
+
"learning_rate": 4.2791279799632666e-05,
|
652 |
+
"loss": 0.0678,
|
653 |
+
"step": 182
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 2.3,
|
657 |
+
"grad_norm": 0.15684820491799406,
|
658 |
+
"learning_rate": 4.17702704859633e-05,
|
659 |
+
"loss": 0.103,
|
660 |
+
"step": 184
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 2.325,
|
664 |
+
"grad_norm": 0.03508902044155104,
|
665 |
+
"learning_rate": 4.075277663642208e-05,
|
666 |
+
"loss": 0.0643,
|
667 |
+
"step": 186
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 2.35,
|
671 |
+
"grad_norm": 0.03348567296124864,
|
672 |
+
"learning_rate": 3.973923289021829e-05,
|
673 |
+
"loss": 0.0625,
|
674 |
+
"step": 188
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 2.375,
|
678 |
+
"grad_norm": 0.03377745940251335,
|
679 |
+
"learning_rate": 3.87300721992097e-05,
|
680 |
+
"loss": 0.0674,
|
681 |
+
"step": 190
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 2.4,
|
685 |
+
"grad_norm": 0.0351480774964804,
|
686 |
+
"learning_rate": 3.772572564296005e-05,
|
687 |
+
"loss": 0.0703,
|
688 |
+
"step": 192
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 2.425,
|
692 |
+
"grad_norm": 0.03389355898841613,
|
693 |
+
"learning_rate": 3.67266222445964e-05,
|
694 |
+
"loss": 0.0651,
|
695 |
+
"step": 194
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 2.45,
|
699 |
+
"grad_norm": 0.030418411095335357,
|
700 |
+
"learning_rate": 3.5733188787544745e-05,
|
701 |
+
"loss": 0.0632,
|
702 |
+
"step": 196
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 2.475,
|
706 |
+
"grad_norm": 0.03464427979939839,
|
707 |
+
"learning_rate": 3.474584963322257e-05,
|
708 |
+
"loss": 0.0644,
|
709 |
+
"step": 198
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 2.5,
|
713 |
+
"grad_norm": 0.030643080647599654,
|
714 |
+
"learning_rate": 3.3765026539765834e-05,
|
715 |
+
"loss": 0.0679,
|
716 |
+
"step": 200
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 2.525,
|
720 |
+
"grad_norm": 0.03319708430316191,
|
721 |
+
"learning_rate": 3.279113848186808e-05,
|
722 |
+
"loss": 0.0649,
|
723 |
+
"step": 202
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 2.55,
|
727 |
+
"grad_norm": 0.03190646162558671,
|
728 |
+
"learning_rate": 3.18246014718085e-05,
|
729 |
+
"loss": 0.0694,
|
730 |
+
"step": 204
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 2.575,
|
734 |
+
"grad_norm": 0.03746679307525109,
|
735 |
+
"learning_rate": 3.086582838174551e-05,
|
736 |
+
"loss": 0.0719,
|
737 |
+
"step": 206
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 2.6,
|
741 |
+
"grad_norm": 0.029716218419465028,
|
742 |
+
"learning_rate": 2.991522876735154e-05,
|
743 |
+
"loss": 0.0604,
|
744 |
+
"step": 208
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 2.625,
|
748 |
+
"grad_norm": 0.035100514903198446,
|
749 |
+
"learning_rate": 2.8973208692864624e-05,
|
750 |
+
"loss": 0.0692,
|
751 |
+
"step": 210
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 2.65,
|
755 |
+
"grad_norm": 0.03413102367589507,
|
756 |
+
"learning_rate": 2.804017055763149e-05,
|
757 |
+
"loss": 0.0692,
|
758 |
+
"step": 212
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 2.675,
|
762 |
+
"grad_norm": 0.03636401730461719,
|
763 |
+
"learning_rate": 2.711651292421593e-05,
|
764 |
+
"loss": 0.0679,
|
765 |
+
"step": 214
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 2.7,
|
769 |
+
"grad_norm": 0.03107466842244076,
|
770 |
+
"learning_rate": 2.6202630348146324e-05,
|
771 |
+
"loss": 0.0621,
|
772 |
+
"step": 216
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 2.725,
|
776 |
+
"grad_norm": 0.036834702525337576,
|
777 |
+
"learning_rate": 2.529891320937481e-05,
|
778 |
+
"loss": 0.0698,
|
779 |
+
"step": 218
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 2.75,
|
783 |
+
"grad_norm": 0.04645751316114215,
|
784 |
+
"learning_rate": 2.4405747545519963e-05,
|
785 |
+
"loss": 0.0648,
|
786 |
+
"step": 220
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 2.775,
|
790 |
+
"grad_norm": 0.028015969012530832,
|
791 |
+
"learning_rate": 2.352351488696457e-05,
|
792 |
+
"loss": 0.0588,
|
793 |
+
"step": 222
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 2.8,
|
797 |
+
"grad_norm": 0.03525853228544041,
|
798 |
+
"learning_rate": 2.2652592093878666e-05,
|
799 |
+
"loss": 0.0631,
|
800 |
+
"step": 224
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 2.825,
|
804 |
+
"grad_norm": 0.028959437202259703,
|
805 |
+
"learning_rate": 2.179335119523745e-05,
|
806 |
+
"loss": 0.0619,
|
807 |
+
"step": 226
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 2.85,
|
811 |
+
"grad_norm": 0.027213618352209,
|
812 |
+
"learning_rate": 2.094615922990309e-05,
|
813 |
+
"loss": 0.0609,
|
814 |
+
"step": 228
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 2.875,
|
818 |
+
"grad_norm": 0.02956846014413412,
|
819 |
+
"learning_rate": 2.0111378089837956e-05,
|
820 |
+
"loss": 0.0602,
|
821 |
+
"step": 230
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 2.9,
|
825 |
+
"grad_norm": 0.028745535223261443,
|
826 |
+
"learning_rate": 1.928936436551661e-05,
|
827 |
+
"loss": 0.059,
|
828 |
+
"step": 232
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 2.925,
|
832 |
+
"grad_norm": 0.025725337055887934,
|
833 |
+
"learning_rate": 1.848046919360225e-05,
|
834 |
+
"loss": 0.0558,
|
835 |
+
"step": 234
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 2.95,
|
839 |
+
"grad_norm": 0.03383514185440608,
|
840 |
+
"learning_rate": 1.768503810695295e-05,
|
841 |
+
"loss": 0.0614,
|
842 |
+
"step": 236
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.975,
|
846 |
+
"grad_norm": 0.02889459674020087,
|
847 |
+
"learning_rate": 1.6903410887021676e-05,
|
848 |
+
"loss": 0.0605,
|
849 |
+
"step": 238
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 3.0,
|
853 |
+
"grad_norm": 0.025519223360493788,
|
854 |
+
"learning_rate": 1.6135921418712956e-05,
|
855 |
+
"loss": 0.0595,
|
856 |
+
"step": 240
|
857 |
+
}
|
858 |
+
],
|
859 |
+
"logging_steps": 2,
|
860 |
+
"max_steps": 320,
|
861 |
+
"num_input_tokens_seen": 0,
|
862 |
+
"num_train_epochs": 4,
|
863 |
+
"save_steps": 500,
|
864 |
+
"stateful_callbacks": {
|
865 |
+
"TrainerControl": {
|
866 |
+
"args": {
|
867 |
+
"should_epoch_stop": false,
|
868 |
+
"should_evaluate": false,
|
869 |
+
"should_log": false,
|
870 |
+
"should_save": true,
|
871 |
+
"should_training_stop": false
|
872 |
+
},
|
873 |
+
"attributes": {}
|
874 |
+
}
|
875 |
+
},
|
876 |
+
"total_flos": 9.716416896407962e+18,
|
877 |
+
"train_batch_size": 2,
|
878 |
+
"trial_name": null,
|
879 |
+
"trial_params": null
|
880 |
+
}
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc564678565627570649dab4c4b53ff32ab56b48ceac3010e490127231b29063
|
3 |
+
size 7800
|
uccix_v2_instruct_191224_no_english_mixture_lr1e-4/checkpoint-240/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|